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ABSTRACT

A recently introduced type of neural network called maxout
has worked well in many domains. In this paper, we propose
to apply maxout for acoustic models in speech recognition.
The maxout neuron picks the maximum value within a group
of linear pieces as its activation. This nonlinearity is a gener-
alization to the rectified nonlinearity and has the ability to ap-
proximate any form of activation functions. We apply maxout
networks to the Switchboard phone-call transcription task and
evaluate the performances under both a 24-hour low-resource
condition and a 300-hour core condition. Experimental re-
sults demonstrate that maxout networks converge faster, gen-
eralize better and are easier to optimize than rectified linear
networks and sigmoid networks. Furthermore, experiments
show that maxout networks reduce underfitting and are able
to achieve good results without dropout training. Under both
conditions, maxout networks yield relative improvements of
1.1-5.1% over rectified linear networks and 2.6-14.5% over
sigmoid networks on benchmark test sets.

Index Terms— Maxout networks, acoustic modeling,
neuron nonlinearity, speech recognition

1. INTRODUCTION

The combination of deep neural networks and hidden Markov
models, also referred to as DNN-HMM hybrid approach, is
quickly becoming the dominant acoustic modeling technolo-
gy for speech recognition in recent years [1, 2]. The key idea
is to use a neural network with many hidden layers to mod-
el the HMM state posterior probabilities. This method has
several advantages over traditional GMM-HMM approaches.
Firstly, neural networks with many nonlinear hidden layers
yield stronger modeling power than GMMs. Secondly, with
minimal assumptions about the data distribution, DNNs are
able to extract informative features with less front-end pro-
cessing (e.g. filter-bank features) [3] and discover the rela-
tionships between neighboring frames [4]. Thirdly, the hier-
archical structures of DNNs enable parameter sharing within
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the hidden layers, which is more powerful and efficient than
having many disjoint parameters for every target.

Since the initial successful attempt of the DNN-HMMs
in phoneme recognition [5] and large vocabulary phone-call
transcription tasks [6], extensive explorations have been fo-
cused on deep learning methods for speech recognition, and
state-of-the-art results have been updated many times. Suc-
cessful models include pre-trained sigmoidal networks [1, 2],
rectified linear networks [7, 8, 9], etc.

For pre-trained sigmoidal networks, the logistic sigmoidal
nonlinearity is chosen. Although this form of nonlinearity is
widely used in neural networks due to its smoothness and its
simplicity of gradient computation, some drawbacks still ex-
ist. One obvious drawback is that the sigmoid function on-
ly has large gradient values when its input is near zero. If
the input magnitudes of some neurons are large, the corre-
sponding gradient values tend to be small and standard back-
propagation (BP) training is less effective. This problem is es-
pecially severe when the network is deep, making the network
training procedures sensitive to the hyper-parameter tuning.
This issue is partially solved by an efficient pre-training al-
gorithm proposed by Hinton et. al. to pre-train each hidden
layer generatively as an RBM [10]. Later, Seide et. al. argue
that when enough training data is available, pre-training is not
necessary [11]. This discovery inspires people to find better
ways to train DNNs without pre-training.

The recently proposed rectified linear units (ReLU) [12]
for deep neural networks are showing some benefits over sig-
moid units. This form of nonlinearity chooses y = max(x, 0)
as the activation function, the resulting gradients for each neu-
ron are either O (when x < 0) or 1 (when x > 0). This simple
method prevents the gradients from vanishing, so that the Re-
LU networks are easier to train with BP and deeper models
can be applied. The ReLU networks are proved to perform
well for acoustic modeling. Impressive results reported in [8]
show that ReLU networks with up to 12 hidden layers can
be successfully trained using several hundred hours of speech
data. And in [9], ReLU networks have shown superior perfor-
mance in the well-known Switchboard phone-call transcrip-
tion task over tanh networks. In both [8] and [9], the ReLU
networks are trained only with BP, i.e. without pre-training.

The success of the ReLU networks motivates us to recon-
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sider the choice of the nonlinearities for deep neural networks.
Inspired by the recent work in many machine learning tasks
[13], we introduce maxout nonlinearity to deep neural net-
work acoustic modeling. The maxout network is so named
because each maxout unit chooses the maximum value within
a group of linear pieces as the activation. So that the network
is linear almost everywhere (except for the output softmax
nonlinearity), which resembles the ReLU network. Howev-
er, the maxout units compare values of a group of candidate
pieces, while the ReLLUs only compare the value of a single
piece with 0. In this opinion, the maxout units are generaliza-
tions to ReLUs. In [13], the authors further demonstrate that
maxout is a universal approximator and maxout networks per-
form better than previous methods in many machine learning
benchmark tasks.

In this paper, we study deep maxout networks for acous-
tic modeling and apply them to the Switchboard phone-call
transcription tasks. We find that maxout networks have good
performance when applied to speech recognition systems. A
series of experimental results show that maxout networks per-
form better than both pre-trained sigmoidal networks and Re-
LU networks. In [13], maxout is applied along with dropout
[14], but we discover maxout networks can be successfully
trained without dropout and reduce underfitting.

The remainder of this paper is organized as follows: In
Section 2, we briefly review DNN-HMMs. In Section 3, we
propose the maxout network acoustic models, including its
training and testing strategies. We report our experiments in
detail in Section 4 and conclude this paper in Section 5.

2. REVIEW OF DNN-HMMS

In the DNN-HMM hybrid approach, acoustic events are mod-
eled by a deep neural network, whose inputs are concatenated
acoustic features, and whose outputs are softmax posterior
probabilities p(s|o) with respect to each HMM state s. The
DNN training process optimizes the cross entropy function:

D= —stlogp(s|o) )]

where dg is 1 for the target state and O for non-target states.
The state-level transcription is generated by a forced align-
ment using a baseline system. During test process, the acous-
tic score log p(o|s) for the observation o is computed as

@)

where p(s) is the state prior probability estimated from the
training set. The p(o) is the observation probability, which
can be omitted as it’s a constant for each input observation.

Though there exist many nonlinear functions for DNNSs,
the traditional sigmoid function is most often used. The re-
cently proposed ReLU nonlinearity has shown some benefits
over sigmoid nonlinearity and often yields better results [9].
Both these nonlinearities are illustrated in Fig. 1.

log p(o|s) = log p(s|o) + log p(o) — log p(s)

292

T
L sigmoid
— Rel U

0.5

-3
Fig. 1. llustration of sigmoid and ReLLU nonlinearity.

3. MAXOUT NETWORKS AND THEIR
APPLICATIONS TO ACOUSTIC MODELING

In this section, we present the maxout networks and analyze
their properties. We also consider some practical issues when
the maxout networks are applied to acoustic modeling.

3.1. Model description

In maxout neural network, each neuron has a group consist-
ing of k candidate pieces. The maximum value across the &
pieces is chosen as the neuron activation. Denote the ith node
of the Ith hidden layer as h! and its corresponding pieces as
zlij , the relationship between them satisfies:
= max zlij

%
hl ;
jel...k

3)
and zlij is obtained by forward propagation from the layer be-
low, i.e.:

z;=W, h_;+b 4

where z; € RZ stands for the vector of the /th layer to be max-
pooled, whose elements are z,”. The h;_; € R¥ is the max-
out activation vector of the [ — 1th layer. The W;_; € RH#*Z
denotes the weight matrix of the [ — 1th layer and b; € R?
denotes the bias vector of the /th layer. An example of the
maxout network with 3 hidden layers and a group of 3 pieces
for each neuron is illustrated in Fig. 2.

The forward-propagation process of the maxout network
is the same as other feed-forward neural networks except that
the activation computation follows equation (3) and (4). For
the back-propagation process during training, the gradient for
each maxout neuron is always 1, but only the weights cor-
responding to the piece with the maximum activation within
each group {z,|j € 1...k} forl € [1,L] and i € [1, N'] are
updated. This is similar to max-pooling in convolutional net-
works [15]. However, in convolutional networks max-pooling
happens across spacial locations while in maxout networks
we do max-pooling across k pieces, which can be viewed as
different features across the same spacial region.
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Fig. 2. Example of a fully-connected maxout network with 3
hidden layers and a group of 3 pieces for each neuron.

3.2. Model analysis

The maxout unit achieves its nonlinearity just by max-pooling
across k pieces, which may seem surprisingly simple com-
pared with traditional neural network nonlinear functions
such as logistic sigmoid or hyperbolic tangent. It is inter-
esting to analyze how and why it works. We come up with
three reasons for the maxout network’s competitiveness: The
max-pooling operation enables robust feature selection; the
maxout neuron is a generalization to the ReLU neuron and
the maxout nonlinearity is a universal approximator.

The max-pooling operation is like a winner-take-all ac-
tion, which is first applied to convolutional networks [15].
Given a region consisting of k candidate neurons, the most
active neuron is selected as a representation of that region,
while other candidates are eliminated. Each candidate neuron
in maxout network can be viewed as a different feature map,
representing a different aspect of information from the layer-
s below. The maxout neuron, if well-trained, will hopefully
select the most useful feature and make the classifier robust.

The maxout neuron is also a generalization of the ReLU
neuron, their relationship is illustrated in Fig. 3. For the Re-
LU nonlinearity, max-pooling happens between a single fea-
ture map and 0, which behaves just like a maxout neuron with
2 pieces but one piece is always 0. By comparison, maxout
units perform feature selections in a wise way, while ReLU
just throws information away.

In [13], the authors have proved that just two maxout units
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Fig. 3. A unified view of (a) ReLU neuron and (b) maxout
neuron with 2 pieces. ReLU neuron performs max-pooling
between a single feature map and 0, while maxout neuron
performs max-pooling between different feature maps.

can approximate any continuous function arbitrarily closely if
there are enough pieces for each unit. So during the maxout
network training, the neurons learn the activation function-
s automatically themselves and can implement any form of
nonlinear functions in theory. This makes maxout network
powerful and flexible when applied to real-world problems.

3.3. Maxout networks for acoustic modeling

When applied to acoustic modeling, the maxout network esti-
mates HMM state posterior probabilities in the same fashion
as traditional sigmoidal network does. However, it is neces-
sary to explore the effects of using different numbers of pieces
and different numbers of hidden layers. It is also interesting
to compare maxout networks with ReLU networks and pre-
trained sigmoidal networks on benchmarks test sets.

4. EXPERIMENTAL RESULTS

In this section, we present our experimental settings and re-
sults of maxout networks on the Switchboard phone-call tran-
scription task. For all our experiments, we use the SWB part
of Hub5’00 set as development set and the FSH part of RT03S
set as test set. To our knowledge, this is the first time maxout
networks are applied to speech recognition.

4.1. Experiment setup and baseline results

In the paper, we conduct our experiments on two training con-
ditions: the core condition, under which we use all 300 hours
of training data, and the low-resource condition, under which
we select 24 hours of training data. We try different network
settings under the low-resource condition and then report re-
sults under the core condition.

The baseline setup is based on our previous work [16],
which is briefly described below. The raw 13-dimensional
PLP features are concatenated with their first, second and
third order derivatives and reduced to 39 dimensions us-
ing HLDA. For the core condition, the GMM-HMM contains
9308 states with 40 Gaussians each. The model is first trained
using maximum likelihood and then refined using MPE crite-
rion. The ML-trained model is used to generate state-aligned
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Fig. 4. Frame classification accuracy on (a) 24 hours of Switchboard training set and (b) Hub5’00 SWB development set as
learning progresses. Results of maxout networks with different pieces, an ReLU network and a pre-trained sigmoidal network
are compared. All the networks have 7 hidden layers with 480 units each.

Table 1. Baseline GMM-HMM results. Models are trained
using 300 hours of Switchboard corpus. Performances are
measured in word-error rate (WER) given in %.

| Model [ Hub5°00-SWB | RT03S-FSH |
GMM-HMM ML 26.4 29.6
GMM-HMM MPE 23.4 268

transcriptions for DNN training. A trigram language model
is trained using the transcription of the 2000h Fisher corpus
and interpolated with a more general trigram. The baseline
results are listed in Table 1.

4.2. Effects of piece groups

For the maxout network, the first thing we explored is the ef-
fects of different numbers of pieces for the piece groups under
the low-resource condition. The input features to DNNs are
13-dimensional PLP features plus their first order and second
order derivatives. The features are normalized to have zero
mean and unit variance based on conversation-side informa-
tion. A context window of 11 frames (5 frames on each side)
is used.

To investigate the effects of different piece numbers, we
fix maxout networks to have 7 hidden layers with 480 units
each, but vary the piece numbers to 2, 3 and 4. A sigmoidal
network and an ReLU network with the same number of hid-
den layers and units are also trained under the same condition
for comparison. The learning procedures for the maxout and
ReLU networks are the same. The initial learning rate is set
to 0.01. At the end of every epoch, we evaluate frame accu-
racy of the development set and reduce the learning rate by
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Table 2. Speech recognition results on 24 hours of Switch-
board training data. Networks have 7 hidden layers with 480
units each. Performances are measured in WER given in %.

] Model H Hub5’00-SWB \ RTO03S-FSH ‘
GMM-HMM ML 353 39.2
sigmoid 26.2 29.2
ReLU 23.6 26.9
maxout pieces=2 224 26.0
maxout pieces=3 22.4 26.4
maxout pieces=4 224 26.3

a factor of 2 if the accuracy decreases. For the first epoch,
we use a momentum of 0.5 and increase it to 0.9 afterwards.
To prevent the weight vectors from growing too large, a norm
constraint is also applied to limit the norm of the incoming
weight vectors corresponding to each hidden unit to 0.8. For
the sigmoidal network, DBN pre-training is first applied fol-
lowing the process in [11]. At the fine-tuning stage, the initial
learning rate is set to 0.08. No norm constraint is used. Our
implementations of the networks are based on an extended
version of CUDAMat library [17].

For different networks, the frame accuracies are shown in
Fig. 4. Results show that maxout networks converge faster
than both sigmoidal and ReLU networks. On the training
set, the maxout networks show better abilities to fit the da-
ta. While on the test set, the maxout networks and the ReLU
network achieve almost the same accuracy, but the pre-trained
sigmoidal network performs less well. As better classification
accuracy doesn’t always lead to lower speech recognition er-
ror rate [18], we also evaluate the speech recognition perfor-
mance and the results are shown in Table 2. A GMM-HMM
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Fig. 5. Speech recognition results on Hub5’00-SWB corpus.
Networks with 480 units for each hidden layer are trained us-
ing 24 hours of Switchboard data.

30.0

M sigmoid
mRelU
maxout

7
Number of hidden layers

Fig. 6. Speech recognition results on RT0O3S-FSH corpus.
Networks with 480 units for each hidden layer are trained us-
ing 24 hours of Switchboard data.

acoustic model with 1832 states and HLDA transformation
is trained using the 24 hours of data for comparison. The
speech recognition experiments show that maxout networks
outperform both ReLLU and sigmoidal networks. The maxout
network with 2 pieces yields the best generalization ability
and achieves relative error reductions of 14.5% and 5.1% on
the development set and 10.9% and 3.3% on the test set com-
pared with sigmoidal and ReLU networks. Therefore, maxout
networks with 2 pieces are used for all the following experi-
ments.

4.3. Effects of network layers

DNNs often perform better with more hidden layers, but as
networks grow deeper, their optimizations become harder. We
evaluate the effects of different numbers of hidden layers to
maxout networks, ReLU networks and sigmoidal networks
using the 24 hours of Switchboard training data. For all the
networks, we use the same learning procedure as described
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Table 3. Speech recognition results using 300 hours of
Switchboard training data. All networks have 7 hidden layers
with 2048 units each. Performances are measured in WER
given in %.

| Model [[ Hub5°00-SWB | RT03S-FSH |

sigmoid 15.7 19.0
RelLU 15.3 18.7
maxout 15.1 18.5

in the previous subsection. In these experiments, the number
of units for the networks are fixed to 480 but the number of
hidden layers are varied to 5, 7 and 9. Speech recognition
results on Hub5’00-SWB development set and RT03S-FSH
test set are shown in Fig. 5 and Fig. 6.

Experiments show that maxout networks bring consistent
improvements over ReLU and sigmoidal networks for differ-
ent numbers of hidden layers. Results also show that maxout
and ReLU networks with up to 9 hidden layers can be success-
fully trained with back-propagation alone. In addition, lower
error rates can be achieved for maxout and ReLU networks
when more hidden layers are used. But for the sigmoidal net-
works, the performance improves less obviously with more
hidden layers, sometimes even get worse. This suggests that
maxout networks and ReLLU networks are easier to optimize
than sigmoidal networks.

4.4. Core results

After exploring the effects of different network settings, we
present our results under the core condition using all the
300 hours of Switchboard training data. We extract 40-
dimensional filter-bank features plus energy, along with first
and second order temporal derivatives. The features are then
normalized to have zero mean and unit variance. We compare
results of a maxout network, an ReLU network and a pre-
trained sigmoidal network. All of them have 7 hidden layers
and 2048 units per hidden layer. For the maxout network, we
apply a norm constraint of 1.0 and a final momentum of 0.7.
For the ReLU network, we apply a norm constraint of 1.0 and
a final momentum of 0.9. Training stops when the learning
rate is reduced 5 times. Other learning procedures are the
same as that described in Subsection 4.2.

The core results are shown in Table 3. The maxout net-
work offers a relative improvement of 2.6-3.8% over the sig-
moidal network, and a relative improvement of 1.1-1.3% over
the ReLU network. Though the improvements are less signif-
icant than those under the low-resource condition, the maxout
network needs fewer epochs to converge and we believe larg-
er performance gap may be obtained when the networks have
even more hidden layers.



5. CONCLUSIONS

In this paper, we have introduced and analyzed maxout net-
works for acoustic modeling in speech recognition. The max-
out unit selects the maximum value within a group of differ-
ent feature maps, and is a generalization to the rectified linear
unit. We observe that maxout networks converge faster and
generalize better than ReLU networks and pre-trained sig-
moidal networks, and maxout networks with 2 pieces perfor-
m best for speech recognition. Moreover, experiments also
show that deep maxout networks are easy to optimize with-
out the need for pre-training and work well without dropout.
Finally, on the Switchboard phone-call transcription task, the
maxout network achieves a 2.6-14.5% relative improvement
over the pre-trained sigmoidal network and a 1.1-5.1% rela-
tive improvement over the ReLU network.

In the future, we will explore deeper maxout neural net-
works with more training data. We will also explore the com-
bination of maxout neural networks and dropout for speech
recognition under low-resource conditions and for minority
languages.
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