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ABSTRACT

The performance of human listeners degrades rather slowly com-
pared to machines in noisy environments. This has been attributed
to the ability of performing auditory scene analysis which separates
the speech prior to recognition. In this work, we investigate two
mask estimation approaches, namely the state dependent and the
deep neural network (DNN) based estimations, to separate speech
from noises for improving DNN acoustic models’ noise robustness.
The second approach has been experimentally shown to outperform
the first one. Due to the stereo data based training and ill-defined
masks for speech with channel distortions, both methods do not gen-
eralize well to unseen conditions and fail to beat the performance of
the multi-style trained baseline system. However, the model trained
on masked features demonstrates strong complementariness to the
baseline model. The simple average of the two system’s posteriors
yields word error rates of 4.4% on Aurora2 and 12.3% on Aurora4.

Index Terms— Deep Neural Network, Spectral Masking, Noise
Robustness

1. INTRODUCTION

With the wide adoption of speech based services, noise robustness
of automatic speech recognition (ASR) systems is becoming more
and more crucial to better user experiences in real world applica-
tions. Deep neural networks (DNNs) have shown a much better gen-
eralization capability than conventional Gaussian Mixture Models
(GMMs). However, the performance of DNNs on speech from un-
seen noise environments is still far from human expectations. Ex-
ploring the noise robustness of DNNs is attracting more interest.

Speech and noise are believed to be independent to each other.
To compensate the decreased intelligibility caused by noise, we
could either enhance the target speech or reduce the interfering
noise. In the literature, various feature enhancement techniques
aiming at improving speech intelligibilities have been developed.
They are also one of the early attempts for DNNs due to their direct
applicability [1, 2]. However, the performance improvement has
only been seen for DNNs trained on clean signals. With multi-style
data, slight degradations have been observed when using enhanced
features. This may be attributed to the imperfect enhancement pro-
cess that may discard useful speech information and meanwhile,
bring in unwanted distortions. Besides the traditional enhancement
algorithms, neural network models have also been trained on stereo
data to directly reconstruct clean speech features, such as recurrent
neural networks (RNNs) [3, 4]. They have shown improvements in
matched noise conditions but also failed for unseen noises.

In human speech perception process, the human auditory sys-
tem is believed to be capable of efficiently identifying and separating
speech and noise prior to recognition [5]. Similarly, methods that us-
ing only the separated speech dominated time-frequency (T-F) units
have seen many applications in robust ASR recently. The separa-
tion is usually done through binary masking. With stereo data, ideal
binary masks (IBMs) [6] have been shown to largely improve intel-
ligibilities of speech with background noises [7]. To suppress noises
for ASR, IBMs are commonly used either by direct masking [8] or
by performing reconstruction [9]. In direct masking, the noise dom-
inate T-F units are discarded by the binary selection of IBMs; while
in reconstruction, the speech energy for those units are estimated us-
ing information of the speech dominate units. The performance of
both these two methods depends largely on the quality of IBM esti-
mations. Various classification based algorithms for IBM prediction
have thus been developed [10–13].

In this study, we investigate the effectiveness of spectral domain
masking in the hybrid DNN-Hidden Markov Model (HMM) based
ASR systems. Conventionally, an ensemble of human engineered
features is required for IBM predictions [10]. While in [14], the
authors find that features extracted automatically using a Gaussian-
Bernoulli Restricted Boltzmann Machine (GRBM) perform even
better. Similar trends have been observed in the acoustic model-
ing research. The log Mel filterbank (FBank) features [15] or the
waveform signals [16] have been shown to outperform the human
engineered Mel frequency cepstral coefficient (MFCC) features as
inputs for DNNs. We hence justify the potential of estimating IBMs
directly with FBank features. Two approaches, namely the state
dependent and the DNN based IBM estimations, are proposed and
the direct masking is adopted to filter the spectral features with
estimated masks. To avoid possible errors brought by the mask bina-
rization process, outputs of IBM estimators are directly used as soft
masks, representing the expected probability for each T-F unit being
speech dominated. Experiments on Aurora2 [17] and Aurora4 [18]
noisy speech recognition tasks have shown that the estimated masks
improve clean trained system but degrade the multi-style trained
baseline, which has also been observed in [19]. However, the pos-
teriors generated from it demonstrate strong complementariness to
the baseline. A simple posterior interpolation yields much better
performance than both of the two systems. The word error rates
(WERs) of 4.4% on Aurora2 and 12.3% on Aurora4 achieved are
both among the best performances of these datasets. The rest of the
paper is organized as follows. The general spectral masking process
is described in Section 2 and the proposed IBM estimation methods
are detailed in Section 3. We present the experimental results in
Section 4 and conclude the paper in Section 5.
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2. SPECTRAL MASKING

The proposed integration of spectral masking in the hybrid DNN-
HMM system is depicted in Figure 1. The masking process (light
green shaded box in Figure 1) is performed on the power spectral
features, which is simply an element-wise multiplication between
the spectrum and the mask. The success of this system largely de-
pends on the performance of the mask estimator.
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Fig. 1. The proposed system architecture for integrating spectral
masking in the hybrid DNN-HMM system.

With stereo data, the IBM that labels each T-F unit of the noisy
signal as speech dominant or noise dominant is computed using:

IBM(m, c) =

{
1 if SNR(m, c) > LC
0 otherwise, (1)

where SNR(m, c) represents the local signal-to-noise ratio (SNR)
at time frame m and frequency channel c, and LC is a local SNR
threshold. An example of IBM filtered noisy spectrogram is illus-
trated in Figure 2(c). Together with the unwanted noise T-F units,
many speech details are also filtered away after masking by compar-
ing it with the clean spectrum in Figure 2(a). This is why a feature
reconstruction step is commonly adopted after masking.

(a) Clean (b) With train noise (SNR=0 dB)

(c)With IBM (d) With ideal state mask

(e) With state dependent mask (f) With DNN based mask

Fig. 2. Spectrograms for the same noisy speech “8055” filtered by
different masks. The corresponding clean spectrogram (a) and the
original unmasked noisy one (b) are also plotted for comparisons.

Masking noisy signals with IBMs has been shown to substan-
tially improve intelligibility [20] and robustness of ASR systems
[21]. They are hence commonly used as the supervision targets
for learning mask estimators. Some of the early work uses GMMs

[10, 11] or support vector machines (SVMs) [12] to predict IBMs.
Recently, DNNs have been adopted for mask predictions in [13].
Totally 26 DNNs are trained on the same feature ensemble to pre-
dict the mask values for different frequency channels and a final
multi-layer perceptron (MLP) is used to smooth out the DNN pre-
dictions. Instead of the discrete IBMs, continuous value based ideal
ratio masks are used as targets, which are effectively soft masks. An
additional DNN is trained in their system to reconstruct clean fea-
tures from the masked ones.

In practice, an important consideration is the additional cost
brought by the mask estimation, which should not be too taxing on
the system. With this in mind, two IBM estimation algorithms that
reusing existing models are developed, namely the state dependent
(Figure 3(a)) and the DNN based (Figure 3(b)) mask estimations.
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(b) DNN based estimator

Fig. 3. Two proposed mask estimators. The light gray shaded box
indicates the model is reused from the original DNN-HMM system.

3. PROPOSED MASK ESTIMATIONS

3.1. State Dependent IBM Estimation

Compared to noise, speech is a more structured signal, which is also
reflected by the capability of clustering speech features into phonetic
clusters for recognition using statistical machine learning methods.
Although IBMs depend on both speech and noise due to the local
SNR computation, structure information about speech would also be
crucial to label out the speech dominate units. For a specific pho-
netic state cluster, different IBM realizations should share similar
structures. Based on this assumption, we propose a state dependent
IBM estimation approach. Utilizing the phonetic state clustering of
the original recognition system, the IBM vectors for each time frame
are grouped according to their corresponding speech feature vec-
tors. There are several advantages of borrowing speech feature based
clusters rather than directly clustering IBM vectors. First it saves
the clustering cost. Secondly, the feature based clustering would be
more robust than the 0-1 based masks and thirdly, it also relieves the
clustering process from being constrained by the limited stereo data.

After clustering, a canonical IBM pattern, which will also be
referred to as an IBM basis, could then be estimated for each state
cluster. In this work, we simply use the mean IBM vector of each
state cluster as the basis for that specific phonetic state. It could
be interpreted as the expected probability for each T-F unit being
marked as speech. With this set of state dependent IBM bases, B,
the estimated mask vector for each test feature vector vt is computed
by mt = Bst, where st is the basis coefficient vector. We adopt
the original DNN posterior probability vectors as st. The complete
step is also depicted in Figure 3(a). The mask values estimated in
this way are in the range of [0, 1] rather than the discrete 0 or 1
as in IBMs. In consideration of the possible errors in estimations
for B and st, we take the estimated soft masks directly for spectral
masking without binarization. Our approach differs from [22] in the
way how these phonetic dependent mask patterns are used. Instead
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of using them to refine a current estimation, we directly compose
masks from them.

To gain an intuitive understanding on the effectiveness of our
simple state dependent mask estimation, two more spectrograms are
plotted in Figure 2. For Figure 2(d), we use the ideal posterior vec-
tor for st to justify the effectiveness of the IBM bases without wor-
rying about errors in posterior predictions. Due to the use of soft
masks, noises could not be completely removed; but compared to
Figure 2(b), the speech formant structure becomes much clearer.
In practice, we use an existing phonetic DNN to generate st and
the spectrogram in Figure 2(e) looks slightly more noisy than Fig-
ure 2(d) but still much better than Figure 2(b). Furthermore, in Fig-
ure 4 two samples of IBM bases (blue bars) and the corresponding
normalized speech spectral envelops are plotted. A strong correla-
tion could be observed, which also validates our early assumption.

(a) The 11th HMM state of “6” (b) The 14th HMM state of “0”

Fig. 4. Comparisons of state dependent bases (blue bars) and speech
spectral envelops (red contour) on Aurora2.

3.2. DNN based IBM Estimation

In the state dependent approach, we borrow the posterior informa-
tion generated from the original DNN. In this section, we revisit the
learning procedure for DNNs. A commonly adopted DNN training
recipe [23] is to firstly pre-train a stack of restricted Boltzmann ma-
chines (RBMs) in an unsupervised way and then discriminatively
fine-tune the whole DNN. The learned RBMs are capable of extract-
ing general purpose high-level abstractions that are good representa-
tions of the original data and the fine-tuning stage further optimizes
them towards a specific task. Hence, if we optimize them for the pre-
diction of IBMs rather than phonetic labels in the fine-tuning stage,
the network would then be capable of generating masks for any given
inputs (Figure 3(b)).

Comparing to the state dependent approach, instead of reusing
the fine-tuned DNN for the basis coefficient computations, we bor-
row the general purpose RBMs and optimize them for the IBM
prediction. The sigmoid output units and the mean square error
(MSE) criterion are used to replace the softmax units and the
cross entropy objective. Standard error back-propagation is adopted
to optimize the DNN parameters until the reduction of MSE on a
validation set is neglectable. With this DNN based IBM estimator,
each test utterance is first forwarded to generate the corresponding
mask. A new set of FBank features are computed from the masked
partial spectrum and forwarded to either the original DNN or the
DNN retrained with masked features.

Our DNN based IBM predictor differs from [13] in two major
aspects. Firstly, we use one single DNN initialized with existing pre-
trained RBMs to directly predict masks from a window of temporal
adjacent acoustic frames; while in their approach, a bunch of DNNs
are built from beginning to predict the the mask value for each fre-
quency channel and an additional MLP is involved to smooth out the
prediction with temporal information captured in the masks. Sec-
ondly, the features for mask predictions are different. In our ap-

proach, we use the commonly adopted 24D FBank features. How-
ever, in [13], an ensemble of different features are concatenated to
form the static input coefficients, which include 13D RASTA filtered
PLP coefficients, 13D MFCCs, 15D amplitude modulation spectro-
gram and 6D pitch-based features. Generally speaking, our approach
is much easier for an existing DNN-HMM system to incorporate
spectral masking.

Similar to previous sections, the mask generated by this DNN
based estimator is used to filter the same noisy speech and the re-
sulting spectrogram is illustrated in Figure 2(f). From the visual
comparison, this mask generates the most clean-like spectrogram.

4. EXPERIMENTS

In this section, we justify the effectiveness of the proposed two mask
estimators in the hybrid DNN-HMM speech recognition systems.
Experiments are first carried out on the noisy digit recognition task
Aurora2 [17] and then on the medium vocabulary noisy speech
recognition task Aurora4 [18].

4.1. Aurora2

The benchmark noisy speech recognition dataset, Aurora2 [17], con-
sists of two sets of training data, one for clean training and the other
for multi-style training. Each of them comprises 8,440 utterances
and is equally split into 20 subsets. For the multi-style training data,
all the utterances in the same subset share the same noise condition
and there are totally 4 different noise scenarios (train, babble, car
and exhibition hall) at 5 different SNRs (20dB, 15dB, 10dB, 5dB
and clean). All the three test sets, A, B and C, are used for evalua-
tion. Set A has the same noises as the multi-style training data and
set B has four new noise types, namely restaurant, street, airport and
train station. For set C, there are only two noise scenarios (train and
street) but with additional channel distortions. For all the three test
sets, totally 6 different SNRs are used for evaluation purpose, which
have one additional 0dB compared to the training set.

Standard complex back-end GMM-HMM systems are built sep-
arately for the clean and multi-style training data using per utterance
cepstral mean and variance normalized (CMVN) MFCC features by
maximizing the training data likelihood. The 16-state word based
HMM and the 5-state silence model are adopted, leading to a total
number of 181 HMM states. These GMM-HMM systems are used
to generate the per frame DNN training labels. For DNN systems,
we use 24D FBank features together with first- and second-order
derivatives as inputs. Per utterance CMVN is also adopted for input
feature normalization. A consecutive 11 frames of the acoustic fea-
tures are concatenated as the input to DNNs and we use four 2048D
hidden layers. DNNs are trained following [23] with unsupervised
RBM pre-training and supervised fine-tuning. No language model is
used for this task and an equal probability digit-loop is adopted for
decoding only. The open source Kaldi toolkit [24] is used for all
the experiments.

4.1.1. Spectral Masking

Firstly, experimental results using the clean trained DNN-HMM sys-
tem are tabulated into the upper half of Table 1. The average 16.1%
WER of the baseline is far from humans’ expectation. Applying
IBMs to spectral features with LC = 0, we could have a 3.7%
WER, clearly indicating the potential of spectral masking for im-
proving DNNs’ noise robustness. With ideal posteriors (“Ideal” in
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Table 1. WERs of different masking algorithms on Aurora2.

Style Masking WER (%)
Train Test A B C Avg

clean -

- 16.9 14.7 17.2 16.1
IBM 3.6 3.4 4.3 3.7
Ideal 0.7 0.8 0.8 0.8
State 15.0 13.6 15.7 14.6
DNN 5.9 8.4 7.3 7.2

multi

-

- 4.6 5.3 5.1 5.0
IBM 4.0 4.0 4.5 4.1
Ideal 0.4 0.5 0.5 0.5
State 5.1 6.8 6.3 6.0
DNN 5.3 9.0 6.9 7.1

IBM IBM 1.1 1.0 1.2 1.1
State State 5.2 7.1 6.5 6.2
DNN DNN 4.1 6.3 5.4 5.2

Table 1), the state dependent IBM bases could reduce the WER be-
low 1%. Although the ideal posteriors may bring additional informa-
tion for recognition, the less than 1% WER do imply the potential of
this method. However, when the posteriors from the baseline are
used for the state dependent mask estimation, we could only obtain
a rather small improvement (from 16.1% to 14.6%). The quality
of the posteriors is thus crucial to the effectiveness of state depen-
dent masks. Using DNN based estimator, a 7.2% WER could be
achieved. The gap between the IBM’s performance and our estima-
tors’ performances is still quite large. Besides the accuracy of the
mask estimators, another probable reason is the mismatch between
the clean trained model and the masked features. In our study, the di-
rect masking approach is adopted. The masked features are expected
to be different from the clean ones, which could also be observed
from the example in Figure 2.

One possible way of solving this problem is the use of multi-
style trained model. As with multi-style data, the model has seen
much larger variations than the clean data. In “multi” part of Ta-
ble 1, without any masking, the multi-style trained baseline already
has a 5.0% WER. It suggests the importance of data samples from
target environments to the good generalization capability of DNNs.
Decoding the masked features directly, we could achieve a much bet-
ter performance than the clean system but worse performance than
the “multi” baseline. This suggests that the variations of multi-style
data improve DNNs’ robustness to masked features but is still not the
best fit. Retraining the model with masked multi-style data would be
the best solution. From the results in the last three lines of Table 1,
the IBM could yield around 1% WER for all the three test sets. The
DNN estimator improves from 7.1% to 5.2%; however, it is still a
little worse than the baseline’s 5.0%. This has to be attributed to the
quality of the estimated masks.

Before exploring new mask estimators, if we compare the base-
line “multi” DNN and the best one using estimated masks, i.e. the
one retrained on features filtered by DNN predicted masks, we could
find rather different WER breakdowns on each test set. The DNN
mask reduces the WER on set A from 4.6% to 4.1%, indicating its
effectiveness for known noises. However, for unseen noises in set
B, the performances degrades from 5.3% to 6.3%, implying that the
DNN mask estimator does not generalize well to unseen noises [25].
This also suggests that using no masks is more preferable than using
unreliable ones for the hybrid DNN-HMM systems. Similarly, the
performance degrades on set C due to the unseen noises and addi-
tional channel distortions. These differences, however, may imply

the potential complementariness between these two systems.

4.1.2. Posterior Interpolation

To justify our guess, we simply average the posteriors generated
from different systems. The “multi” baseline (“A”) is combined
with either the system using state dependent mask estimator (“B”)
or the one with DNN based mask estimator (“C”). Both the previous
results for single systems and new ones for two combined systems
(“A + B” and “A + C”) are presented in Table 2. Surprisingly, the
simple average between the “multi” baseline and the DNN mask es-
timator, i.e. “A+C”, yields a 4.4% WER, which is much lower than
both “A” and “C”. This clearly indicates their complementariness to
each other.

Table 2. WERs of posterior averaging with the baseline system on
Aurora2 for multi-style training.

System Masking WER (%)
Train Test A B C Avg

A - - 4.6 5.3 5.1 5.0
B State State 5.2 7.1 6.5 6.2
C DNN DNN 4.1 6.3 5.4 5.2

A+ B 4.5 5.5 5.2 5.1
A+ C 3.8 5.0 4.6 4.4

Additionally, to further understand the performance sensitivity
to the interpolation weight, we vary it from 0.0 to 1.0 by 0.1 each
time. The final results are illustrated in Figure 5. The performance
of the “A+C” system turns out to be rather robust to the interpolation
weight. Any value between 0.1 and 0.9 could yield a WER around
4.5% which is already much better than any of the two models. In
other words, adding just 10% of the posteriors from one system to
the other is sufficient enough to largely improve both systems’ per-
formances. All these clearly indicate the strong complementariness
of the two systems. For comparison purpose, we also trained a DNN-
HMM system using the combination of the original and masked fea-
tures and the final average WER is 5.1%, which further confirms that
the complementary information comes from the two models rather
than the features. Finally, the equal weight interpolation, i.e. averag-
ing, yields the best performance of 4.4% WER. To our knowledge,
this is among the best performances on the Aurora2 dataset (Table 3).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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Interpolation weight for the baseline system
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Fig. 5. WER performances of the posterior interpolation between the
baselines system and the retrained system using DNN based masks
on Aurora2.

282



Table 3. Reported best WER performances on Aurora2.

System WER (%)
A B C Avg

AFE [26] 6.3 6.7 7.8 6.8
NAT [26] 6.3 6.2 6.1 6.3

DNN+VTSNorm [27] 4.2 5.7 5.3 5.0
ESSEM-MCM [28] 4.4 4.7 4.9 4.6

Masking (this work) 3.8 5.0 4.6 4.4

4.2. Aurora4

From the experiments on Aurora2, neither of the two mask estima-
tions perform well on their own. However, the interpolation between
the multi-style trained baseline system and the system using masks
from the DNN based estimator yields the lowest WER. In this sec-
tion we thus further investigate the effectiveness of this DNN based
mask estimation on a more difficult task - Aurora4 [18].

Aurora4 is a medium vocabulary noisy speech recognition task
based on the Wall Street Journal (WSJ0) corpus. Experiments are
performed with the 16kHz clean training and multi-style training
data respectively. Each of the training set consists of 7138 utter-
ances. For the multi-style training data, one half of the utterances
are recorded by the primary Sennheiser microphone and the other
half are recorded using one of 18 different secondary microphones.
Both halves include a combination of clean speech and speech cor-
rupted by one of six different noises (street traffic, train station, car,
babble, restaurant, airport) at 10-20 dB SNR. The evaluation set is
derived from WSJ0 5K-word closed vocabulary test set which con-
sists of 330 utterances from 8 speakers. This test set is recorded by
the primary microphone and a secondary microphone. These two
sets are then each corrupted by the same six noises used in the train-
ing set at 5-15 dB SNR, creating a total of 14 test sets. Thus the types
of noises are common across training and test sets but the SNRs are
not. These 14 test sets can then be grouped into 4 subsets: clean,
noisy, clean with channel distortion, noisy with channel distortion,
which will be referred to as A, B, C and D, respectively.

Two context-dependent GMM-HMM systems are trained using
maximum likelihood estimation on the two training sets and they
have 3358 and 3257 senones respectively. The input features are
39D MFCC features including static, first and second order delta
features. Per utterance CMVN is performed. These models are used
to align the corresponding training data to create senone labels for
training the DNN-HMM systems. Decoding is performed with the
standard WSJ0 bigram language model.

DNNs are trained using 24D FBank features together with the
first and second order derivatives. Utterance level CMVN is adopted.
A context window of 11 adjacent frames are used as the DNN in-
puts and totally 6 hidden layers with 2048 hidden units per layer are
trained. The softmax output layers have 3358 and 3257 units sep-
arately, corresponding to the senones in the GMM-HMM systems.

4.2.1. Spectral Masking

Different masks are first evaluated on the clean trained DNN-HMM
system. Unlike Aurora2, the IBM only yields slightly improvement
(from 29.2% to 26.2%) and is outperformed by the DNN based mask
estimation. One probable explanation is that binary masks may in-
troduce more variations than soft masks used in our DNN based
masking. Next the multi-style trained system “multi” is used to eval-
uate these masks. Comparing the “mutli” baseline to the “clean”
one, it performs better under noisy conditions but degrades the per-

Table 4. WERs of different masking algorithms on Aurora4.

Style Masking WER (%)
Train Test A B C D Avg

clean -
- 4.1 22.7 21.7 41.1 29.2

IBM 4.1 20.0 21.7 36.9 26.2
DNN 4.1 14.3 21.1 34.8 22.8

multi
-

- 5.0 8.8 9.0 20.1 13.4
IBM 5.0 19.0 9.0 24.1 19.5
DNN 5.1 12.4 10.4 26.0 17.6

IBM IBM 4.9 6.5 8.0 12.2 8.9
DNN DNN 4.7 9.3 8.4 20.3 13.6

formance on clean data, which may due to the high complexity of
the Aurora4 task (more than 3,000 senones v.s. 181 states on Au-
rora2 for discrimination). Directly decoding masked features gives
rather worse performances, especially for IBM. It could be attributed
to the fact that masked features are more similar to clean features
rather than noisy ones, which leads to large mismatches between the
model and the feature. To address this problem, retraining the DNN
with masked features yields improved performances. However, for
the DNN based mask estimator, the retrained system has a WER of
13.6% and is still higher than the multi-style baseline’s 13.4%, which
is similar to what we have observed on Aurora2.

4.2.2. Posterior Interpolation

In view of the success in interpolating posteriors of the baseline and
the system retrained on masked features, we also investigate this pos-
terior interpolation on Aurora4. Only the interpolation between the
multi-style trained DNN and the one retrained on features that are
masked with DNN estimated masks is investigated. The interpola-
tion weight for the baseline system also varies from 0.0 to 1.0 and
steps by 0.1 each time. The WER results are illustrated in Figure 6.
Similarly, a small portion of the posteriors generated by one sys-
tem would greatly help the other to yield a WER that is much lower
than both two, indicating a strong complementariness between these
models.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
12.0

12.5

13.0

13.5

14.0

12.3%

Interpolation weight for the baseline system

W
o

rd
 E

rr
o

r 
R

at
e 

(%
)

Fig. 6. WER performances of the posterior interpolation between the
baselines system and the one retrained on spectrum masked features
on Aurora4. The masks are estimated by a DNN.

With an equal weight interpolation, i.e. averaging, we could
achieve the best WER of 12.3% which is also among the best on
Aurora4 (Table 5). Comparing the WER breakdowns among these
three systems, our masking approach performs the best on set A and
B, which are clean and clean with additive noise. It is exactly the
problem that the spectral masking targets to solve - suppressing ad-
ditive noises. While for data with channel distortions, the masks
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Table 5. Reported best WER performances on Aurora4.

System WER (%)
A B C D Avg

Dropout+NAT [2] 5.4 8.3 7.6 18.5 12.4
Masking (this work) 4.6 8.2 8.4 18.4 12.3

cFDLR [19] 5.1 8.5 8.4 17.6 12.1

are ill-defined. Moreover, our masking approach operates in spec-
tral feature domain but the “Dropout+NAT” and the “cFDLR” are
techniques on models. It is thus possible to combine the best of both
worlds, which will be explored in future.

5. CONCLUSIONS

In this paper, we present a low cost approach to integrate the spec-
tral masking technique into the hybrid DNN-HMM system. Two
mask estimation methods reusing existing phonetic DNNs are in-
vestigated, namely the state dependent and the DNN based mask
estimations. Unlike conventional approaches, only FBank features
are used in our mask prediction. To further limit the computational
costs brought by spectral masking, the data reconstruction process
after masking is discarded in the proposed system. Experimental
results on Aurora2 and Aurora4 have shown that although the pro-
posed methods fail to beat the multi-style trained DNNs, they do
improve the clean trained systems. Most importantly, the average
of the posteriors from the baseline and the proposed system using
DNN masks could yield WERs of 4.4% on Aurora2 and 12.3% on
Aurora4, which are all among the best on these datasets.
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