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ABSTRACT
In this paper we search for an optimal strategy for semi-
supervised Deep Neural Network (DNN) training. We as-
sume that a small part of the data is transcribed, while the
majority of the data is untranscribed. We explore self-training
strategies with data selection based on both the utterance-level
and frame-level confidences. Further on, we study the interac-
tions between semi-supervised frame-discriminative training
and sequence-discriminative sMBR training. We found it
beneficial to reduce the disproportion in amounts of tran-
scribed and untranscribed data by including the transcribed
data several times, as well as to do a frame-selection based
on per-frame confidences derived from confusion in a lattice.

For the experiments, we used the Limited language pack
condition for the Surprise language task (Vietnamese) from
the IARPA Babel program. The absolute Word Error Rate
(WER) improvement for frame cross-entropy training is
2.2%, this corresponds to WER recovery of 36% when com-
pared to the identical system, where the DNN is built on the
fully transcribed data.

Index Terms— semi-supervised training, self-training,
deep network, DNN, Babel program

1. INTRODUCTION

The current state-of-the-art ASR systems require a relatively
large database to be trained on. This needs to be recorded
and manually transcribed, along with a collection of linguis-
tic data resources for lexicon and language modeling. How-
ever, the data preparation is slow and costly, which can be
prohibitive especially in case of languages with low number
of speakers. On the other hand, the data preparation time and
cost can be reduced by transcribing only a subset of the data
and using the rest for semi-supervised training.

Very practical are the self-training methods [1] [2][3],
in which the transcribed data are used to build a seed model.
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This is later used to decode untranscribed data and the result-
ing hypotheses are used as ground-truth transcripts in further
training. Typically, the data are selected according to some
form of a confidence measure.

Another family of semi-supervised methods aim to sys-
tematically incorporate the uncertainty of unlabeled data into
the objective functions and minimize its entropy [4] [5] [6].
Other possible method is based on the feature-space manifold
assumption using a graph-based framework [7], where the un-
supervised datapoints are assigned to the class of the nearest
supervised datapoints.

In our work, we search for an optimal self-training strat-
egy for DNN, which is trained in three stages:

1. pre-training [8][9][10] – layer-wise training of Re-
stricted Boltzmann Machines (RBM) by Contrastive
Divergence algorithm,

2. frame-classification training [11][12] – mini-batch
Stochastic Gradient Descent (SGD), optimizing frame
cross-entropy,

3. sequence-discriminative training [13][14][15] – SGD
with per-sentence updates, optimizing state Minimum
Bayes Risk (sMBR).

For unsupervised RBM training, adding more data is triv-
ial. In case of supervised training, we experiment with data
selection based on both sentence-level and frame-level con-
fidences. We also experiment with SGD using frame-wise
confidence-weighted gradients. Finally we study interactions
between semi-supervised frame-classification training and
sequence-discriminative training.

A parallel work, which focuses on semi-supervised train-
ing of bottleneck-feature extractor, and which is trained on
the same dataset is described in [16]. The same dataset is
also used in [17], where the authors focus on semi-supervised
sequence-discriminative training of a GMM-HMM system.

This paper is organized as follows: section 2 describes
experimental setup and seed model, in section 3 we compare
performance of supervised systems trained with low/large
amounts of data. In section 4 we introduce the sentence-level
and frame-level confidence measures, while in section 5 we
explore different strategies to semi-supervised training. Fi-
nally, in section 6 we summarize the observations and discuss
future directions.
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Table 1. Data analysis, numbers of speakers, amounts of an-
notated speech data after resegmentation

Dataset FullLP LimitedLP dev
speakers 991 121 120
size in hours (reseg.) 84.8 10.8 9.8

2. EXPERIMENTAL SETUP

In this paper, we report experiments on the Vietnamese
dataset1 as provided within the IARPA Babel program, re-
lease babel107b-v0.7. The training data consist of a large
portion of conversational telephone speech and a small part
of prompted speech. For training, we used both types of
data. The development set consists of conversational speech
only. The data come from various telephone channels: land-
lines, different kinds of cellphones, or phones embedded in
vehicles. The sampling rate is 8000 Hz.

Two scenarios are defined – Full Language Pack (FullLP),
in which all the collected data is transcribed; and Limited
Language Pack (LimitedLP), in which only a subset of the
data is transcribed, while the remaining part of the FullLP
data can be used as untranscribed data.

The overview of the data (i.e. numbers of speakers and
amounts of speech data after resegmenting) is in Tab. 1. We
generated our segmentation, using MLP-based VAD with
Viterbi smoothing [18]. The segments were extended by +/-
300 milliseconds.

The Vietnamese phone set consists of 29 phonemes,
which are marked with six different tones. We manually
merged the under-represented phones. For the triphone-tree
clustering, we introduced a “position in a word” feature,
which leads to final phoneset with 350 items. We allow state
sharing across phonemes.

The original lexicon provided by Appen was modified by
reducing the number of pronunciation variants. The FullLP
lexicon contains 6k words and the LimitedLP lexicon con-
tains 3k words. Due to the syllabic nature of Vietnamese (syl-
lables are considered as words), the OOV rate on the dev-set
is low: 0.21% for the FullLP and 1.19% for the LimitedLP
lexicons.

We used a trigram language model with Kneser-Ney
smoothing built on the training transcripts, with 100k 3-
grams and 200k 2-grams for FullLP, and with 12k 3-grams
and 47k 2-grams for LimitedLP.

2.1. Feature extraction, auxiliary GMM-HMM system

The acoustic models (both GMM-HMM and DNNs) are
trained on VTLN-warped 12-dimensional PLPs augmented
by C0, pitch (F0) [19], and probability of voicing with logit
transformation. The F0 is divided by mean pitch over speaker

1Collected by Appen Butler Hill: http://www.appenbutlerhill.com

data, the non-voiced parts are bridged-over by linear inter-
polation. These features are then mean/variance normal-
ized, spliced by +/- 4 frames next to the central frame and
projected down to 40 dimensions using linear discriminant
analysis (LDA) and single semi-tied covariance (STC) trans-
form [20]. Moreover, speaker adaptive training (SAT) is done
using a single feature-space maximum likelihood linear re-
gression (fMLLR) [21] transform estimated per speaker. The
baseline GMM-HMM system with 2300 cross-word triphone
tied states and 10 Gaussians per state is used to prepare
LDA+STC+fMLLR features. For the supervised data, we
compute fMLLR transforms from force-alignments. For the
unsupervised data we compute fMLLR from lattices by us-
ing 2 passes of decoding. The GMM-HMM system is also
used to produce DNN training targets by forced-alignment
to the transcription, these triphone-state targets are used for
the frame-classification training. The DNN triphone tree
is inherited from the baseline GMM-HMM system.

2.2. DNN-HMM training

The DNNs are trained similarly as in [15]: the fMLLR
features are spliced using context of +/- 5 frames, and are
shifted / rescaled in order to have zero mean and unit variance
on the DNN input. For all the experiments, we used the same
DNN topology: 6 hidden layers, where each hidden layer
has 2048 neurons with sigmoids, 440 inputs (i.e. the context
of 11 fMLLR frames) and 2300 dimensional output layer
with softmax. The hidden layers of DNN are initialized with
stacked Restricted Boltzmann Machines (RBMs) that are pre-
trained in a greedy layer-wise fashion [8], using Contrastive
Divergence algorithm (CD-1) with one step of Markov-chain
Monte-Carlo sampling. The Gaussian-Bernoulli RBM is
trained with an initial learning rate of 0.01 and the Bernoulli-
Bernoulli RBMs with a rate of 0.4. The initial RBM weights
are randomly drawn from a Gaussian N (0, 0.01); the hidden
biases of Bernoulli units as well as the visible biases of the
Gaussian units are initialized to zero, while the visible biases
of the Bernoulli units are initialized as bv = log(p/1 − p),
where p is the mean output of a Bernoulli unit from previous
layer. During pre-training, the momentum m is linearly in-
creased from 0.5 to 0.9 on the initial 50 hours of data, this is
accompanied by a rescaling of the learning rate using 1−m.
Also the L2 regularization is applied to the weights, with a
penalty factor of 0.0002. On each layer we swipe through
more than 100h of data, so with the LimitedLP set (10h) we
pre-train using 10 epochs, while with the extended set (84.8h)
we use 3 epochs.

After pre-training, we add the output layer with random
weights drawn from N (0, 0.01) and zero biases, and we per-
form frame-classification training (we classify frames into
triphone tied-states). We use mini-batch Stochastic Gradient
Descent (SGD) to minimize per-frame cross-entropy between
the labels and network output. The utterances and frames are
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presented in a randomized order, the SGD uses mini-batches
of 256 frames, and an exponentially decaying schedule that
starts with an initial learning rate of 0.008 and halves the
rate when the improvement in frame accuracy on a cross-
validation set between two successive epochs falls below
0.5%. The optimization terminates when the frame accuracy
increases by less than 0.1%. Cross-validation is done on
held-out set which corresponds to 10% of training data. To
build the seed DNN, we first run the training to the end, then
we re-align using the DNN, and we train again using the new
alignments, while re-using the pre-trained stack of RBMs and
randomly initialized output layer.

Finally, the seed network is re-trained by sequence-
discriminative training by optimizing sMBR objective. This
aims to maximize expected frame accuracy of being in a
correct state. The expectation is calculated over the possible
state sequences represented by lattices. The reference se-
quences are obtained by force-alignment to transcription. For
semi-supervised training, the reference sequence is replaced
by the best hypothesis. We re-generate reference alignment
and lattices after 1st epoch [15].

In decoding, we subtract the log-priors computed by
counting states in alignments, to convert log-posteriors into
log-likelihoods, which are more suitable for standard Maxi-
mum a Posteriori (MAP) decoding. The training is acceler-
ated by computing on general-purpose graphics processing
unit (GPGPU), we use single GPU programmed with CUDA.
For all the experiments, we used the Kaldi toolkit [22].

3. SUPERVISED EXPERIMENTS

As described in previous section, the seed model is trained in
several stages. The auxiliary GMM-HMM model is trained
by mixing-up maximum likelihood training, where the last
stage produces LDA+STC+fMLLR features. Then a DNN
is built on top of fMLLR features by using layer-wise pre-
training, 2 runs of frame-classification training and 1+4 itera-
tions of sequence-discriminative training.

During the evaluations, we have discovered that part of
the training data is incorrectly transcribed. We removed 2%
of least confident sentences, which resulted in 0.4% WER
improvement on the sMBR level. The sentence confidences
were calculated as follows: We used forward-backward over
lattices to compute per-frame state posteriors. The posterior
probability of correct state as given by reference alignment is
taken as per-frame confidence. The sentence confidence is the
average of per-frame confidences.

We applied the above described training procedure to both
the LimitedLP and FullLP conditions. By looking at Tab. 2,
we see system performance at individual stages of the train-
ing. In the last stage, the LimitedLP system (that is later used
as seed model) has 13.6% worse WER than the FullLP sys-
tem. This large difference is not solely due to lower amount
of acoustic model training data, but also due to smaller lexi-

Table 2. Baseline performance of LimitedLP system trained
on 10h data (2% of low-confident segments removed); upper
bound FullLP performance

Dataset [WER] LimitedLP FullLP
GMM (fMLLR) 69.0 58.6
DNN 63.1 50.4
DNN-sMBR 60.6 47.0

con, language model trained on smaller set of transcripts, dif-
ferent segmentation and smaller number of triphone states.
In FullLP condition the optimum was 4800 states, while for
LimitedLP 2300.

In order to get an idea how much a DNN can improve
by unsupervised self-training from the seed model, we made
an experiment where we treated the untranscribed data as if
we knew the correct transcription. The rest of the Limit-
edLP system was the same as before (LM, lexicon, GMMs,
fMLLR features). The WER we obtained is 57.0%, we will
consider this to be the upper bound performance for the semi-
supervised training.

4. CONFIDENCE MEASURES

In general, it is necessary to incorporate some form of con-
fidence measure into the semi-supervised training. In self-
training, we decode using the seed system and treat the hy-
pothesis as a reference. If we get a number that tells us how
certain the decoder was about the decoded hypothesis, we can
use it to pre-select the data and remove hypotheses which are
more likely to contain error. In our experiments, we use con-
fidence measures of two levels, the sentence-level and frame-
level.

The sentence-level confidence csent is calculated as the
average word confidence in a sentence, eq. (1). The word
confidence cwi

is the posterior probability of word wi in i-th
bin of a confusion network. The word sequence and posteri-
ors are obtained by Minimum Bayes Risk decoding [23][24],
which minimize expected word error rate.

csent =
1

N

N∑
i=1

cwi
(1)

The frame-level confidence cframei , eq. (2), is extracted
from lattice posteriors γ(i, s), which express the probability
of being in state s at time i. The frame confidence is the
posterior value under the state from the best path si,1best. The
posteriors are computed using forward-backward.

cframei = γ(i, si,1best) (2)

Both confidence measure values reside in the interval
(0, 1), so that they can be used either for threshold-driven
data selection or training with weighted data.
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5. SEMI-SUPERVISED EXPERIMENTS

The main objective of this work is to make such use of unan-
notated in-domain speech data, that the WER performance of
DNN ASR system improves. In this section, we will search
for an optimal strategy to achieve this goal.

5.1. RBM pre-training

As the first experiment, we tried to add data to the RBM pre-
training; this is trivial since the Contrastive Divergence algo-
rithm does not need any labels. As can be seen in Tab. 3,

Table 3. Adding more data to unsupervised RBM pre-training

Pre-training data [h] 10.8 84.8
Pre-training iterations 10 3
Fine-tuning data [h] 10.8 10.8
WER 63.8 63.8

we tried pre-training with more iterations on smaller set and
less iterations on larger set, which contains both the anno-
tated and unannotated data. In both cases, the fine-tuning
(frame-classification training) was performed on the anno-
tated dataset. However, there is no WER difference between
the two systems, this is consistent with observations previ-
ously published in [25][26].

5.2. Frame-classification training (cross-entropy)

As the pre-training is not promising, we focus on frame-
classification training. In the first experiments, we add whole
sentences of unannotated data, according to their sentence-
level confidences. Due to mini-batch SGD training, the
annotated and unannotated data are mixed together. As can

Table 4. Adding unannotated segments (sorted according to
per-sentence confidence)

Added segments 0% 50% 70% 90% 95% 100%
WER 63.1 62.4 62.1 62.1 62.1 62.0

be seen in Tab. 4, we get significantly better results by adding
unlabeled segments. Interestingly, the WER seems to be rel-
atively insensitive to the amount of added segments, this may
indicate that the per-sentence confidence is not crucial for
semi-supervised DNN training.

Due to large disproportion between the amount of anno-
tated and unannotated data (≈1:7), we tried to include the
annotated data several times to the training set. This leads
to stronger focus on transcribed data during the SGD train-
ing. In Tab. 5, we see that a slight WER improvement can be
achieved by including the annotated data 3x.

Table 5. Including several copies of annotated data, while
using 100% unannotated segments

No. copies 1x 2x 3x 4x 5x
WER 62.0 62.0 61.7 61.8 61.9

Previously, we have observed that the semi-supervised
training is insensitive to per-sentence confidence. Neverthe-
less, we can still think of using data selection, that will be
based on per-frame confidences, this will help us to remove
frames, where the decoder was uncertain. The results in

Table 6. Dropping frames from unannotated part accord-
ing to threshold on per-frame confidence, while using 100%
unannotated segments and including annotated part 3x

Threshold 0.0 0.5 0.7 0.8 0.9 0.95
Removed frm. 0% 11% 18% 23% 28% 32%
WER 61.7 61.2 60.9 60.9 61.0 61.0

Tab. 6 indicate that we can achieve significant WER improve-
ment by using frame-selection. Again, the WER is relatively
insensitive within the interval of high thresholds.

In the last experiment, we performed frame-weighted
training. We used the per-frame confidences, i.e. the pos-
teriors of being in the correct state, to re-scale the vectors
with error derivatives that are used for backpropagation. As
the gradient depends linearly on error derivative through
Jacobians, scaling the derivatives is equivalent to scaling
of gradients. We combine the frame-weighting and frame-
selection. The results in Tab. 7 show, that with threshold 0.5,

Table 7. Frame-weighting by a confidence, while using 100%
unannotated segments, including annotated part 3x and using
thresholded frame-selection

Frame-selection WER [%]threshold
0.0 61.3
0.5 60.9
0.7 60.9

there is a small WER improvement. However, with threshold
0.7, which corresponds to the best system, there was no WER
difference, therefore frame-weighting and frame-selection do
not seem to be complementary.

The overall absolute WER improvement coming from
semi-supervised frame-classification training is 2.2%, from
which 1.1% is caused by adding all the unannotated segments
and 1.1% comes from thresholded frame-selection. This
corresponds to WER recovery [2] of 36%. In the previous
work [1], WER recovery was defined as the ratio of semi-
supervised WER improvement and the upper-bound WER
improvement, obtained by using ground-truth reference.
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5.3. Sequence-discriminative training (sMBR)

So far, we have observed WER improvements from semi-
supervised frame cross-entropy training, on the other hand
our seed system was trained using sequence-discriminative
criterion (sMBR). To outperform the seed system we need to
apply sequence-discriminative training as well.

It is not clear whether the strategy based on thresholded
frame-selection will be efficient also for the sMBR training.
At first, we try to outperform the seed system by applying
supervised sequence-discriminative training to the best self-
trained DNN. As can be seen in Tab. 8, the WER difference

Table 8. Supervised sequence-discriminative training of the
best self-trained DNN

baseline semi-
supervised

cross-entropy data 10.8h 84.8h
sMBR data 10.8h 10.8h

WER WER ∆
cross-entropy training 63.1 60.9 -2.2
sMBR training 60.6 58.8 -1.8

slightly lowered from the cross-entropy level 2.2%, to the
sMBR level 1.8%.

Our intuition is that further improvements are possi-
ble by using semi-supervised sequence-discriminative train-
ing. We tried to start from the best model, which is al-
ready trained by supervised sMBR on the annotated data.
We used the model to re-generate reference sequences, per-
frame confidences and the lattices with the population of
other possible sequences. Then we performed experiments
with semi-supervised sMBR training with confidence-based
frame-selection, however so far, these experiments were not
successful. We also tried to depart from the self-trained DNN
without sMBR training. As expected, we observed WER im-
provements, but they did not outperform the best model with
the supervised sMBR training. We plan to do a more detailed
analysis of this interesting problem in the future.

6. CONCLUSIONS AND DISCUSSION

Our quest in this paper is to search for an optimal data-
selection strategy for the semi-supervised DNN training. We
performed an analysis at all the three stages of DNN training.
The RBM pre-training has been found insensitive to adding
more data. When experimenting with the frame-classification
training, we obtained 2.2% absolute WER improvement,
while for the last stage, the sequence-discriminative self-
training we did not observe performance improvement.

In the experiments with the frame-classification training
we converged to a self-training setup, where we use all the un-
transcribed segments, we select frames with confidence larger

than 0.7, and we include the transcribed data 3x. The frame-
selection uses per-frame confidence measure, which is ex-
tracted from lattice posteriors, where we select the posterior
probabilities of states on the best path in a lattice. This con-
fidence measure expresses how certain the decoder was at
a particular frame, and we assume that low-confidence co-
incides with errors in hypothesis. The transcribed data are
added several times in order to better balance the amount of
transcribed and untranscribed data for the mini-batch SGD
training.

From the machine-learning point of view, it is surprising
that even the basic strategy of self-training improves WER
performance of a DNN, which is inherently a discriminative
model, and therefore should be more sensitive to errors in the
training data than generative models.

Another interesting point is the interaction between
frame-classification training and sequence-discriminative
sMBR training. Although we do not use sMBR self-training,
most of the improvement from frame-classification self-
training is preserved even if we do a supervised sMBR
training on the small transcribed dataset.

As ongoing work, we intend to investigate more into
semi-supervised sequence-discriminative training, and inter-
actions of semi-supervised acoustic modeling with language
modeling. Semi-supervised training where we iteratively re-
generate reference and retrain is also promising, and is likely
to lead to even better results.
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