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ABSTRACT

Conventional wisdom in automatic speech recognition asserts
that pitch information is not helpful in building speech recog-
nizers for non-tonal languages and contributes only modestly
to performance in speech recognizers for tonal languages.
To maintain consistency between different systems, pitch
is therefore often ignored, trading the slight performance
benefits for greater system uniformity/ simplicity. In this
paper, we report results that challenge this conventional ap-
proach. We present new models of tone that deliver consistent
performance improvements for tonal languages (Cantonese,
Vietnamese) and even modest improvements for non-tonal
languages. Using neural networks for feature integration and
fusion, these models achieve significant gains throughout,
and provide us with system uniformity and standardization
across all languages, tonal and non-tonal.

Index Terms— Automatic Speech Recognition, Acoustic
Modeling, Tone Modeling, Tonal Features, Neural Networks

1. INTRODUCTION

Tonal languages like Mandarin, Cantonese, and Vietnamese
generally use tones to represent phone level distinctions [1],
which are therefore essential to distinguish between words.
Such tone information is generated by excursions in funda-
mental frequency, a feature that most recognition systems to-
day discard as irrelevant for speech recognition. This state
of affairs follows from a tradition of mostly processing non-
tonal languages,1 where pitch is assumed to be of value only
at the sentential level, i.e. as one of three correlates of prosody
(pitch, duration, intensity). Prosody, in turn, is considered
only for supra-segmental modeling such as models of emo-
tion, intonation, emphasis, discourse analysis, etc. [3, 4]. At

1There has been progress since [2], where the authors stated that “our
strategy was to change the structure of our HUB4 English system only when
absolutely necessary”, but the spirit is certainly still present.

the lexical level, pitch could contribute as a feature of lex-
ical stress, but for a non-tonal languages such as English,
only a small number of words are distinguishable by lexical
stress alone (for example, INcline vs. inCLINE) [5]. Those
few minimal pairs can often be distinguished by their time-
frequency patterns as well. Indeed, the spectral patterns of
speech have often performed sufficiently well even for tonal
languages (e.g. Mandarin), so that pitch was and often still is
ignored for all languages, in order to maintain system consis-
tency and to avoid the extra complexities of pitch extraction
(see for example the systems described in [6], which are using
the same data that we are using here). Of course, dedicated ef-
forts have obtained modest improvements using tone models
and tonal features for recognition of tonal languages [7, 8, 9].
These however were usually tailored to the specifics of a par-
ticular language and its tone system.

In this paper, we wish to revisit these conventional no-
tions, investigate more universal models of tone, and see to
what extent they may help with the recognition of all lan-
guages. We will evaluate models of tone on several tonal
and non-tonal languages. If they improve performance con-
sistently for tonal-languages, and are not detrimental to non-
tonal languages, tone could be included (rather than ignored)
for all standardized speech recognition system builds, regard-
less of tonality, thus restoring the simplicity of a standardized
approach. Our results show that this is indeed the case. Tonal
modeling obtains considerable improvements for tonal lan-
guages, and modest improvements for non-tonal languages.

The paper is organized as follows: we begin by presenting
the pre-processing we apply to extract pitch and pitch con-
tours. We then explore where and how tonal features are to be
merged in our system architecture: at the feature level, by de-
tecting tones as tags, or by building tone dependent acoustic
models. With the best of our models, we then construct sys-
tems with and without tonal models on two tonal languages,
(Vietnamese, Cantonese) and two non-tonal languages (Taga-
log and English), and discuss our results.
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2. FEATURES FOR SPEECH RECOGNITION

In the past, a myriad of input features have been tested in
ASR, and no single feature always outperformed all others.
A “good” input feature was typically required to be simple to
compute and stable to extract, exhibiting robustness to addi-
tive noise or other distortions, and having of course a good
separability of distinctive properties of the speech signal.
Human hearing of course operates under similar constraints;
consequently, many feature extraction algorithms have, to
some extent, been inspired by physiology.

In this paper, the baseline systems use either standard
MFCC [10] features or Deep Bottleneck Features (DBNFs)
as input features for Gaussian Mixture Models (GMMs). In
extensive experiments on the BABEL [11] data-sets2, this
configuration was found to yield best results.

2.1. Minimum Variance Distortionless Response (MVDR)
Spectrum

In addition to MFCC features, we also applied an MVDR [13]
spectrum, to see how much combining multiple features helps
on its own. In this work, we use twice-warped MVDR [14].
Stacking MFCCs and MVDRs at the input of a DNN was
found to be helpful in bottleneck feature extraction for Ger-
man Broadcast News [15] as well as exhaustive experiments
as part of the NIST 2013 OpenKWS evaluation [16]. While
MFCC and MVDR features are fundamentally similar and
equally powerful, they are still complementary, and training
a system on their union gives gains simply by increasing the
robustness of the extraction.

Fundamentally different from spectral features, which
capture the envelope of the speech signal, “pitch” features
are typically used in addition to spectral features, and cap-
ture variations in the fundamental frequency of the speaker’s
voice.

2.2. Pitch Features

In so-called tonal languages, e.g. Cantonese and Vietnamese,
(phonetic) pitch carries phonological (tone) information and
needs to be modeled explicitly. To detect tones, one needs
to detect rising, falling, or otherwise marked pitch contours.
By themselves, pitch features are insufficient to distinguish
all the phonemes of a language, but pitch (absolute height or
contour) can be the most distinguishing feature between two
sounds.

In this work, we extract pitch features using the approach
described in [17]. We compute a Cepstrogram with a win-
dow length of 32 msec, and use dynamic programming to
find the best path over time for the location of the maximum
in these coefficients under certain constraints, like maximum

2In this work, we used babel101-v0.4c (Cantonese), babel106-v0.2f
(Tagalog), and babel107b-v0.7 (Vietnamese). English experiments were run
on an IWSLT task baseline [12].

Fig. 2: Visualization of Fundamental Frequency Variation
(FFV) features, from [19]: The standard dot-product between
two vectors (spectra at a distance T0 each from a center point)
is shown as an orthonormal projection onto a point at infinity
(left panel), while the proposed “vanishing-point product” for
a point τ generalizes to the former when τ →∞ (right panel).

pitch change per time unit. Additionally, we compute delta
and double delta features using the three left and right neigh-
bors as well as frame-based cross-correlation. This resulted in
8 additional coefficients (1 pitch, 6 delta and double-delta fea-
tures and cross-correlation). These 8 coefficients were added
to the original MFCC feature vector. A similar configuration
was found to work best in [18].

2.3. Fundamental Frequency Variation (FFV) Features

In this paper, we report for the first time results of using FFV
features [19] for speech recognition of tonal languages. FFV
features have previously been used in tasks such as speaker
verification. When compared to “standard” pitch-based fea-
tures, their main advantage is that no explicit segmentation
into speech and silence segments (for which pitch is not de-
fined) is necessary.

Figure 2 shows a geometric interpretation of FFV features
based on the “vanishing-point product”: the change in F0 be-
tween two short-term spectral vectors, which are at an equal
distance from the analysis point, is modeled by computing the
dot product for a range of values τ to the left, and to the right
of the center. τ determines the amount by which the two spec-
tra are warped before the dot product is being computed, so
that the corresponding values lie on rays that intersect at the
vanishing point, as in a painting using central perspective.

Rather than locating the peak in the resulting “FFV spec-
trum” (which is defined over τ ∈ [−∞,∞]), we apply a filter-
bank, which attempts to capture meaningful prosodic varia-
tion, and contains a trapezoidal filter for perceptually “flat”
pitch, two trapezoidal filters for “slowly changing” (rising and
falling) pitch, and two trapezoidal filters for “rapidly chang-
ing” pitch. In addition, it contains two rectangular extremity
filters, as unvoiced frames have flat rather than decaying tails.
This filter-bank reduces the input space to 7 scalars per frame,
which we use as additional “FFV” features in the final input
vector.

262



LDA

MFCC and
MVDR features

Pitch and FFV
features

Final
features

stacking

(a) Late integration (tandem approach).

MFCC, MVDR
FFV and Pitch

features

LDA Final
features

stacking

(b) Early integration as merged network input features.

Fig. 1: Late versus early integration of tonal features for acoustic models trained on deep bottleneck features. The non-filled
network layers are only used during training.

3. MODELS OF TONAL INTEGRATION

Given the different roles that tone plays in different lan-
guages, a number of different approaches present themselves
when integrating tones and tonal features into an ASR system.

3.1. Modeling of Tonal Phones

We examine two different modeling techniques for tonal
phones. Our first approach involves modeling a phone’s pro-
nunciation and tone separately, which should allow for more
flexibility when clustering context dependent quin-phones.
We consider the tones to be tags that modify the base phones
and therefore refer to this as the tone tag method. The Janus
Recognition Toolkit (JRTk) [20, 21] allows these tags to be
used as questions during the building of a decision tree. In
Vietnamese, this results in a phone set containing 64 phones
and 6 tone tags.

The second approach models each tonal variant of each
tonal phone (vowels, diphthongs etc.) as an individual phone.
This tonal phone approach increases the number of phones in
Vietnamese to 205, but does not require any tone tags.

For example, in the tone tags model, the Vietnamese
words má (mum) and mã (horse) have the same phone se-
quence, but different tags on the /aZ/ phone, /m (aZ tone 2)/
vs. /m (aZ tone 5)/, whereas the tonal phone model uses
different phones, e.g. /m aZ 2/ vs. /m aZ 5/.

In Cantonese, we also examine the use of a demi-syllable
based phone set with tone tags, where each Cantonese char-
acter (syllable) is decomposed into an initial-final (I-F) pair.
These I and F units are called demi-syllables, with only F
units requiring tone tags. We used 87 demi-syllables com-
pared to only 46 phones.

3.2. Integration level

Our standard features (MFCC & MVDR) and the tonal fea-
tures (FFV & Pitch) can be combined at different levels. In
this section we compare a late integration setup using tandem
features to an early integration setup using merged features
for bottleneck feature training. We further investigate the ef-
fects of additionally using an ASR system with tonal features
to train the context decision tree and write initial labels, which
will shed light on how easy it is to bootstrap systems in new
languages.

3.2.1. Late: As Tandem Features

Tandem features concatenate MLP-based features with stan-
dard ASR features once all feature extraction steps are fin-
ished [22]. Our tandem setup concatenates FFV and Pitch
features with DBNFs [23] extracted from MFCC and MVDR
features and stacks them over a 9-frame context. An LDA is
used to reduce the feature dimensionality to 42. This setup al-
lows us to add tonal features to an existing-DBNF based ASR
system by simply retraining the acoustic model, keeping the
number of parameters in the GMM constant.

3.2.2. Early: At the MLP Feature Level

Previous work has shown that training BNFs on a concate-
nation of multiple ASR features can result in improvements
compared to BNFs trained on any of the individual fea-
tures [15, 24]. As shown in Figure 1b, our merged DBNF
training uses a 715-dimensional input vector consisting of 20
MFCC and 20 MVDR coefficients joined with 7 FFVs and 8
Pitch features and stacked over a 13-frame context window.
The remaining DBNF topology and training procedure is
unaltered.
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3.2.3. Label Writing & Cluster Tree Construction using a
Tonal System

So far, we have only modified our context dependent training
to make use of tonal features. Both the labels and the context
tree used in the context dependent training are created without
any tonal features using a basic MFCC context independent
system. In order to examine the effects of using tonal features
at all stages of system training, we performed a second flat-
start in Vietnamese where FFV and Pitch features are used
alongside MFCCs from the start.

4. EXPERIMENTS

The Cantonese, Tagalog and Vietnamese systems are trained
using data released within the IARPA Babel program [11],
which consists of about 80 hours of transcribed conversa-
tional telephone speech per language. A 3-gram Kneser-Ney
smoothed [25] language model is trained from the transcripts
using the SRILM toolkit [26]. The acoustic models used in
this work have been trained using GMMs with diagonal co-
variances and maximum likelihood; they are initialized using
a flat start setup based on 6 iterations of EM-training and re-
generation of training data alignments. Phonetic contexts are
clustered into roughly 10,000 context-dependent quin-phone
states that also serve as targets for fine-tuning the DBNFs.
The flat start and non-DBNF baseline systems use 13 MFCC
coefficients that are stacked over 15 frames and reduced to
42-dimensional feature vectors with LDA.

The English baseline system is based on our 2012 IWSLT
evaluation system [12], with the BNF-based acoustic model
being replaced with by GMMs trained on DBNF features.
In contrast to the other languages, this corpus contains wide-
band Broadcast News speech.

The Cantonese, Tagalog and Vietnamese systems are
tested on a 2-hour subset of their official 10-hour IARPA
Babel development set and the English systems are tested on
the 2012 IWSLT development set.

The “Baseline DBNF” systems use 20 MFCC coefficients
concatenated with 20 MVDR coefficients, stacked over 13
frames [23, 15]. The deep bottleneck feature network con-
sists of 5 layers containing 1,200 units each, followed by
the bottleneck layer with 42 units, a further hidden layer and
the final layer. Layers prior to the bottleneck are initialized
with unsupervised pre-training as a stack of denoising auto-
encoders [27]. Fine-tuning is performed for 15-20 epochs us-
ing the newbob learning rate schedule, which starts with a
high learning rate that is exponentially decayed after the im-
provement in frame-level accuracy on a validation set falls
below a fixed threshold. The activations of the 42 bottleneck
units are stacked over a 9 frame context window and reduced
to 42 features using LDA.

System Tone Tags Tonal Phones
Baseline MFCC 70.3% 68.9%
Tonal features 66.8% 65.3%
Baseline DBNF 56.0% 54.7%
Tonal DBNF (late int.) 55.7% 54.0%
Tonal DBNF (early int.) 53.6% 52.1%

Flat-start with Tonal Features
Tonal features 66.4% 65.1%
Tonal DBNF (early int.) 52.9% 51.7%

Table 1: Results obtained on Vietnamese in Word Error Rate
(WER).

System Tone Tonal Demi-syllable
Tags Phones + Tone Tags

Baseline MFCC 66.6% 67.1% 66.6&
Tonal features 64.6% 63.8% 64.3%
Baseline DBNF 53.4% 51.4% 52.8%
Tonal DBNF (early) 52.5% 50.7% 52.5%

Table 2: Results obtained on Cantonese in Character Error
Rate (CER).

4.1. Experiments on Vietnamese and Cantonese

We trained both Vietnamese and Cantonese tonal systems in
order to ascertain the best way to model tones and to identify
how to optimally integrate the tonal features described above.
As can be seen in Table 1, the tonal phone model consistently
outperforms the tone tag model in Vietnamese by about 1%-
1.5% absolute. The same is true for Cantonese (Table 2),
where it is also significantly better than the demi-syllable sys-
tem that models tones as tags.

By performing late integration, systems using tandem fea-
tures improve on the baseline DBNF systems by 0.3%-0.7%.
With improvements of 2.4% to 2.6%, integrating the tonal
features early as additional input to the DBNF network per-
forms much better. Using a tonal system as an initialization
system for writing labels and building the cluster tree (de-
noted as Flat-Start with Tonal Features in Table 1) reduces
the WER of the best systems by a further 0.4%.

In an initial set of experiments, we tried to determine the
optimal combination of tonal and non-tonal features for the
Vietnamese DBNF systems. We found that including Pitch
features yields higher relative gains than including FFV fea-
tures, but that their combination works particularly well (e.g.
in combination with MFCCs: 55.7% WER with FFV, 55.1%
with Pitch and 54.4% by including both). For the DBNF sys-
tems, we combined the tonal features with MFCC and MVDR
features. Including MVDRs in the flat-start training resulted
in worse performance, so we trained this system on MFCC,
FFV and Pitch features.

264



WER/ CER (%) ENG TAG CAN VIE
Baseline 20.5% 69.0% 66.6% 68.9%
Best Baseline DBNF 16.0% 54.6% 52.8% 54.7%
Best Tonal DBNF 15.5% 52.8% 50.7% 51.7%
∆ (rel.) over Baseline 24.4% 23.5% 23.9% 25.0%
∆ over DBNF 3.1% 3.3% 4.0% 5.5%

Table 3: Summary of results obtained with bottleneck feature
setups by merging tonal and non-tonal features.

4.2. Tonal Features in Non-Tonal Languages

We tested our best tonal setup on two non-tonal languages,
Tagalog and English, in order to examine whether or not these
potentially superfluous features had a detrimental effect. Ta-
ble 3 shows that adding tone features actually results in small
gains in these languages. In Tagalog, the DBNF system with
early integration reduced the WER by 1.8% compared to the
baseline DBNF system. Even for the non-Babel English sys-
tem, a small improvement of 0.5% from 16.0% to 15.5%
could be obtained with this approach. In contrast to the tonal
languages, re-initializing the system with tonal features did
not result in any gains. Again, the number of parameters in
the GMM was the same for tonal and non-tonal systems.

5. DISCUSSION AND CONCLUSION

In this paper, we analyze the combination of multiple features
for the recognition of multiple languages with different char-
acteristics using deep neural network bottle-neck front-ends.
We put a particular focus on tonal languages and features. We
introduce Fundamental Frequency Variation features to ASR,
and conclude that tonal features improve recognition in all
conditions, when integrated using DBNFs.

Table 3 summarizes our results, and demonstrates a clear
benefit when fusing multiple, and tonal features when build-
ing ASR systems in tonal languages, without performing any
language-specific modeling. Re-initialization of the acoustic
model using a flat-start on tonal features is beneficial for tonal
languages, but not for non-tonal languages.

In addition to observing gains by simply stacking fea-
tures at the input layer of a neural network, we also observed
gains by performing cross-adaptation of systems that had
been trained with different tonal features in the case of Viet-
namese: a multi-pass system in Vietnamese (developed for
the OpenKWS 2013 evaluation [16]) benefited from using
different tonal features in different adaptation steps (i.e. use
Pitch in the first pass, but FFV in the second pass, etc.), with
differences up to 4% relative between different adaptation
methods. These effects indicate that further research into the
choice of features is warranted.

Finally, the analysis of the number of questions for tone
information in the context decision tree, as well as the de-

pendency of final performance on the used initialization sys-
tem, indicate that further improvements in WER (CER) can
be expected by performing more systematic experiments on
features and neural network based combination schemes.
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