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ABSTRACT
Intrinsic Spectral Analysis (ISA) has been formulated within
a manifold learning setting allowing natural extensions to out-
of-sample data together with feature reduction in a learning
framework. In this paper, we propose two approaches to im-
prove the performance of supervised ISA, and then we ex-
amine the effect of applying Linear Discriminant technique
in the intrinsic subspace compared with the extrinsic one. In
the interest of reducing complexity, we propose a preprocess-
ing operation to find a small subset of data points being well
representative of the manifold structure; this is accomplished
by maximizing the quadratic Renyi entropy. Furthermore, we
use class based graphs which not only simplify our problem
but also can be helpful in a classification task. Experimental
results for phone classification task on TIMIT dataset showed
that ISA features improve the performance compared with
traditional features, and supervised discriminant techniques
outperform in the ISA subspace compared to conventional
feature spaces.

Index Terms— Phone Classification, Manifold Learning,
Intrinsic Spectral Analysis

1. INTRODUCTION

The first step in an Automatic Speech Recognition system
typically consists in the computation of low dimensional fea-
ture vectors from short overlapping segments of speech. After
including temporal dynamics, this may e.g. result in the pop-
ular 39-dimensional MFCC based feature vector. Even in this
39-dimensional space consecutive frames exhibit great corre-
lation, hence segmental methods using stacks of those frames
- and hence using an implicit feature vector in more than 100-
dimensional space is not uncommon. Such high dimension
inevitably invokes the curse of dimensionality, especially as
we may reasonably assume that speech lives in (or close to) a
much lower dimensional embedded manifold [1].

High dimensionality is a curse for any pattern recogni-
tion problem, both from a performance and a computational
point of view. Thus, dimensionality reduction techniques
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have played a key role in speech recognition research. Linear
techniques such as LDA (Linear Discriminant Analysis) and
PCA (Principle Component Analysis) have been two of the
most popular dimensionality reduction methods in the speech
recognition community for several decades. However, for
a wide range of physical signals, including speech, there is
a nonlinear mapping from a low-dimensional configuration
space to a high-dimensional observation space.

Manifold learning methods have been widely used to
learn nonlinear projection maps that recover the under-
lying configuration space. ISOMAP [2], Locally Linear
Embedding (LLE)[3], Laplacian Eigenmaps (LE)[4], Dif-
fusion Maps (DM)[5] and manifold regularization [6] are
some examples of nonlinear embedding techniques that may
drastically reduce the representational dimensionality while
preserving the local structure of data points. This class of
algorithms has been widely used in machine learning. How-
ever, the validity of the manifold structure assumption is
necessary for the success of such techniques.

Manifold learning methods have slowly found their way
into the speech recognition community in the past decade.
Although the articulatory parameterization of the speech
production system, presented many years ago [7] [8], indi-
cates the existence of a low-dimensional manifold for certain
classes of speech sounds , it was formalized by A. Jansen us-
ing the source-filter model of speech production system in [9],
where he also proposed to extend the Laplacian Eigenmaps
in the framework of unsupervised manifold regularization
which is called Intrinsic Spectral Analysis [10]. ISA not only
naturally deals with out-of-sample data, which is a common
problem for the typical manifold learning methods, but also
provides us with data representation. ISA has been used in an
unsupervised [11], semi-supervised [12], and fully supervised
[10] manner.

In this paper we focus on supervised Intrinsic Spectral
Analysis. In previous work [10], no improvement has been re-
ported using supervised ISA features versus other traditional
features, except when combining them with traditional fea-
tures. Here, we set out to prove that ISA can improve recog-
nition performance by itself by taking a number of considera-
tions into account: 1) Using class based graphs to reduce the
complexity and improve the performance. 2) Selecting rep-
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resentative data for each individual class instead of a random
selection to ensure the preservation of a data structure. 3) In-
vestigating the effect of linear discriminant method in the in-
trinsic subspace compared with the extrinsic one. There is one
more aspect in which this paper differs from [10]; the latter
dealt with binary weighted graphs, while in this paper, results
for gaussian similarity weighted ones are also reported.

The remainder of this paper is structured as follows: In
section 2 we briefly review the theoretical background of In-
trinsic Spectral Analysis. Section 3 introduces the proposed
methods. In Section 4 we present experimental results on a
phone classification task. Finally we have a discussion and
concluding remarks.

2. INTRINSIC SPECTRAL ANALYSIS

Considering a manifoldM embedded inRH and a collection
of n samples X = [x1, x2, ..., xn] ⊂ M that forms a mesh
of data points that lie on the manifold, as is typical in man-
ifold learning algorithms, an undirected adjacency weighted
(or binary) graph G = (X,W) is constructed with one ver-
tex per data point and the similarity matrix W ∈ Rn×n. wij

(the ijth element of W) represents the similarity between xi

and xj if xi is one of the κ nearest neighbors of xj (or vice
versa) and 0 otherwise. Then, the so-called graph Laplacian
is defined, L = D −W, where D is the diagonal vertex de-
gree matrix with elements Dii =

∑n
j=1 wij . One can also

consider a normalized variant, Lnorm = D−1/2LD−1/2 =
I − D−1/2WD−1/2, where I is the identity matrix. This
normalization reduces the effect of large variation in vertex
degree arising from sampling sparsity [13].

Conventional Laplacian Eigenmaps regard the graph as a
mesh on the manifold and find the basis determined by the
graph Laplacian as an approximation to an intrinsic basis for
the manifold that the sample was drawn from [4]. However,
this method is limited to the eigen functions of the graph and
not the entire manifold. Thus, we seek for a projection f to
an intrinsic basis on the manifold. In Intrinsic Spectral Anal-
ysis out-of-sample data is approximated by learning such a
function in the framework of unsupervised manifold regular-
ization:

f∗ = argmin
f∈HK

‖f‖2K + ξfT Lf (1)

WhereHK is the Reproducing Kernel Hilbert Space (RKHS)
for some positive semi-definite n× n kernel function K, f =
[f(x1), f(x2), ..., f(xn)]T is the vector of values of f for the
training data, and L is the graph Laplacian. ξ is the param-
eter which makes the balance between extrinsic and intrinsic
smoothness of the functions. The lth component of the solu-
tion to this optimization problem, based on the RKHS repre-
senter theorem, can be expressed as

f∗l (v) =
n∑

i=1

al
iK(xi, v) (2)

al ∈ Rn is the lth eigenvector (sorted by eigenvalue) to the
following generalized eigenvalue problem

(I + ξLK)a = λKa (3)

In this paper we always use a Radial Basis Function
(RBF) kernel: K(y, x) = exp(−‖y − x‖2/2σ2).

3. METHODS AND ALGORITHMS

In [11] supervised phone recognition on the TIMIT dataset
using ISA features has been investigated and compared
against traditional features such as MFCCs and MLPs; no
improvement has been reported. However, the intrinsic co-
ordinates were learnt globally with no labeling information
and using binary graphs. Moreover, data points were selected
randomly among the whole corpus which is not, indeed,
promising to exploit the underlying manifold for each indi-
vidual class of data. In this section, we propose approaches
to deal with these issues.

3.1. Class based ISA

Suppose ci ∈ {1, 2, .., C} is the label corresponding to xi,
where C is the total number of classes. In this study, the sim-
ilarity term, wij , is computed only if xi and xj have the same
label i.e. ci = cj . This class based graph has been used for
a linear interpretation of Laplacian Eigenmaps (locality pre-
serving projections) to reduce the storage and computational
requirements [14]. It is also reasonable to argue that restrict-
ing the similarity measure for the points within the same class
may improve the classification result since we don’t insist on
keeping samples of different classes close to each other even
though they are nearest neighbors within the ambient space.
Thus, the similarity matrix takes the block diagonal form:

W =


W1 0 . . . 0
0 W2 . . . 0
...

...
. . .

...
0 0 . . . WC

 (4)

Where each Wc is the nc × nc dimension matrix whose el-
ements show the similarity between samples labeled as be-
longing to class c, and nc is the number of data points in class
c such that n =

∑C
c=1 nc. In this study, we use the gaussian

similarity function, wij = exp(−‖xi − xj‖2/2τ2), to exploit
more structural information at a cost of setting one more pa-
rameter: τ .

3.2. Data Selection

For large scale datasets, including speech datasets, the eigen-
value problem in (3) becomes computationally expensive.
Depending on the sparsity and topology of the nearest neigh-
bor graph, the complexity is at least quadratic in the number
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of graph vertices. Thus, selecting a subset, D, from the full
dataset, Dfull, with much smaller number of data points and
well representative of the structure of data is of great interest.

In this paper, we select a subset of m samples for each
individual class of data, and then maximize the nonparamet-
ric estimation of the quadratic Renyi entropy for each subset
using RBF kernel as has been discussed in [15]. This scheme
finds the representative subset of m data points D ⊂ Dfull

such that the quadratic Renyi entropy

E(D, ρ) = − log
∫
p(x)2dx ≈ − log(

1
m2

1T
mK1m) (5)

is maximized. Where 1m is a vector of m ones and K is the
m × m RBF kernel matrix with parameter ρ. This criterion
can be maximized iteratively in a greedy manner in order to
select points that preserve the underlying structure of the data
[16]. To accomplish this, we use the following algorithm:

1. Randomly select a subsetD from the full data setDfull

2. Compute the quadratic Renyi entropy of D using (5)

3. Select a data point x∗ from D and select a data point
x∗∗ from the remaining pool of data Dfull \ D.

4. Replace x∗ with x∗∗ and compute the the quadratic en-
tropy of the new subset.

5. If the entropy in step 3 increases with respect to the
entropy of D, then x∗ and x∗∗ are swapped; otherwise
they return to their first subsets.

6. Iterate from step 3 . . .

In theory, an appropriate kernel parameter, ρ, also called
Parzen window size, corresponds to an appropriate density
estimate. We found that the results were not very sensitive to
the choice of ρ since we only compare the entropies in each
iteration. Silverman’s rule [17] is one of the simplest possible
choices, given by

ρ = δ[
4

(2H + 1)nc
][1/(H+4)] (6)

Where H is the dimension of data, δ is the sum of diagonal
elements in the covariance matrix of data in Dfull, and nc is
the number of data points in Dfull. In our experiments, this
algorithm is used for each individual class of data; so, Dfull

represents a set of data points with same label.
It is worth noting that other clustering and prototype tech-

niques such as k-means or Linde-Buso-Gray [18] may be ap-
plicable to find a representative subset as well.

Following is a toy example to visualize how the method
works. The full data set is represented in 3-dimensional space
with a helix structure. 30 data points are randomly selected to
form the D subset. They are highlighted with rounded green
points associating with edges after constructing 3-nearest
neighbor graphs (Figure 1.(a)). Using this subset as the ini-
tial one and applying the above algorithm, the new subset of
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(a) Random subset
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(b) Representative subset

Fig. 1. Maximizing the Renyi entropy to select more repre-
sentative points for the toy dataset with a helix structure.

data points achieved after 2000 iteration is shown in Figure
1.(b) in blue. It is clear that the new subset is much more
representative of the helix structure than the first one.

3.3. Linear Discriminant methods

One of the interesting aspects of intrinsic spectral represen-
tation is the improvement in linear separability presented in
[10]. A fortunate consequence of this, which is worth inves-
tigating, is that the Linear discriminant analyses are expected
to be working better in intrinsic subspace than extrinsic one.
In this paper we also examine the effects of applying Linear
Discriminant Analysis (LDA) [19] to ISA features.

4. EXPERIMENTS

4.1. Experimental Setup

In our experiments on TIMIT, we used the standard NIST
training set (462 speakers, 3696 utterances) for training,
development set (50 speakers, 400 utterances) in line with
[20] to tune the parameters, and the standard core test set
(24 speakers, 192 utterances) for testing purpose. 51 TIMIT
phone labels are used for training and they are further mapped
into the commonly used 39 classes in evaluation phase to cal-
culate the classification accuracy. For feature extraction, a
short-time Fourier analysis is performed with a 30ms Ham-
ming window and a 5ms window shift followed by Vocal
tract length normalization and mean normalization. Each
frame was represented by a 24-dimensional Mel-Spectrum
applying triangular shaped filterbank using the full spectrum
(24 channels for 16 kHz).

To train the intrinsic coordinates, all features were nor-
malized to have zero mean and unit variance. Then, 300 sam-
ples were selected from each individual class of training data
as explained in section 3.2. Then, the weighted similarity
graph is constructed for each class and total similarity graph
is made as explained in section 3.1. to make the normalized
graph Laplacian. After finding the intrinsic coordinates by
ISA, we kept only the first 13 ones (skipping the first trivial
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Table 1. Classification Accuracy on validation set and test set
using optimized parameters for the gaussian weighted Lapla-
cian graph

Validation set Test set
Accuracy 72.03(%) 70.6(%)

one) and adding the first and second derivatives (∆ and ∆∆)
features.

4.2. Phone Segmentation and Classification

To describe each phonetic segment in a fixed size feature vec-
tor for phone classification experiments, we used the follow-
ing scenario:

• Step 1: Each phonetic segments is partitioned in 3 sub-
segments along the time axis at a 3:4:3 ratio.

• Step 2: Add two more sub-segment from the pre-
ceeding and succeeding phones each containing three
frames.

• Step 3: Take the average of the local features for each
feature and in each sub-segment, and then stack them
to a (5 × q)-dimensional supervector representing the
phone sample. Where q is the dimension of the speech
frame.

In this scenario, the phones with lengths of smaller than
3 frames were ignored. The resulting (5 × q)-dimensional
feature vectors form the input for the LDA dimensionality re-
duction techniques and the classifier. For the phone classifi-
cation task, a weighted K-Nearest Neighbor classifier [21] is
used, where weights are the inverse of the Euclidean distance.
For the sake of comparison, we also present results using 13-
dimensional Mel-cesptra.

4.3. Experimental Results and Analyses

First of all, we need to find proper values for the parameters;
thus, starting from 24-dimensional Mel-spectrum all parame-
ters are jointly optimized on the development set. The result-
ing optimized parameters are used for the evaluation on the
core test set in the rest of this section. The suitable param-
eters are determined as follows: κ = 30, σ = 30, ξ = 1,
τ = 0.5, K = 20. Table 1. shows the classification accura-
cies these optimized parameters yield on both validation set
and core test set for 13-dimensional ISA features.

Next, velocity (∆) and acceleration (∆∆) features were
included to form 39-dimensional features. 13-dimensional
MelSpectrum in Table 2. is obtained by applying PCA to
24-dimensional Mel-spectrum introduced in 4.1. This table
shows that (∆) and (∆∆) features have more effect on extrin-
sic features than ISA. Due to the closeness in performance,
one might reasonably ask how much ISA is disadvantageous

Table 2. Classification Accuracy for MFCC, Mel-Spectrum
and ISA features together with their derivatives

Feature set Accuracy # of dimension
ISA 70.6(%) 13

MFCC 68.16(%) 13
Mel-Spec 67.13(%) 13

ISA+∆+∆∆ 72.25(%) 39
MFCC +∆+∆∆ 72.16(%) 39

Mel-Spec+∆+∆∆ 71.15(%) 39

Table 3. Classification Accuracy applying LDA to different
feature sets

Features ISA(BW) ISA(GW) MFCC Mel-Spec
Accuracy 75.09(%) 75.71(%) 74.2(%) 74.7(%)

in terms of computational complexity comparing to MFCCs.
To answer this question we should note that ISA provides us
with an intrinsic subspace where linear separability increases
while MFCC does not.

In the next part of our experiments, we have investigated
the linear separability of intrinsic subspace. As mentioned
before, the phonetic separability increases by using intrinsic
coordinates even in the unsupervised manner because of the
meaningful connection between them and distinctive features
of speech sounds [10]. Therefore, LDA approaches are ex-
pected to outperform in this subspace. Here, we applied LDA
after phonetic segmentation explained in 4.2. for different
feature sets. LDA transformation matrix was trained over 51
training labels and it mapped the samples to a 50-dimensional
space. It is also interesting to see how using the gaussian sim-
ilarity weights (GW) instead of the binary weights (BW) in
graph construction affects the classification results. To this
end, we have conducted the same experiments with binary
weighted graphs. Tuning the parameters using validation set
yields the same values as mentioned before, except that in the
latter there is no τ anymore.

It is important to note that the difference between the ac-
curacies reported in this paper for classification and those in
[11] for recognition, e.g. 74.2% versus 76.8% for MFCCs,
can be due to the fact that we used the simple KNN classifier
and phonetic segmentation in the former while a state-of-the-
art hidden markov model/multilayer perceptron back-end was
used in the latter to evaluate the recognition. Nonetheless,
what we explored in this article, was a comparison between
intrinsic and extrinsic subspace in a supervised framework.

5. DISCUSSION AND CONCLUSION

Conventional Intrinsic Spectral Analysis (ISA) is an unsuper-
vised technique. In the supervised approach, however, we
may plug in the labeling information to improve the perfor-
mance. In this paper, we presented our idea to use the labeling
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information by constructing the class based graphs. We also
proposed to maximize the quadratic Renyi entropy to find a
proper subset of data points for each individual class without
losing much information regarding the structure of the data in
order to deal with the complexity issue by reducing the size of
Laplacian graph. Although we have used this data selection
method in the ISA framework, it is applicable as a preprocess-
ing box before any manifold learning method. We also plan to
investigate the comparison of various data selection methods.
Besides, it was shown that the higher linear separability in
the intrinsic subspace compared with the extrinsic one leads
to higher accuracy using Linear Discriminant Analysis.

This method, however, is highly parametric and finding
the proper values for them is not easy. Although, it needs to be
done only in the training phase, automatic parameter selection
is an important goal. Another problem which is associated
with all manifold learning techniques and still remains in this
work is the effect of noise which can obscure the manifold
structure.
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