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ABSTRACT 

 

This paper proposes a new scheme for low bit-rate source 

coding of Mel Frequency Cepstral Coefficients (MFCCs) in 

Distributed Speech Recognition (DSR) system. The method 

uses the compressed ETSI Advanced Front-End (ETSI-

AFE) features factorized into SVD components. By 

investigating the correlation property between successive 

MFCC frames, the odd ones are encoded using ETSI-AFE, 

while only the singular values and the nearest left singular 

vectors index are encoded and transmitted for the even 

frames. At the server side, the non-transmitted MFCCs are 

evaluated through their quantized singular values and the 

nearest left singular vectors. The system provides a 

compression bit-rate of 2.7 kbps. The recognition 

experiments were carried out on the Aurora-2 database for 

clean and multi-condition training modes. The simulation 

results show good recognition performance without 

significant degradation, with respect to the ETSI-AFE 

encoder. 

 

Index Terms— Distributed speech recognition, MFCC 

coefficients, ETSI-AFE standard, SVD decomposition 

 

1. INTRODUCTION 

 

The growing use of wireless and World Wide Web networks 

for speech communication, has led to Distributed Speech 

Recognition (DSR) systems being developed and 

standardized by the European Telecommunication Standards 

Institute (ETSI) [1]. As shown in Fig. 1, the fundamental 

idea of DSR consists of using a local client Front-End (FE) 

where the speech features are extracted and transmitted 

through a transmission network to a remote Back-End (BE) 

or remote server recognizer. The features used for 

recognition are the first 12 MFCCs c1-c12, the zeroth 

cepstral coefficient c0 and the logarithmic energy log E, in 

each speech frame. In the compression phase, the 14-

dimentional feature vector is split into seven sub-vectors, 

such as: (c1, c2), (c3, c4), (c5, c6), (c7, c8), (c9, c10), (c11, 

c12), and (c0, log E); where each pair is quantized by Split 

Vector Quantization (SVQ) technique [2].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. MFCC encoding in DSR system. 

 

Various schemes for compressing MFCC vectors at low 

bit-rate have been proposed in the literature. There are 

methods that investigate the inter-frame and/or the intra-

frame MFCCs correlation [3-8]. In [3], the 14-dimension 

MFCC vectors (same coefficients as DSR standards) are 

grouped; where eight temporally consecutive cepstal 

coefficients are processed by the Discrete Cosine Transform 

(DCT); the achieved compression bit-rate is around 4.2 
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kbps. The authors in [4] offer a Half Frame Rate (HFR) 

front-end by investigating the redundancies in the Full 

Frame Rate (FFR) features of ETSI front-end. The algorithm 

has been evaluated on the Aurora-2 clean speech; the 

comparisons of achieved performance accuracy levels are 

close to the conventional ETSI front-end compression 

algorithm. The work in [5] presents a scalable predictive 

method, in which every feature is independently quantized 

by providing flexibility to adjust the bit-rate according to the 

bandwidth requirements and server load. However, the 

performance is considerably reduced at low bit-rate 

condition. 

The method proposed in [6] uses the multi-frame 

Gaussian Mixture Model-based block (GMM); where the 

method provides a performance degradation of 1% over the 

Aurora baseline at 0.8 kbps, for clean speech data. The 

multi-frame GMM-based block was extended for MFCCs 

compression in noisy environments [7]; although, the 

obtained results showed a degraded recognition performance 

in lower noise levels. In addition, the work in [8] proposes a 

packetization and variable bit-rate compression scheme, by 

grouping the coded MFCC frames used in the conventional 

DSR standard. The packetization method provides lossless 

compression at 3.4 kbps for clean speech data. 

In this paper, we focus on reducing the compression bit-

rate, by proposing a new compression scheme based on 

ETSI-AFE encoder and Singular Value Decomposition 

(SVD). The advantage of this method allows its adaptation 

to the existing DSR encoders in case of bandwidth reduction 

needs. The proposed scheme does not cause any significant 

performance degradation, principally in case of noisy 

conditions, with an acceptable computational complexity.  

We exploit the slow evolution property between two 

successive MFCC frames factorized into SVD components, 

where we could transmit only the singular value and the 

nearest left singular vector index of the second MFCC 

vector. However, at the remote back-end, we have to 

construct each non transmitted MFCC through its de-

quantized singular value and its nearest left singular vector. 

The paper is organized as follow: Section 2 introduces a 

general overview of DSR standardizations. In Section 3, a 

brief review of SVD decomposition and a detailed 

description of the proposed SVD encoder are provided. 

Section 4 summarizes the experimental results. Finally in 

Section 5 we offer our conclusion. 

 

2. ETSI DSR STANDARDIZATIONS 

 

In the conventional DSR ETSI Front-End (ETSI-FE) 

standard [9], the 14-dimentional MFCC vectors used in the 

front-end part, are derived from the extracted speech frames 

at frame length of 25ms with frame shift of 10ms. Then, a 

Fourier transform is performed and followed by Mel filter 

bank with 23 frequency bands in the range from 64 Hz up to 

4 kHz. In the compression task, the standard computes a 

feature vector every 10ms. As outlined in section 1, the SVQ 

technique is used, and it allocates 44 bits to each feature 

vector to achieve a total compression bit-rate of 4.4 kbps, 

and 4.8 kbps with including channel bit-rate.  

The ETSI Advanced Front-End (ETSI-AFE) standard   

[10] provides considerable improvements in recognition 

performance, in presence of background noise. In the feature 

extraction part, noise reduction is performed first, which is 

based on Wiener filtering theory. Then, waveform 

processing is applied to the de-noised signal and cepstral 

features are calculated. Voice Activity Detection (VAD) for 

the non-speech frame dropping is also implemented in 

feature extraction. On the server side, unlike to conventional 

ETSI-FE standard where the delta and delta-delta 

coefficients are calculated via the HTK recognition engine, 

the ETSI-AFE includes additional scripts to compute these 

coefficients. The number of bits allocated to the different 

sub-vectors and the VAD parameter of ETSI-AFE encoder 

is shown in Table I. 
TABLE I 

BITS ALLOCATION IN ETSI-AFE ENCODER AT 4.4 KBPS 

MFCC Sub-vector Allocated bits  

c1, c2 6 

c3, c4 6 

c5, c6 6 

c7, c8 6 

c9, c10 6 

c11, c12 5 

c0, log E 8 

VAD 1 

 

3. PROPOSED SVD ENCODER 

 

The use of the proposed SVD method is motivated by, (i) 

the SVD energy compaction property, where the energy is 

compacted in the higher singular values, and (ii) the 

correlation property of MFCC components which allows an 

efficient dimensionality reduction scheme. Before describing 

the proposed algorithm; first, a brief review of SVD 

decomposition is given. 

 

3.1. Singular Value Decomposition 

 

SVD decomposition is an extremely powerful and useful 

tool in linear algebra; it is widely used in signal processing 

domain such as image coding and noise reduction. Let’s give 

a matrix A with m rows and n columns, then there exist 

orthogonal matrices U (m × m) and V (n × n), such that:  

 

   ][and][ 2121 nm ,,,,,, vvvVuuuU KK ==           (1) 

 

It can be proven that [11]: 

 

            )min()diag( 1 nm,p,σ,,σ p == KAVU
T            (2) 
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Where:    021 ≥≥≥≥ pσσσ L                             (3) 

 

The σi are the singular values of A and the vectors ui 

and vi are the ith left singular vector and the ith right 

singular vector respectively. Then A can be factorized into 

three matrices: 

                                           TUSVA =                              (4) 

 

Here, S is an m×n diagonal matrix with singular values 

σi on the diagonal. If the SVD of A is given by (4), we 

define the rank r by:  
 

r,σσσσ prr ====>≥≥ + )rank(011 ALL      (5)            

 

3.2. SVD Encoder 

 

The analysis part of the algorithm is depicted by Fig 2. It can 

be seen that a set of feature vectors, in the speech utterance, 

are grouped into blocks of nine successive MFCC frames 

with one overlapping frame. For each block, first, the odd 

14-dimentional MFCC vectors are quantized using ETSI-

AFE encoder, then all the MFCCs are factorized into           

U (14×14), S (14×1), and V (1×1) matrices, such as: 
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We should highlight that for the U matrix only the first 

column vector (u1) is considered, since only the first singular 

value is taken (σ1).  (i.e., the rank r=1). 

In each MFCC block we define three sets of vectors, 

such as UOdd, UEven, and SEven. UOdd contains the left singular 

vectors of the odd MFCC frames and their corresponding 

linear interpolated vectors. UEven and SEven contain the left 

singular vectors and the first singular values of the even 

frames respectively.  

Then, UOdd is used to select the left singular vector 

index of each even frame by the criterion of minimum 

distortion, where the Mean Square Error (MSE) is used as a 

distortion measure that can be expressed as:  
 

            )()()(D MSE ''', uuuuuu T
−−=                 (7) 

 

where, u and u’ are considered as the odd left singular 

vector of UOdd and the even left singular vector of UEven 

respectively, and “T” is the transpose operator.  

The left singular vector index of each vector in UEven is 

transmitted as 3 bits, by the fact that UOdd contains a total of 

eight vectors. The first singular value σ1 of the even frames 

is transmitted to the back end side, since it contains more 

information about frame energy. The σ1 component is 

encoded using uniform scalar quantization with codebook 

size of 256 codevectors.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. SVD encoding scheme. 

 

To perform the selection of the nearest left singular 

vector rather than interpolating it directly through its 

adjacent frames, will be more benefit in term of minimum 

distortion. Thus, an experiment has been performed in order 

to motivate the proposed scheme, where we calculated the 

overall distortion within blocks of successive MFCC frames 

extracted from the speech training utterance of Aurora-2 

database [12]. As it can be shown from Fig 3, for each 

MFCC coefficient, the distortion measure using the 

proposed scheme is generally less than the case of estimating 

the even left singular vector directly by interpolation. 
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Fig. 3. MSE Distortion measure for the proposed method 

compared to directly interpolating left singular vectors. 

 

In order to minimize the computational complexity, the 

codebook values of σ1 component are sorted and split into 

four codebooks of 64 values each; hence, the scalar 

quantization is performed through two stages. In the first 

stage the nearest codebook to be used (2bits) will be 

selected, and the second stage for σ1 quantization (6 bits). 

Table II shows the bits allocation for two successive MFCC 

frames with a total of 54 bits by block of 20ms. Then, the 

resulting quantization bit-rate is 2.7 kbps. 

 
TABLE II 

BITS ALLOCATION IN THE PROPOSED SVD ENCODER AT 2.7 KBPS, 

FOR TWO SUCCESSIVE MFCC FRAMES 

MFCC and 

SVD 

components 

Bits Allocation 

(odd frame) 

Bits Allocation 

(even frame) 

c1, c2 6 - 

c3, c4 6 - 

c5, c6 6 - 

c7, c8 6 - 

c9, c10 6 - 

c11, c12 5 - 

c0, log E 8 - 

u1 index -      3 

σ1 -      8 

Total 43      11 

 
4. EXPEREMENTS AND RESULTS 

 

The MFCC are extracted by ETSI-AFE extraction 

algorithm, and the recognition was carried out on Aurora-2 

database using HTK 3.4 speech recognition engine [13-14]. 

The c0 and log E coefficients are both used in the 

compression task and only log E is used in the recognition 

task. The results are compared for both compressed and 

uncompressed Aurora-2 ETSI-AFE.  

Aurora-2 database provides speech samples   and scripts 

to perform speaker independent speech recognition 

experiments in clean and noisy conditions. This database has 

been prepared by down-sampling to 8 kHz, filtering with the 

G.712 and MIRS characteristics. Noise is artificially added 

to the filtered speech utterances at a desired Signal to Noise 

Ratio (SNR) levels (20, 15, 10, 5, 0, - 5dB) with including 

clean condition, and eight different noise conditions, such as 

subway, babble, car, exhibition hall, restaurant, street, 

airport, and train station. There are three testing sets (test set 

A, test set B, and test set C), and two training modes, such as 

clean and multi-condition modes. For further details a full 

description of Aurora-2 database is given in [12].  

The VAD parameter is not considered in the 

compression task, which means that the ETSI-AFE source 

coding bit-rate will be 4.3 kbps instead of 4.4 kbps; where 

the delta and delta-delta coefficients are estimated via the 

HTK engine. The recognition performance was measured in 

terms of Word Accuracy Rate (WAR), defined by: 

 

                %100×
−−−

=
N

IDSN
WAR    (8) 

 

where N is the total number of words in the test set, S is the 

number of substitution errors, D is the number of deletion 

errors, and I is the number of insertion errors [14]. We 

should point out that test sets A and B have twice as many 

utterances as test set C and therefore should be given twice 

the weighting when calculating the WAR average [12]. 

Hence, the overall accuracy is calculated by: 
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Table III and Table IV show the recognition 

performance average for all Aurora-2 noise conditions 

including clean speech (with SNR varies from 20 to -5 dB), 

using models trained with both compressed and 

uncompressed training. In the three test sets, generally the 

recognition performance is maintained comparing to ETSI-

AFE encoder working at 4.3 kbps, with an overall 

degradation of 0.17% and 0.36% relative to ETSI-AFE, in 

case of clean and multi-condition trainings respectively (i.e., 

in case of compressed training.).  

The computational complexity point of view shows that 

the proposed scheme has an acceptable computational cost 

since it requires half of ETSI-AFE complexity coding with 

additional calculations, in order to estimate the SVD 

components and to select the nearest left singular vector. 
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TABLE III 

OVERALL WAR  (%),  IN CLEAN TRAINING MODE  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE IV 

OVERALL WAR  (%),  IN MULTI CONDITION TRAINING MODE  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. CONCLUSION 

 

In the proposed SVD compression scheme we focused on 

reducing the source coding bit-rate of MFCC vectors to 2.7 

kbps. This represents around 37% of bandwidth reduction 

with relatively reasonable computational complexity and 

algorithmic delay.  Generally the encoder shows a negligible 

degradation in term of recognition accuracy with respect to 

ETSI-AFE encoder working at 4.3 kbps (i.e., for compressed 

MFCCs).  

The MFCCs correlation property has been exploited  

where only the odd MFCC frames are transmitted to the 

back end side, while the even ones are evaluated from their 

singular values and the estimated nearest left  singular 

vectors.  Maybe   the    recognition    performance    will    

be   further   improved if   proposing   new   scheme  for the 

 

 

 

quantization of the odd MFCCs, rather than using ETSI-

AFE encoder. 

Further contribution will involve improving the 

recognition performance and reducing the computational 

complexity, by proposing new criterion to select the nearest 

left singular vector, and a new quantization scheme for the 

odd frames. 
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Test set SNR 
ETSI-AFE 

baseline 

ETSI-AFE 

Encoder 

(4.3 kbps) 

Proposed encoder with 

uncompressed training 

(2.7 kbps) 

Proposed encoder with 

compressed 

training (2.7 kbps) 

Test set A 

Clean 99.09 99.14 99.08 99.08 

(20-0) dB 86.70 86.33 85.90 86.00 

-5 dB 28.57 28.48 27.81 28.55 

Test set B 

Clean 99.09 99.14 99.08 99.08 

(20-0) dB 85.56 85.30 84.76 84.85 

-5 dB 26.77 26.29 25.31 26.05 

Test set C 

Clean 99.06 99.03 99.06 99.09 

(20-0) dB 82.82 82.16 81.55 82.84 

-5 dB 25.10 24.31 24.10 25.66 

Overall (20-0) dB 85.47 85.08 84.58 84.91 

Test set SNR 
ETSI-AFE 

baseline 

ETSI-AFE 

Encoder 

(4.3 kbps) 

Proposed encoder with 

uncompressed training 

(2.7 kbps) 

Proposed encoder with 

compressed 

training (2.7 kbps) 

Test set A 

Clean 98.97 98.96 98.90 98.90 

(20-0) dB 91.79 91.64 90.99 91.31 

-5 dB 38.92 38.37 35.93 39.61 

Test set B 

Clean 98.97 98.96 98.90 98.90 

(20-0) dB 90.76 90.64 90.14 90.09 

-5 dB 37.56 36.84 35.35 37.35 

Test set C 

Clean 98.91 98.95 98.83 98.80 

(20-0) dB 89.12 88.83 87.79 88.81 

-5 dB 30.66 30.25 28.13 31.95 

Overall (20-0) dB 90.85 90.68 90.01 90.32 
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