978-1-4799-2756-2/13/$31.00 ©2013 IEEE

ASR FOR ELECTRO-LARYNGEAL SPEECH

Anna K. Fuchs, Juan A. Morales-Cordovilla, Martin Hagmiiller

Signal Processing and Speech Communication Laboratory, Graz University of Technology, Austria

anna.fuchs@tugraz.at, moralescordovilla@tugraz.at,

ABSTRACT

The electro-larynx device (EL) offers the possibility to re-obtain
speech when the larynx is removed after a total laryngectomy.
Speech produced with an EL suffers from inadequate speech sound
quality, therefore there is a strong need to enhance EL speech.

When disordered speech is applied to Automatic Speech Recog-
nition (ASR) systems, the performance will significantly decrease.
ASR systems are increasingly part of daily life and therefore, the
word accuracy rate of disordered speech should be reasonably high
in order to be able to make ASR technologies accessible for patients
suffering from speech disorders. Moreover, ASR is a method to get
an objective rating for the intelligibility of disordered speech.

In this paper we apply disordered speech, namely speech pro-
duced by an EL, on an ASR system which was designed for normal,
healthy speech and evaluate its performance with different types of
adaptation. Furthermore, we show that two approaches to reduce the
directly radiated EL (DREL) noise from the device itself are able
to increase the word accuracy rate compared to the unprocessed EL
speech.

Index Terms— Automatic Speech Recognition (ASR), electro-
larynx (EL), speech enhancement, MLLR adaptation

1. INTRODUCTION AND RELATED WORK

The motivation to apply ASR on disordered speech is twofold. On
one hand, ASR systems could be used to control assistive technolo-
gies whereas on the other hand, ASR systems can also be used for
evaluation purposes. Based on the word accuracy rate speech intelli-
gibility can be quantified. In existing ASR systems under controlled
conditions, the word recognition accuracy is very high (around
90%). These ASR frameworks often comprise of a large amount of
(continuous) speech. For disordered speech like dysarthric voice,
where the ability to articulate is drastically reduced, building ASR
systems is quite a problem, especially because the amount of speech
material is much smaller than for normal speech. For patients with
speech problems, speech recordings are significantly more exhaust-
ing and difficult than for normal speakers. State-of-the-art systems
train triphone models and for this reason large amounts of speech
material are needed. So far, ASR for disordered speech has been
addressed by few authors, but it is an increasingly active research
area. Some work is done on speech recognition of dysarthric speech
which can have a very profound influence on speech intelligibility
and thus, on the recognition results.

In [1], a database of dysarthric speech is used. This database
is still much smaller than typical speech databases. The study in-
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vestigates the influence of fundamental training and adaptation tech-
niques on the ASR system where an improvement can be investi-
gated. Different data sets (dysarthric and normal speech) and adap-
tation (MAP) on different targets were investigated. The speech ma-
terial is comprised of 15 speakers with 250 unique words per speaker
and approximately 50 minutes of speech per speaker. 12 PLP fea-
tures are used to train the acoustic model. The best average word
accuracy rate, of around 54%, was obtained by MAP adaptation of
dysarthric speech model where the test speaker was also present in
the training. Although the difference between normal speech an
dysarthric speech is large, MAP can deal with it. Results strongly
depend on the speaker and on the severity of the dysarthric speech.

In [2], the authors focused on speech material from patients suf-
fering from head and neck cancer. A standard text read by 41 Ger-
man laryngectomized (using tracheo-esophageal substitution voice)
and 49 German patients who had suffered from oral cancer was eval-
uated. The results are compared to a control group of 40 speakers
without speech pathology. The word recognition rate was then com-
pared to perceptual ratings by a panel of experts. As an outcome it
could be shown that ASR is a good measure with low effort to ob-
jectify and quantify intelligibility of disordered speech. Several lan-
guage models were investigated. The ASR system was non-adapted.
The results for the control group (76 £ 7) were significantly higher
compared to the laryngectomized group (48 £ 19). The agreement,
calculated using Spearman’s correlation coefficient, between word
recognition rate and the mean scores of the perceptual ratings is very
high in both patient groups with -0.83 and -0.9 respectively.

In his doctoral thesis, Nakamura investigated a speech aid sys-
tem for electro-laryngeal speech using statistical voice conversion
[3]. Within this thesis he also carried out a case study of speech
recognition for electro-laryngeal speech. He employed phonetically
tied-mixture acoustic models. Maximum likelihood linear regression
(MLLR) was the employed adaptation technique to transform the
speaker independent model into a speaker dependent one. Two sets
of speech data are used: 1) EL speech of a laryngectomized patient
(native Japanese, 50 utterances for adaptation, 30 for test) and 2)
speech of other types of speaking-impaired people (10 speaker (cere-
bral palsy, hearing-impaired,...)). The used speech material compro-
mises of words, digits and short utterances. MFCC features are em-
ployed. For the second group around 20 to 40 utterances are taken
for adaptation and around 20 for test. For 1) the accuracy for en-
hanced EL speech was almost 80%. The word accuracy for 2) was
around 20% depending on the kind of disordered and increased to
around 60% after the MLLR adaptation.

In this paper, we want to use a parallel electro-laryngeal, healthy
speech database for evaluation using a ASR system. We want to
show that EL speech is more applicable to ASR than dysarthric
speech because the nature of the distortions for these two disordered
speeches are different. We also want to find out whether EL speech
enhancement approaches can be evaluated using ASR in terms of
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intelligibility. Compared to [3] we want to use a larger and more
balanced database and we want to focus on the adaptation possibili-
ties.

2. EXPERIMENTAL SETUP

2.1. Database Description

The speech material originates from the German parallel ELHE
database and consists of up to 500 different utterances. Each utter-
ance was spoken one time with healthy speech (HE) and one time
with the EL device (EL) in order to compare differences between
healthy and disordered utterances. According to [4], who carried
out listening tests, there are no significant perceptual differences
between EL speech produced by a patient or by a healthy subject.
The utterances have been recorded in sessions and within each ses-
sion a well known text, “Der Nordwind und die Sonne*, has been
recorded in 6 separate utterances. The speech material consists of
phonetically rich utterances from different German speech corpora.
All in all the subjects had to read up to (two times) 503 utterances. In
total this database consists of 5024 utterances. Descriptive statistics
about the parallel ELHE database can be seen in table 1. The utter-
ances per speaker contain 2983 words. Without counting multiple
occurrences there are 1439 words. 1091 words only occur once.

[ ID [ Age | | #Sentences | Length | ug, | oy |
FO1 28 EL 503 45min28s 192 7
HE 503 29min57s 198 27
FO3 31 EL 250 19min51s 199 6
HE 250 13min48s 175 28
MO02 38 EL 503 36min30s 99 4
HE 503 24min55s 113 17
M04 50 EL 503 52min10s 93 1
HE 503 30minSs 140 | 30
MO5 29 EL 503 45min56s 93 0
HE 503 26min02s 138 | 28
MO06 29 EL 250 19min32s 94 1
HE 250 12min58s 119 20

[ Sum | | | 5024 [ 5h57minl2s | | |

Table 1. Number of utterances in the parallel ELHE database; Mean
value of fo - jy, and standard deviation oy, .

The Austrian German native speakers have been healthy subjects
with an average age of 29.5 years (female) and 36.5 years (male).
The subjects used a Servox Digital. Two female (FO1 and FO3) and
four male speaker (M02 and M04, M05, M06) have been recorded.
More male speakers than female speakers have been recorded be-
cause this represents the statistics of EL patients. The fundamental
frequency of the device was adjusted to a comfortable level for each
speaker separately. The speech utterances are sampled at 48 kHz and
16 bit amplitude resolution and resampled to a sampling frequency
of 16 kHz for the speech recognition task. All recordings were car-
ried out on-site at the recording studio of the Signal Processing and
Speech Communication Laboratory at Graz University of Technol-
ogy. 445 (192) utterances per speaker compose a phonetically bal-
anced set for training and 58 utterances per speaker for testing. The
number of words of the training is 579 and for the test 2404.

Additionally, around 2500 clean utterances of the Bavarian
Archive for Speech Signals (BAS) PHONDAT-1 [5] database sam-
pled at 16 kHz were used. These utterances correspond to 25
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Fig. 1. The log mel-filterbank spectra of the word ”Weintrauben” ;
Healthy (HE) speech (upper plot), Electro-Larynx (EL) speech (mid-
dle plot) and enhanced EL speech using modulation filtering (MF)
(lower plot).

different speakers from both genders resulting in around 100 utter-
ances per speaker. These subjects were native German speakers and
used the same speech material as the speakers of the parallel ELHE
speech database.

2.2. EL Speech Enhancement Strategy

Listening tests carried out by [6] have shown that EL speech can be
most improved by removing the directly radiated EL (DREL) sound
and providing pitch information. In this paper, we use two simple
enhancement strategies to reduce the DREL sound: 1) spectral sub-
traction (SS) and 2) modulation filtering (MF).

The first method is SS. The DREL noise of an EL is only slowly
varying and therefore [7] applied SS to EL speech. SS is based on
estimating the noise power spectrum and then subtracting this spec-
trum from the signal power spectrum. Although SS suffers from the
problem that the direct noise is synchronized with the tract excita-
tion, and additionally, that environmental background noise and the
directly radiated EL noise have completely different properties, this
method was able to reduce the DREL to a large extent.

The second method, MF, filters out the DREL sound in the mod-
ulation frequency domain. This approach introduced by [4] takes
advantage of the different properties of the EL speech sound and
the DREL sound. As the directly radiated component of the EL en-
ergy is not modulated by the articulatory organs, but transmitted over
the air to the human ear on a direct path, this signal is only modu-
lated at a very low frequency and can effectively be assumed to be
time-invariant. If we consider that the speech sound is a time and
frequency dependent modulation of the excitations signal — in our
case the EL sound — then we only have to suppress the signal path
which is constant. To do so, a notch filter is placed at a modulation
frequency of f, = 0 Hz.

The log mel-filterbank spectra of HE speech, EL speech and en-
hanced EL speech using MF is illustrated in Fig. 1. It can be seen
that there is a mismatch between the HE and EL domain in terms of
high- and low-frequency deficit as well as differences in the position,
the bandwidth and the energy of the formants [8].



Baseline [%] Speaker MLLR Domain MLLR

Speaker ID Adaptation[ %] Adaptation[ %]
Hy | Heg | Esi | Em2 | EHpi | EHpe Hp | Ep2 | EHg dH FEg
FO1 97.39 5.22 15.36 | 78.55 27.25 67.25 51.50 | 81.74 83.77 81.16
MO02 98.89 28.61 | 64.71 | 91.45 83.33 88.70 61.40 | 91.32 89.72 88.44
FO3 99.56 0.22 3143 | 62.58 39.00 55.31 1.64 80.71 71.68 54.68
MO04 99.27 | -6.57 | 47.93 | 84.67 37.24 71.83 63.04 | 8443 80.66 85.40
MO5 98.95 3.66 4293 | 75.39 57.74 70.03 37.40 | 81.15 76.70 80.63
MO06 99.33 5.37 5596 | 83.20 | 45.03 75.43 15.82 | 89.19 87.70 83.67

[ Average | 9896 | 553 | 42.62 | 7931 | 48.02 | 70.84 || 3652 | 8476 | 8170 || 7900 |

Table 2. Results of ASR for different setups, 1) Baseline, 2) Speaker adaptation using MLLR and 3) Domain adaptation using MLLR; H pr and
Hpg — Training: healthy, Test: healthy, electro-laryngeal; Er1 and Egs — Training: electro-laryngeal, Test: electro-laryngeal (1 - speaker
is not included in training, 2 - speaker is included in training); EHg1 and EHpgo — Training: mixed healthy and electro-laryngeal, Test:
electro-laryngeal (1 and 2 as before); dH Er> — Training: healthy, Adaptation: to electro-laryngeal domain, Test: electro-laryngeal.

Domain MLLR Adaptation[ %]
Speaker ID dHEg: — Adapted material

FOI | M02 | F03 | M04 | M05 | M06
Fol 7859 | 3686 | 089 | -17.07 | 091 | 0.88
M02 1003 | 8272 | 028 | 817 | 3.10 | 028
F03 441 | -181 | 1656 | 261 | 10.68 | 0.00
M04 | -1897 | 3333 | 1.01 | 8243 | 389 | 6.72
MO5 304 | 2992 | 565 | 348 | 7382 | 052
MO06 275 | 093 | 000 | 847 | 226 | 27.29

Table 3. Results of ASR for the setup: Domain adaptation using MLLR; dH Eg1 — Training: healthy, Adaptation: to speaker dependent

electro-laryngeal domain, Test: electro-laryngeal.

2.3. Automatic Speech Recognition System

Although it is necessary to estimate a large number of parameters
compared to monophone HMMs, in this paper we built an ASR sys-
tem based on HMM triphones. The advantage is that the size of the
lexicon can easily be increased in the future and thus, is most useful
in real applications. Also, the characteristics of human voices is rea-
sonably well expressed with triphones. Both the Front-End (FE) and
the Back-End (BE) have been derived from the standard base-line
recognizer employed in Aurora-4 database [9]. The most important
parameters of the FE are: 32 ms frame length and 100 Hz frame rate;
26 triangular filters for the Mel-spectrum; 13 Mel-Frequency Cep-
stral Coefficients (MFCCs) and cepstral mean normalization (CMN).
Delta and delta-delta features with a window length of 5 (half length
2) are also appended, obtaining a final feature vector with 39 com-
ponents.

To train the triphones, the BE employs a transcription of the
training corpus based on 34 SAMPA-monophones. This transcrip-
tion has been derived from a more detailed monophone transcription
(based on 44 SAMPA-monophones) by means of a careful cluster-
ing of the less common monophones. Each triphone is modeled
by a hidden Markov model (HMM) of 6 states and 8 Gaussian-
mixtures/states. By means of a monophone classification created
with the help of a linguistic, a tree-based clustering of the states is
also applied to reduce the complexity and the lack of training data.
Tree-based clustering also allows the creation of triphone models
which have not been observed in the training stage. In this paper we
use a bigram language model. The perplexity of the language model
is around 3.5. The higher the value of the perplexity is, the worse
the prediction in the test set is and the worse the recognition results
are. In [10] the authors predict a perplexity of around 131 for bigram
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language model using the *Sherlock Holmes’ books.

One of the most powerful and popular adaptation techniques is
maximum likelihood linear regression (MLLR) [10]. In this paper,
we apply two kinds of adaptation: 1) Speaker dependent MLLR
adaptation based on a class tree regression and 2) Domain MLLR
adaptation based on retraining the model using new data from the
target domain.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Results are presented using the word accuracy rate. According to

[10] the percentage accuracy is defined as

N-S-D-1
N

- 100%

WA(:(:

where NNV is the number of words, S is the number of substitutions,
D is the number of deletions and I is the number of insertions.

Three types of sets are used to train the triphones: 1) speech data
from healthy individuals (Hg or Hg), 2) electro-laryngeal speech
data (Eg1 or Fg2) and 3) a mixture of healthy and electro-laryngeal
speech data (FH 1 or EHEs).

Using this notation, H stands for healthy, and E for electro-
laryngeal. The capital letter indicates the training, and the sub-
script indicates which data is tested. The difference in the subscript
between Er1 and Eps (HEg: and H Eg) indicates whether the
speech material of the tested speaker occurs in the training (1 if it
does not, 2 if it does). It must be noted that the amount of training
material differs for the different types and speakers. For training and
test of speakers FO1, M02, M04 and MO5, around 500 utterances are
available and for FO3 and M06 only around 250.



Speaker ID Baseline [%] Domain MLLR adaptation [%]
Eps | Epags | Ep2yyp | dHEp: | dHEpag; | dHEgps),
FO1 78.55 89.86 87.25 81.16 88.99 83.48
MO02 91.45 93.61 94.72 88.44 88.89 92.50
FO3 62.58 62.75 60.78 54.68 53.16 51.85
Mo04 84.67 85.16 89.54 85.40 83.94 88.70
MO05 75.39 83.25 84.03 80.63 78.01 82.46
MO06 83.20 82.77 92.17 83.67 75.17 89.49
| Average \ 79.31 | 82.90 | 84.75 | 79.00 | 78.03 \ 81.41 |

Table 4. Results of ASR for different setups; 1) Baseline and 2) Domain adaptation using MLLR ; Ero — Training: electro-laryngeal, Test:
electro-laryngeal (2 - speaker is included in training); Erog s — enhanced electro-laryngeal speech using spectral subtraction (SS); Eg2,,
— enhanced electro-laryngeal speech using modulation filtering (MF); dH F g2 — Training: healthy, Adaptation: to electro-laryngeal domain,
Test: electro-laryngeal; dH Eps 4 — enhanced electro-laryngeal speech using SS; dH Egs,,,. — enhanced electro-laryngeal speech using

MF.

3.1. Experiments on EL speech

In table 2, word accuracy (W acc) rates are shown for the different
setups. The Wa.c, when training material only consists of healthy
speech (BAS as well as healthy speech material from the 6 speakers)
and we test on healthy speech, is 98.96% (Baseline - Hp). When
the test is carried out on electro-laryngeal speech, the performance
is very low (5.53%; Baseline - HEg) due to the mismatched domain
(differences in the position, the bandwidth and the energy of the for-
mants between healthy and electro-laryngeal speech — see also Fig.
1).

The performance of speaker M02 is consistently good for each
setup. Even in the mismatched domain (training: healthy; test:
electro-laryngeal) this speaker performs well (28.61%; Baseline -
Hp). This speaker is most used to handle the EL device. Speaker
FO3 performs worse than anybody else. Informal listening tests
verified that this speaker is less intelligible than the others when
speaking with the EL device. This is one reason of her low perfor-
mance. Another reason is that this speaker is female, and female
speakers are less represented than male speakers in the parallel
ELHE database. The same case holds for speaker FO1 in the base-
line experiments for Er1 (15.36%).

When speech material of electro-laryngeal speech is added to
the healthy training, (# H g1 and 2 H g2) the word accuracy rate im-
proves to 70.84% regarding Hr. The results improve even further
using only electro-laryngeal speech for training (79.31%; Baseline -
FEg2). Considering that only 2164 utterances are used in the train-
ing this result is good due to the low perplexity of the grammar (see
subsection 2.3).

Using speaker MLLR adaptation, results for the healthy-
disordered mixed training (¥ HEg2) reach a value of 81.70%, and
increase to 84.76% for the training with only electro-laryngeal
speech (E'r2). This shows that electro-laryngeal speech is sensitive
to the speaker change.

In the next experiment we investigate the case when only little
data is available. Connected to that we also want to show that it
is possible to obtain a robust electro-larygneal model starting from
a healthy speech model. For this reasons we apply domain MLLR
adaptation of healthy speech to electro-laryngeal speech. With this
approach we reach a word accuracy of 79.00%, which is in the same
order as the electro-laryngeal speech model (Eg2). Additionally, we
applied domain MLLR adaptation to a specific speaker. Looking at
the results in table 3 we can see that only the speakers included in
training also perform well in the test. Also the baseline results of
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FEgi1 (42.62%) and Egs (79.31%) of table 2 confirm this circum-
stance. These results show that the EL models for ASR are strongly
speaker dependent probably due to the different ways to articulate
EL speech.

3.2. Experiments on enhanced EL speech

For these experiments, we applied two basic enhancement strategies,
explained in subsection 2.2. These strategies are tested on the E'g2
model. Results can be seen in table 4. Electro-laryngeal speech is
first enhanced using the two strategies, then the models are trained
and tested using these signals (Baseline - Fg2, Frags, Fr2yp)-
For the domain MLLR adaptation, we take the enhanced speech ut-
terances to adapt to the healthy speech model (dH Er2, dH Fpagy,
dHEg2,,,). We can observe that both enhancement algorithms im-
prove the results regarding the baseline F'g2. In general MF outper-
forms SS because the multipath approach to reduce the DREL noise
reflects the true nature of DREL noise better.

For the domain MLLR adaptation results, the changes in the av-
erage word accuracy rate are -0.7% and 2.41% regarding dH E .
This suggests that the domain adaptation can deal with EL speech as
well as enhanced EL speech.

4. CONCLUSION

In this paper, we investigated the behavior of ASR systems with
disordered speech, namely electro-laryngeal, for training and test-
ing which introduced a new kind of disordered speech to ASR. The
speech material originates from the parallel ELHE database which
has been recorded in our laboratory and consists of four male and
two female speakers.

One important conclusion is that the recognition results for
electro-laryngeal speech are admissible because people tend to ar-
ticulate very clearly in order to be understandable and because the
stationary noise of the electro-larynx device can be modeled by the
ASR training. Another important conclusion is that the EL model
for ASR strongly depends on the speaker and with a speaker de-
pendent MLLR adaptation strategy, electro-laryngeal speech results
are nearly as high as for healthy speech. Although there is a large
mismatch between the two domains, as soon as we include electro-
laryngeal speech in the training, the ASR system performs well.
Also we have seen that the performance of the female speaker is
lower due to the dominance of the male speakers in the database.
Furthermore, recognition results could be improved by using simple



speech enhancement strategies which suggests that ASR can be used
to evaluate the intelligibility of enhanced electro-laryngeal speech.

We have successfully applied electro-laryngeal speech to an

ASR system and achieved high word accuracy rates. All of this
leads to the conclusion that if some preprocessing is done, EL users
can have access to ASR technologies.
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