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ABSTRACT

Research in emotion recognition seeks to develop insights
into the temporal properties of emotion. However, automatic
emotion recognition from spontaneous speech is challenging
due to non-ideal recording conditions and highly ambiguous
ground truth labels. Further, emotion recognition systems
typically work with noisy high-dimensional data, rendering
it difficult to find representative features and train an effective
classifier. We tackle this problem by using Deep Belief Net-
works, which can model complex and non-linear high-level
relationships between low-level features. We propose and
evaluate a suite of hybrid classifiers based on Hidden Markov
Models and Deep Belief Networks. We achieve state-of-the-
art results on FAU Aibo, a benchmark dataset in emotion
recognition [1]. Our work provides insights into important
similarities and differences between speech and emotion.

Index Terms— emotion classification, deep belief net-
works, spontaneous speech, FAU Aibo, dynamic modeling

1. INTRODUCTION

Emotion expression is a complex and dynamic process. This
complexity has prompted investigations into appropriate
modeling strategies to capture the temporal aspects of this
behavior. However, the temporal properties of emotion are
still not well understood. We address this challenge by uti-
lizing a dynamic frame-level modeling approach with Deep
Belief Network (DBN) and assessing the efficacy of our
models on FAU Aibo [1], a benchmark dataset in the emotion
recognition community.

In the automatic speech recognition (ASR) literature,
Mohamed et al. [2] found that acoustic models based on
DBN outperformed those based on Gaussian Mixture Model
(GMM) on the TIMIT phone recognition task. They argued
that DBNs are better at exploiting structural information em-
bedded in high-dimensional data. Motivated by this work, we
investigate whether or not emotion recognition, which has to
map relatively long speech utterances to high-level emotion
classes, can similarly benefit from DBN’s modeling power.

We trained a suite of hybrid classifiers which used Hidden
Markov Models (HMMs) to capture the temporal property of
emotion and DBNs to estimate the emission probabilities. We
analyzed the results of these classifiers in terms of the number
of HMM states and size of input windows to the DBN. The
best result was achieved by combining classifiers using 37-
frame windows and different HMM architectures, yielding an
unweighted average recall (UAR) of 45.60% on FAU Aibo’s
5-class problem. With speaker-specific z-normalization, we
obtained a UAR of 46.36%. Respectively, these results are
significantly better than 44.0% and 44.8% UAR, the current
state of the art without [3] and with [4] speaker normalization
(one-tailed binomial test, p ≈ 0.002).

Our experimental results demonstrated that the optimal
model parameters for emotion differed from those for speech
recognition in some important aspects. Compared to speech,
emotion recognition required a smaller learning rate, larger
input windows to the DBN, and fewer HMM states. These
observations suggest that emotion lies on a different decision
space, spans a longer time window, and has less well under-
stood temporal dynamics compared to speech.

2. RELATED WORK

2.1. Aibo Benchmark

We approach the 5-class problem of the FAU Aibo dataset
as specified in the 2009 Interspeech Emotion Challenge [5].
FAU Aibo is a spontaneous emotion corpus consisting of
speech recordings of 51 children at two different schools,
Ohm and Mont, interacting with Sony’s pet robot Aibo. The
speech recordings were segmented manually into utterances
based on syntactic-prosodic criteria, each of which was then
assigned one of five class labels: Anger, Emphatic, Neutral,
Positive, and Rest. In the challenge, data from one school
(Ohm) was used for training and the other (Mont) was used
for testing. In total, the training and test sets have 9,959
and 8,257 utterances, respectively. See [1] for a detailed
description of FAU Aibo.

Due to the extreme imbalance of the test set (7.4% A,
18.26% E, 65.12% N, 2.6% P, 6.62% R), a classifier’s per-
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formance is measured with unweighted average recall (UAR),
defined as the mean recall rate over five emotion classes. The
best baseline system in [5] achieved a 38.2% UAR with
static modeling using linear-kernel Support Vector Machine
(SVM). The best performing system in the 2009 challenge
achieved a UAR of 41.65% by employing different GMM
training methods [6]. The five trailing participants all came
close to the winning classifier (within 0.5% absolute); see [7]
for the complete list.

Since the challenge, several improvements have been
made on this 5-class problem. Hassan et al. [8] achieved a
42.7% UAR by applying importance weights within a SVM
to compensate for differences between training and testing
conditions. Attabi et al. [3] used GMM to model multiple
windowed spectrum estimates of Perceptual Linear Predic-
tion (PLP) coefficients, resulting in a 44.0% UAR. The best
known result, 44.8% UAR, was achieved with a two-pass sys-
tem in which a high-level SVM classified each test utterance
using ranking scores obtained from five low-level SVMs,
one for each emotion [4]. However, this work made use of
speaker identity information in the test set, which was not
available in the original challenge.

Our work differs from the above papers in that we used
dynamic frame-level modeling with DBN-based acoustic
models, whereas most previous work used GMM-based
acoustic models and/or static modeling with SVM.

2.2. Deep Belief Networks

A DBN consists of a stack of Restricted Boltzmann Machines
(RBMs) trained greedily layer by layer. RBMs are undirected
graphical models with two sets of visible and hidden units
connected as a complete bipartite graph. Two types of RBMs,
Bernoulli and Gaussian, are commonly used. In Bernoulli
RBMs, both visible and hidden units are binary: v ∈ {0, 1}D
and h ∈ {0, 1}K , where D and K denote the number of visi-
ble and hidden units, respectively. In Gaussian RBMs, visible
units can take on real numbers: v ∈ RD. The joint probability
distribution between v and h can be written as:

P (v,h) =
1

Z
exp (−E(v,h)) (1)

where Z is a normalization constant and E(v,h) is an energy
function. For Bernoulli RBMs, the energy function is:

E(v,h) = −
D∑
i=1

K∑
j=1

Wijvihj −
D∑
i=1

bivi −
K∑
j=1

ajhj (2)

where Wij denotes the weight of the undirected edge connect-
ing visible node vi and hidden node hj , and a and b are the
bias terms for the hidden and visible units, respectively. For
Gaussian RBMs, assuming the visible units have zero mean
and unit variance, the energy function is:

E(v,h) =

D∑
i=1

(vi − bi)
2

2
−

D∑
i=1

K∑
j=1

Wijvihj−
K∑
j=1

ajhj (3)

An RBM is pre-trained generatively to maximize the data
log-likelihood logP (v). The hidden layer’s output of one
RBM can be treated as input to another RBM which is then
trained separately from the previous model. This stack of
generatively pre-trained RBMs constitutes a DBN which can
then be discriminatively fine-tuned as an Artificial Neural
Network (ANN). The weights initialized by pre-training help
the model avoid bad local minima, which can be a serious
problem for deep networks. In this paper, we also refer
to a pre-trained ANN as a DBN. See [9–11] for a detailed
description of DBNs and training methodologies.

2.3. Deep Learning and Emotion Recognition

Deep learning techniques have found recent successes in
various communities including computer vision [12–15],
speech and language processing [2, 16–18], and emotion
recognition [19–22]. Stuhlsatz et al. [19] used generatively
pre-trained ANNs to learn discriminative features of low
dimension and found improvement in both weighted and un-
weighted recall on multiple emotion corpora. Schmidt and
Kim [20] used DBNs to learn high-level features directly from
magnitude spectra and achieved good performance on mu-
sic emotion recognition compared to other feature extraction
schemes. Brueckner and Schuller [21] applied static model-
ing with DBN on the 2012 Interspeech likability classification
task [23] and found that using RBM as the first network layer
significantly improved the baseline result. More recently,
Kim et al. [22] used DBNs to capture non-linear feature in-
teractions in audiovisual data and found improvement over
baselines that did not use deep learning.

While most previous work focused on static modeling us-
ing DBN either directly or indirectly as a feature extraction
tool, our work investigated dynamic frame-level modeling us-
ing DBN-based acoustic models in conjunction with HMMs.

3. DATA

Our experiments were performed on the FAU Aibo dataset
and followed the 2009 emotion challenge guidelines [5]. We
used utterances from one school (Ohm) for training and the
other (Mont) for testing. We constructed a held-out valida-
tion set by randomly selecting 6 out of 26 speakers from the
original training set. As a result, the validation set had 1,690
utterances and the training set had 8,269.

We used the Hidden Markov Toolkit (HTK) to extract Mel
Frequency Cepstral Coefficients (MFCC) from each utterance
using a 25-ms Hamming window and 10-ms frame rate. Each
audio frame was represented by a 39-dimensional real vector
consisting of 12 MFCCs and energy, along with their first and
second temporal derivatives. We performed z-normalization
over each speaker in the training data. Since speaker identity
information for test utterances was not available in the chal-
lenge, we did not use per-speaker normalization for the test
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set to keep our results comparable with previous work. We
instead performed z-normalization over the entire test data.

Finally, we augmented each audio frame with a varying
number of its nearest neighbors, resulting in context windows
of lengths 7, 11, 17, 27, 37, 47, 57, 67, and 77. The first five
frame sizes were used in [2]; the last four are our extensions
to explore the advantage of including additional context for
emotion recognition.

4. PROPOSED METHOD

4.1. Hybrid DBN-HMMs

We model each emotion as a left-to-right HMM with 1, 3, or 5
states and 16 Gaussian mixture components. We use an auxil-
iary HMM to capture background noise at the beginning and
end of each utterance. After training the HMMs with standard
Baum-Welch re-estimation, we force-aligned the training set
to produce a mapping between audio frames and HMM states,
which are used to fine-tune the DBNs. After this stage, the
HMM transition probabilities stay fixed and the GMM is re-
placed by DBN as the acoustic model.

We fix the DBN architecture for all experiments, using 5
hidden layers (first layer is a Gaussian RBM; all other layers
are Bernoulli RBMs) and 1024 units per layer; the only vari-
able is the input vector size, which depends on the context
window length. We use the same hyperparameters for gener-
ative pre-training as in [2]. The Gaussian RBM ran for 225
epochs with 0.0001 learning rate. All other layers ran for 75
epochs with 0.001 learning rate. A 0.9 momentum, 0.0002 L2
weight cost, and a minibatch size of 128 were used.

After pre-training, we add a logistic regression layer and
train the model discriminatively as a feed-forward ANN using
stochastic gradient descent with the same minibatch size. We
follow the setup in [2] with a few modifications, which will
be explained in the next paragraph. The learning rate starts
at 0.01. At the end of each epoch, we perform recognition
on the validation set using the HMM architecture discussed
earlier, replacing the GMM with the current DBN. If the UAR
(unweighted average recall) goes down, the model parameters
are returned to their values at the beginning of the epoch and
the learning rate is halved. This continues until the learning
rate falls below 0.0001. We continue to use a 0.9 momentum
and 0.0002 L2 weight cost. In the end, we obtain a feed-
forward ANN that outputs the emission probability of each
HMM state given a context window of audio frames.

Compared to [2], our setup has two main differences.
First, we used a smaller learning rate during fine-tuning,
which we found was important to avoid getting stuck in bad
local minima. Second, because FAU Aibo is very unbal-
anced, it was necessary to normalize the DBN output with
priors over HMM states computed from the training set.

4.2. Combining Different Classifiers

In this work we assess three HMM models (1, 3, 5 states)
and nine context window sizes, resulting in 27 different mod-
els. We hypothesize that there is no one best architecture for
all emotions or utterances. This implies that we can benefit
from combining results of different classifiers. We test this
hypothesis and address two related questions. First, how can
we devise a confidence measure for each utterance that corre-
lates well with prediction accuracy? Second, when taking the
decisions of multiple classifiers into consideration, how can
we weigh them such that the better models are trusted more?

We first enable the classifier to output a probability distri-
bution over emotion classes given a speech utterance. We fit
the temporal behavior of an utterance to each emotion class
to obtain an average per-frame log-likelihood, referred to as
activation, and normalize these activations into a probability
distribution. Let aC(x) ∈ R|L| be the activation vector of
classifier C for utterance x, where L is the set of emotion
labels and aCi (x) denotes the activation of C for emotion i
given utterance x. Because activation is log of a very small
probability, its value is always negative and requires an un-
conventional normalization method to keep the ratios consis-
tent. The probability that classifier C would assign class label
i to utterance x is defined as:

PC(l = i|x) =

∑
j∈L

aCi (x)

aCj (x)

−1 (4)

The maximum probability in this distribution can be inter-
preted as how confident the classifier is for a given utterance:
higher probability means higher confidence.

We then need a confidence measure for an entire classi-
fier architecture. A reasonable approach would be to look at
how well the classifier performs for each emotion. However,
because the validation set contained very few instances of the
minority classes, we found this approach to be unreliable. In-
stead, we define wC , the weight of classifier architecture C,
as its UAR on the validation set.

Given a set of classifiers C and an utterance x, we can
compute the probability that the assigned emotion label is i:

P (l = i|x,C) =

∑
C∈C

wCPC(l = i|x)

Z(x,C)
(5)

Z(x,C) =
∑
j∈L

∑
C∈C

wCPC(l = j|x) (6)

We have 27 models with 227 possible combinations, mak-
ing it impractical to perform an exhaustive test. We combined
the classifiers according to two different schemes, under the
hypothesis that models with different parameters are better at
classifying different types of utterances, thus combining them
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can be advantageous. In Combination Scheme A, we com-
bined models with the same number of HMM states but dif-
fering context window sizes. In Combination Scheme B, we
combined models with the same number of context window
size but differing numbers of HMM states.

5. RESULTS AND DISCUSSION

5.1. Computation Time

Training DBNs of the sizes used in this work was computa-
tionally expensive. We achieved significant speed-up by en-
abling GPU acceleration with Theano [24]. For 37-frame in-
put windows, pre-training the deepest layer took 11 mins /
epoch and fine-tuning took 10 mins / epoch. In our system,
a single GeForce GT 630 GPU learned at roughly 10 times
faster than a 3.2 GHz Intel i7 core.

5.2. Single Classifier Performance

In this section we evaluate the performance of our 27 stand-
alone classifiers on the FAU Aibo test set.

Fig. 1: Unweighted average recall on FAU Aibo test set of 27
stand-alone DBN-HMM classifiers.

Figure 1 summarizes the effect on UAR as we varied
the window size and number of HMM states. The best re-
sult, 45.08% UAR, was achieved with 1-state HMMs and
37-frame input windows. The best performance occurred
with windows longer than or equal to 27 frames. In ASR,
Mohamed et al. [2] reported that the best frame lengths
for TIMIT phone recognition were 11, 17, and 27, which
cover the range of 110-270ms, the average size of phones or
syllables. In contrast, our results showed that emotion recog-
nition works well with larger context windows covering up to
770ms, suggesting that emotion spans a longer time frame.
This result echoes the findings in [25–27], which showed

that window lengths of 1 second perform well on and are
sufficient for emotion recognition.

It is interesting to note that the best results for each HMM
architecture (37 frames for 1-state, 67 frames for 3-state, and
47 frames for 5-state) demonstrated that architectures with
fewer HMM states performed better. For a long time, the 3-
state left-to-right HMM has been used successfully in speech
recognition to model basic acoustic units such as phonemes.
This makes sense intuitively because speech is usually pro-
duced in a continuous manner, thus modeling speech pro-
duction as a linear generative process should prove benefi-
cial. However, the fact that the same technique did not work
as well on emotion recognition suggests that emotion is pro-
duced with different temporal dynamics and might be better
modeled with non-unidirectional HMMs. We will further in-
vestigate this hypothesis in future work.

Many previous works, especially those focusing on static
modeling, successfully used SMOTE [28] to balance out the
training set by simultaneously up-sampling minority classes
and down-sampling majority classes. However, we found that
SMOTE did not help our DBN fine-tuning process as it made
the models more likely to overfit.

5.3. Classifier Ensemble Performance

In this section we investigate the effect of combining different
models to do recognition on the FAU Aibo test set.

Fig. 2: Unweighted average recall on FAU Aibo test set as a
function of confidence level. The best (1-state, 37-frame) and
worst (5-state, 7-frame) models are being compared. Marker
size denotes the number of utterances whose confidence lev-
els fall within the specified range.

Our method of combining different classifiers relies on
the confidence measure introduced in Section 4.2, hence it
is worthwhile to analyze its behavior in some detail. Fig-
ure 2 plots the UAR of utterances falling in certain ranges
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Table 1: Unweighted average recall on FAU Aibo test set of combined classifiers.

Combination Scheme A: Same state number, different window sizes

States 1 3 5
UAR (%) 45.28 44.90 43.52
Gain (%) +0.20 +0.72 +0.08

Combination Scheme B: Same window size, different state numbers

Frames 7 11 17 27 37 47 57 67 77
UAR (%) 42.40 43.42 44.34 45.00 44.38 44.34 45.60 44.68 44.74
Gain (%) +2.24 +1.88 +1.94 +0.48 −0.70 +0.42 +1.44 +0.50 +0.84

Numbers in the Gain row denote the absolute changes in UAR with respect to the best classifier in the combination.

of confidence levels for our best (1-state, 37-frame) and worst
(5-state, 7-frame) models. As can be seen, our confidence
measure exhibited two desirable characteristics. One, it cor-
related well with the UAR of both models, regardless of how
good they were. Two, the worse model was less certain in
general as most of its decisions had lower confidence values.
It should be noted that although our confidence measure spans
a narrow range, its absolute value is inconsequential; it is the
relative difference between the classifiers’ confidence scores
that matters.

Table 1 shows the performance of our combined clas-
sifiers. The best result, 45.60% UAR, was achieved by
combining models using 57-frame input windows and dif-
ferent HMMs. Combining classifiers with differing numbers
of HMM states (Scheme B) yielded significantly higher gain
than combining those with different context window lengths
(Scheme A). This observation is particularly interesting be-
cause it implies that models using different HMMs can better
capture emotion variation than those using different context
windows. We will explore this phenomenon in more detail in
future work.

A weakness of our combination scheme lies in how we
weigh a classifier as a whole. We currently assign weights
to classifiers simply based on their UAR on the validation
set. However, this approach is unreliable because the vali-
dation set contains very few instances of the minority classes,
and good performance on the validation set does not guaran-
tee good performance on the test set. In the future we will
explore additional methods to combine different classifiers,
such as training a secondary model that works directly with a
utterance’s confidence measures [29].

5.4. Effect of Speaker Normalization

To keep our results comparable with previous work on FAU
Aibo, we did not make use of speaker identity information of
the test utterances. However, it is reasonable to assume that
a personalized emotion recognition system in the real world
would have access to this information, rendering speaker nor-

malization for test data possible. Because the first layer of
our DBN assumes the input data to have zero mean and unit
variance, speaker normalization should have positive impact
on the models’ performance.

We used our trained models to classify test utterances nor-
malized at the speaker level. We found that the UAR of most
classifiers went up by roughly 0.5 to 1%. The best UAR was
46.36%, a result of combining models with 37-frame input
windows and different HMM architectures. It should be noted
that even if speaker information is not available, many tech-
niques exist to assign approximate identities to speech utter-
ances. See [30–32] for a survey on automatic speaker identi-
fication and recognition.

6. CONCLUSION AND FUTURE WORK

In this paper we investigated dynamic frame-level modeling
with hybrid DBN-HMM classifiers on the FAU Aibo spon-
taneous emotion corpus and achieved state-of-the-art perfor-
mance on the 5-class problem. We showed that although
closely related, emotion and speech recognition have funda-
mental differences made evident by their different behaviors
with respect to context window sizes and number of HMM
states. These observations provide important insights to better
understand emotion and improve recognition technologies.

For future work we plan to investigate additional features
such as raw Mel Filter Bank coefficients [2,33], tune the DBN
architecture, and try other approaches of combining different
classifiers. We also plan to look more closely at the unique
specializations of individual classifiers, which will provide
valuable information about the inner workings of the systems
and shed some light on the nature of emotion expression.
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