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ABSTRACT

The paper describes a state-of-the-art keyword search (KWS) sys-
tem in which significant improvements are obtained by using Con-
volutional Neural Network acoustic models, a two-step speech seg-
mentation approach and a simplified ASR architecture optimized for
KWS. The system described in this paper had the best performance
in the 2013 DARPA RATS evaluation for both Levantine and Farsi.

Index Terms— spoken term detection, keyword spotting, audio
indexing, system combination

1. INTRODUCTION

One of the fundamental problems in automatic speech processing is
finding a spoken or written keyword in a collection of audio record-
ings. By keyword we mean one word or a sequence of words.
Research in keyword search, also known as spoken term detection
(STD), has been substantially advanced by competitive evaluations.
The first evaluation was the NIST STD 2006 evaluation [1], in which
participants built systems for English, Arabic and Chinese. Recently,
there is renewed interest in evaluating spoken term detection sys-
tems in a variety of languages and audio conditions. In the DARPA
RATS (Robust Automatic Transcription of speech) program, exist-
ing Arabic Levantine and Farsi telephone conversations are retrans-
mitted through 8 different communication channels with different
degrees of noise and channel distortion. One of the four RATS tasks
is keyword search on this highly degraded speech. In this paper we
describe the system we deployed in the second RATS evaluation,
which was held in February 2013. We use a pre-indexed system in
which the audio to be searched is indexed without prior knowledge
of the query terms. This approach is beneficial when large amounts
of audio are to be searched interactively. The same index and the
same query expansion is used for both in-vocabulary (IV) and out-
of-vocabulary (OOV) queries; the only additional work required for
OOVs is the generation of pronunciations.

In Section 2 we describe the evaluation data and metrics. In
Section 3 we present various audio segmentation methods that were
explored for this task. The next two sections show the acoustic mod-
els and ASR architecture used to produce lattices needed for index-
ing. Section 6 gives an overview of our WFST-based indexing and
search system. In Section 7 we describe the system used in the 2013
DARPA RATS evaluation and we conclude in Section 8.

2. DATA AND METRICS

All the training and test sets for the DARPA RATS program are pro-
vided by the LDC (Linguistic Data Consortium) [2, 3]. The lan-
guages used in the second phase of the DARPA RATS KWS evalu-
ation are Arabic Levantine and Farsi. Much of the Levantine clean
speech data is existing Fisher data that was re-purposed for the RATS
program. To introduce signal degradation, the clean speech was

transmitted through eight different radio channels, labeled A–H, cor-
responding to different transmitter/receiver pairs, and then recorded.
The clean data contained about 150h of audio, but only about 65h
was labeled as speech. In the end, for acoustic model training, we
defined a 251h noisy speech (N) training set and a 310h noisy plus
clean (N+C) set. To train the language model, we used only the tran-
scripts corresponding to the 65h of clean speech (about 500K words)
because the transcripts for the other channels are exactly the same.

The Farsi data was similar to the Levantine data in terms of how
the clean data was degraded to produce the noisy data. In the end,
we ended up with about 40h of labeled clean speech audio and 300h
of noisy plus clean speech, which we use for training the acoustic
models. The language model was trained on about 500K words.

The probability of miss (pMiss) is defined to beP
i #times keyword i is missedP
i #occurrences of keyword i

. The probability of false alarm (pFA)

is defined to be #false alarms
#total words×#keywords

. In the Phase 2 DARPA
RATS evaluation, the goal is to minimize pFA at an operating point
of 20% pMiss; this metric is denoted pFA@20%pMiss.

For Levantine we will report results on two sets dev-1 and
dev-2 . dev-1 is the development data consisting of 219 key-
words to search in 2.4 h of audio. dev-2 is the Phase 1 evaluation
test data and consists of 200 words to search in 34.2 h of audio.

For Farsi, we have only one development set consisting of 200
words to search in 17 h of audio. For the official DARPA evaluation,
there is also a sequestered progress set for both Levantine and Farsi.

3. AUDIO SEGMENTATION

As we reported in [4], it is beneficial for the KWS task to combine
systems using diverse audio segmentations. For the Phase 2 KWS
evaluation system we used two segmentations, corresponding to our
Phase 1 and 2 RATS Speech Activity Detection (SAD) evaluation
systems.

The first audio segmentation variant (S1) is based on HMM
Viterbi decoding with 3 states corresponding to speech, silence and
no-transmission. It uses channel-dependent GMMs and neural net-
works that are trained in a 40-dimensional LDA feature space ob-
tained by projecting consecutive PLP cepstra within a time window
of ± 4 frames. Additionally, both GMMs and neural networks are
estimated with boosted MMI with an asymmetric loss function that
only penalizes false alarm frames. During segmentation, the scores
from the GMMs and the neural networks are log-linearly combined
at the frame level.

The second segmentation variant (S2) is done using a
speech/non-speech HMM Viterbi decoder with channel-dependent
deep neural networks (DNNs) trained on a fusion of PLP, voicing
and frequency-domain linear prediction (FDLP) features. The PLP
and FDLP cepstra are normalized to zero mean and unit variance us-
ing audio file-based statistics. Additionally, we apply cepstral aver-
aging for each dimension within a temporal window of ±20 frames.
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To each normalized PLP frame we append a 1-dimensional voic-
ing feature yielding a 14-dimensional frame. Every 17 consecutive
PLP+voicing frames are spliced together and projected down to 40
dimensions using linear discriminant analysis (LDA). Similarly, ev-
ery 17 consecutive FDLP frames are spliced together and projected
down to 40 dimensions using LDA. The LDA-projected PLP and
FDLP features are concatenated and augmented with single, double
and triple deltas leading to input features of size (40+40)×4 = 320.
The DNNs have 3 hidden layers of 1024 neurons each and sigmoid
transfer functions. The output layer has 3 neurons (corresponding
to speech, non-speech and non-transmission) with softmax transfer
function. Training is done with minimum cross-entropy and takes
around 30 passes (epochs) through the training data to converge.
More details about the segmentation system can be found in [5].

Audio segmentations for the KWS task should have the follow-
ing properties: (1) reduced speech miss rate, and (2) short audio
segments which allow for deeper search without increasing the lat-
tice size (search beams). In order to achieve (1) we optimize SAD
parameters to decrease the miss rate, and for (2) we use a 2-step
approach:

• Produce audio segments using a SAD system optimized to
decrease the speech miss rate

• Decode the resulting segments and split the segments accord-
ing to the position and duration of the non-speech events in
the decoded output. We found that the end-of-sentence sym-
bol was the most informative cutting point, with the added
benefit of generating sentence-like segments.

Figure 1 shows that this resegmentation approach results in sig-
nificantly better KWS results.

There are many ways in which we can use diverse audio segmen-
tations for KWS. We can either combine the segmentations before
ASR and KWS, i.e. we union the segments and generate a segmen-
tation that will cover more speech. This method has the benefit of
having to decode and search only once. The second method involves
using the two segmentations in parallel and combining the posting
lists after ASR and KWS. Figure 2 compares the two methods. This
result shows that decreasing the missed speech is not the only di-
mension that is important for KWS.

Fig. 1. 1-pass vs 2-pass audio segmentation approach

Fig. 2. Comparison of different methods for combining audio seg-
mentations

4. NEURAL NETWORK ACOUSTIC MODELS

Our Phase 1 RATS system [4] was based on Gaussian Mixture Mod-
els and serves as a baseline for our Neural Net acoustic models. The
GMM models use all the conventional LVCSR techniques including
VTLN, LDA, STC, FMLLR, MLLR. The models are trained with
both feature and models space boosted MMI. The baseline error rates
are shown in Table 2. While the error rates seem high, one has to
keep in mind that this task is rather difficult and deals with telephone
conversational speech and is re-transmitted over noisy channels. Our
GMM uses all of the state-of-the-art techniques, and achieved excel-
lent performance in the Phase 1 RATS evaluation [4].

4.1. Multi-Layer Perceptrons (MLP)

While Neural Nets for Speech recognition are not new, they did
not become state-of-art until the work in [6] demonstrated large im-
provements on the Switchboard task.

In our experiments, the MLP (also known now as DNN) is
trained using standard back-propagation and the objective function
is Cross-Entropy. We use the sigmoid activation function for the
hidden layers and softmax for the output layer. The MLP is grown
layer-wise with one pass over the training data for each layer grow-
ing phase as described in [7]. The preprocessing of the training data
consists of speaker based mean and variance normalization and the
training data is organized into 50 hour chunks, where each chunk is
frame-level randomized.

4.2. Weight Sharing and Shift Invariance with CNNs

A regular MLP is fully connected, i.e. each hidden unit has connec-
tions to all input units. Rumelhart et.al. discussed in [8] a different
type of Neural Network that uses only a subset of inputs in the form
of localized receptive fields. In order to achieve shift invariance, the
weight learning was changed such that the weight changes were av-
eraged over the receptive fields.

For speech recognition, the Time Delay Neural Network
(TDNN) [9] uses the concept of weight sharing and shift invariance
in the temporal domain. In image recognition, Convolutional Neu-
ral Networks (CNN) [10] apply the same concepts to obtain shift
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Layer inputN x outputN
#0 243 x 128
#1 1536 x 256
#2 1280 x 2048
#3 2048 x 2048
#4 2048 x 2048
#5 2048 x 2048
#6 2048 x 7000

Table 1. CNN structure and dimensions of layer weights

Channel A B C D E F G
GMM 54.7 75.3 63.8 56.8 80.6 65.2 46.6
MLP 46.2 72.4 57.4 52.1 78.4 56.7 37.8
CNN 45.8 70.7 54.8 50.9 72.1 52.5 37.9

Table 2. WER comparison of GMM, MLP, CNN

invariance in two dimensions. In [11, 12], a CNN is used as a re-
placement of GMMs in a HMM system. In this work, the CNN’s job
is to guard against changes in the spectrum, and keep the HMM to
deal with temporal invariance.

Input features are 32-dimensional VTL-warped logmel features
with a context of 11 frames. In addition to the logmel features, we
use ∆ and ∆, ∆ features. The input features are mean and variance
normalized at speaker level. With a window size of 9x9 we obtain
9x3 windows and each window contains 3x9x9 features. The sec-
ond layer of the network is also a convolutional layer, that uses a
sliding window of 3x4 over the outputs of the first layer. In total,
the network has 7 layers and the first two layers are convolutional as
described above. The network structure is summarized in Table 1. A
more detailed model description can be found in [13].

As for regular MLPs, discriminative pre-training is applied for
the CNN too. The only difference is, that the first two layers are
trained together. Frame-level randomization is slightly more compli-
cated for CNNs and requires us to write the features with sufficiently
long temporal context. We also apply sequence training [14, 15] for
the CNN similar to the MLP models. While the CNN is not better
than the MLP for semi-clean data (channel G), we see significant
improvements on all other channels. This is in line with our expec-
tations, that the shift invariance in the feature domain helps to make
the model more robust.

For the KWS task, the 1-best error rate is less important than
the lattice quality. As shown in Figure 3, the neural network models
not only have a better 1-best error rate, but the lattice quality is also
significantly better. The baseline MLP models use different feature
sets and are explained in detail in [13]. This results in better KWS
performance as shown in Figure 4.

5. LATTICE GENERATION

The decoding pipeline is similar to other speaker adaptive systems
with multiple decoding passes. While we do not adapt the NN mod-
els themselves, we use speaker adapted features. For the CNN, we
use VTL-warped logmel features, while the regular MLPs use both
VTLN and FMLLR for the input features.

The first decoding pass uses a speaker independent (SI) MLP
model. The output of this decoding pass is used to estimate VTLN
and FMLLR transforms and fed directly to the speaker adaptive NN

Fig. 3. Lattice Oracle Rates Comparing GMMs, MLPs and CNNs

Fig. 4. Farsi KWS performance comparing GMMs and CNNs

models. This is in contrast to our Phase 1 models, where we used an
SI GMM model as the first pass. Given that the error rate of the SI
GMM models was very high, multiple decoding and re-adaptation
passes were necessary. By replacing SI GMM first pass models with
the much better SI NN models, we could estimate VTLN and FM-
LLR directly, therefore eliminating the need for two intermediate
decoding steps.

The second decoding pass uses speaker adaptive MLPs and
CNNs and produces the final lattices used for keyword search. The
lattice generation uses the dynamic decoder described in [16] and
converts an enriched backpointer strucure to a lattice that allows for
inserting extra arcs not visited during search.

6. KEYWORD SEARCH SYSTEM OVERVIEW

In this section we describe our overall keyword search framework,
which runs many KWS systems in parallel and combines the results
to produce a ranked list of term occurrences. In each KWS compo-
nent the audio is processed by an ASR system that produces a word
lattice for each audio segment. The lattices are converted to a WFST-
based index [17, 18, 19] that is used to find the location and score of
a detection. The KWS components differ only in their ASR models
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and audio segmentations.

6.1. Indexing

Prior to indexing and search, the word lattices are converted into
phonetic WFSTs in which the input labels are phones, the output
labels are the starting times of phones, and the costs are phone neg-
ative log posteriors. The resulting utterance WFSTs are used (1) as
the starting point for creating the index, and (2) for retrieving the
time marks of the hits during the search phase. The index WFST is
the union of all the utterance WFSTs. The algorithm for converting
the utterance WFSTs to a WFST index is described in [17].

6.2. Search

In WFST-based keyword search, the query WFSA is constructed us-
ing the pronunciation dictionary for IV queries and a letter-to-sound
model for OOV queries. Multiple pronunciations are compactly rep-
resented in the WFSA. In both our Levantine Arabic and Farsi sys-
tems, the pronunciations are grapheme based: the pronunciation of a
word is its letter sequence. Therefore, the pronunciations for both IV
and OOV words can both be generated in the same way. A fuzzier
search, which may improve recall while degrading precision, can
be accomplished using query expansion. Specifically, we estimate
the probabilities of phone-to-phone confusions and create a confus-
ability model implemented as a phone-to-phone transducer P2P .
Confusion probabilities are estimated using an alignment of the ref-
erence and the decoded output. Given a query q, the query WFSA
Q is obtained by composing the query WFSA with the P2P trans-
ducer. Varying the number of hypotheses kept after the composition
(NbestP2P ) controls the degree of query expansion, trading off be-
tween precision and recall.

6.3. Producing the final hit list

We use a 2-step search [20, 19] in which we first find the lattices
containing the query through composition of the query WFST Q
with the index and then use the relevant utterance WFSTs from Sec-
tion 6.1 to obtain the start and end time information for the hits.

6.4. KWS system combination

After producing a list of hits and the associated scores for each KWS
branch, the results are merged. For each keyword, we take the union
of all hits from all systems and then produce a final list using the
following procedure: (1) a hit which does not overlap with any other
hit is copied to the final list, while (2) a set of overlapping hits cor-
responding to the same keyword is merged into one hit in the final
list which has the time marks of the highest scoring hit and a score
that is the sum of the hit scores. After producing the new list of hits,
we normalize the scores per keyword: for each keyword we sum all
the scores for all the hits and divide each score by this sum. This last
normalization step produces significant improvements.

7. EXPERIMENTAL SETUP

In this section we describe the Levantine and Farsi KWS systems we
deployed in the 2013 RATS evaluation.

7.1. Levantine System

We combined the 5 systems shown in Table 3. They differ in
the acoustic model and audio segmentation used for producing the

search lattices. In the Phase 1 evaluation system we used a phone
confusion model mostly for the OOV queries, while in Phase 2 we
use the same query expansion (NbestP2P = 1000) for both IV and
OOV queries. This decision results in the same index and process-
ing pipeline for all queries regardless of their IV/OOV status, while
improving the KWS results as shown in Figure 5. As mentioned in

System AM Segmentation
Sys1 CNN S1
Sys2 DNN S1
Sys3 DNN resegmented S2
Sys4 GMM resegmented S2
Sys5 CNN resegmented S2

Table 3. The 5 systems used in the Levantine Phase 2 RATS evalu-
ation

Section 2, the evaluation metric is pFA@20%pMiss. Figure 6 shows
the performance of the 5 components and the combined output on
dev-2. It can be seen that the CNN systems are much better than
the others, and that a large gain can be obtained by combining the
posting lists from the individual components. Table 4 shows the
KWS results for the 2 development sets dev-1 and dev-2 as well
as the sequestered progress set.

Fig. 5. Comparison of various query expansion degrees
(NbestP2P ) when applied to both IV and OOV queries

dev-1 dev-2 Progress
Phase 1 0.330% 1.62% 0.29%
Phase 2 0.065% 0.295% 0.08%

Table 4. pFA@20%pMiss for Phase 1 and 2 RATS evaluation mea-
sured on development and evaluation sets.
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Fig. 6. Comparison of the 5 systems and the final combined output
for Levantine

7.2. Farsi System

For Farsi, we generally followed the same strategies as for Levantine,
combining diverse systems that differ in the audio segmentation and
acoustic model. There are a few differences, which are described in
this section. Instead of 5 systems, we combined 4 systems, as shown
in Table 5. Because a portion of the data came with partially vow-
elized transcripts, we trained acoustic and language models using
these (semivowelized) transcripts. Removing the diacritics not usu-
ally found in written text, we also trained unvowelized models. The
GMM acoustic models were significantly worse than NN models for
KWS, so we did not use a GMM system for Farsi during the Eval.

System Vowelization AM Segmentation
Sys1 Unvowelized CNN S1
Sys2 Semivowelized DNN S1
Sys3 Semivowelized CNN resegmented S2
Sys4 Unvowelized DNN resegmented S2

Table 5. The 4 systems used in the Farsi RATS evaluation

For one of the systems (Sys3), we used model M, a class-based
exponential language model, instead of traditional n-gram LM. Fig-
ure 7 shows the improvement in KWS performance. While there
is little difference at 30%pMiss, pFA@20%pMiss is reduced from
0.292% to 0.229%, representing a 22% relative improvement.

Table 6 and Figure 8 show the performance of the individual sys-
tems as well as their combination. The WER shown is the WER over
all the dev data, including channels A-H. The KWS performance is
somewhat correlated with the WER, especially for pFA@30%pMiss.
pFA@20%pMiss is less correlated, with Sys4 yielding unusually
good KWS result. The variation in KWS results is also much larger
than the differences in WER results; note that KWS results are based
on a very small number (200) of selected key phrases. Combining
the posting lists from the individual systems yields a large improve-
ment in pFA@20%pMiss, from the best individual system perfor-
mance of 0.228% to 0.058%, a relative reduction of 75%.

For each system, the posting list was generated using query ex-
pansion parameter NbestP2P=1000, like in the Levantine system.
We tried another experiment where we also generated another post-

Fig. 7. Effect of Model M LM on KWS.

System WER(A-H) pFA@30%pMiss pFA@20%pMiss
Sys1 71.6% 0.043% 0.488%
Sys2 69.8% 0.035% 0.317%
Sys3 68.0% 0.024% 0.229%
Sys4 70.2% 0.037% 0.228%
Combo 0.012% 0.058%
+P2P1 0.011% 0.047%

Table 6. Farsi dev set performance of individual systems and com-
bination

ing list using NbestP2P=1 for each system. This is equivalent to a
stricter match, where each hypothesized keyword hit in the posting
list derives from a partial path in the decoded lattice with an exact
phone sequence match to the keyword. The four NbestP2P=1000
posting lists and the four NbestP2P=1 posting lists are then com-
bined. Figure 9 and the last lines in Table 6 show the comparison
of the 4-way combination of NbestP2P=1000 posting lists and
the new 8-way combination. pFA@20%pMiss is improved from
0.058% to 0.047%, a 19% relative reduction. Note that since au-
dio indexing is shared, little additional computation is required, only
during the keyword search step. This was the final system we used
for the Phase 2 evaluation. On the sequestered progress set, this sys-
tem achieved pFA@20%pMiss=0.15%.

8. CONCLUSION

In this paper we present a state-of-the-art KWS system which had
the best performance in the Phase 2 DARPA RATS evaluation. The
key messages we want to highlight are:

1. CNN acoustic models perform very well for keyword search
in noisy environment

2. Audio segmentation plays a significant role for keyword
search

3. Large gains are obtained by combining systems which differ
in the acoustic models and audio segmentations

The final combined system is 3 times better than the best component,
and Phase 2 KWS system is 4-5 times better than the system fielded
in the Phase 1 evaluation while being much lighter in computational
resources due to the new simplified decoding pipeline.
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Fig. 8. 4 Farsi systems and combined output

Fig. 9. 8-way combination with NbestP2P=1000 and
NbestP2P=1 posting lists.
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