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ABSTRACT

This paper presents an initial effort to retrieve semantically related
spoken content in a completely unsupervised way. Unsupervised ap-
proaches of spoken content retrieval is attractive because the need for
annotated data reasonably matched to the spoken content for training
acoustic and language models can be bypassed. However, almost all
such unsupervised approaches focus on spoken term detection, or re-
turning the spoken segments containing the query, using either tem-
plate matching techniques such as dynamic time warping (DTW) or
model-based approaches. However, users usually prefer to retrieve
all objects semantically related to the query, but not necessarily in-
cluding the query terms.

This paper proposes a different approach. We transcribe the spo-
ken segments in the archive to be retrieved through into sequences
of acoustic patterns automatically discovered in an unsupervised
method. For an input query in spoken form, the top-N spoken
segments from the archive obtained with the first-pass retrieval with
DTW are taken as pseudo-relevant. The acoustic patterns frequently
occurring in these segments are therefore considered as query-
related and used for query expansion. Preliminary experiments
performed on Mandarin broadcast news offered very encouraging
results.

Index Terms— Query by Example, Query Expansion, Semantic
Retrieval

1. INTRODUCTION

Unsupervised spoken content retrieval with spoken query has be-
come popular recently, in which the difficulties of obtaining anno-
tated corpora reasonably matched to the spoken content for training
acoustic and language models for speech recognition is bypassed.
With the user query entered in spoken form, the similarity between
the query and the spoken content can be computed via template
matching techniques such as dynamic time warping (DTW) [1, 2].
Therefore, no supervised model training is needed. Since DTW is
limited in modeling signal variations, posteriorgrams [1] and acous-
tic segment models were used to incorporate the signal variation and
temporal information [3, 4]. Furthermore, in recent years unsuper-
vised discovery of acoustic patterns has become successful in recent
years and such patterns have been shown useful for spoken term de-
tection [5, 6, 7, 8].

Although the above series of approaches have bypassed the dif-
ficulties of speech recognition, what they are primarily able to ac-
complish is detection of the spoken terms, or to return the spoken
segments containing the query terms. However, the user prefers to

retrieve all objects semantically related to the query regardless of
whether the query is included or not. For example, when the query
”U.S. president” is entered, the spoken segments including the term
”White House” should be returned even if they do not include ”U.S.
president”. However, unsupervised approaches for such semantic
retrieval of spoken content without using speech recognition has not
been reported yet.

Retrieval of semantically related spoken content [9, 10] has been
investigated [11], but all previous works for such purposes utilized
speech recognition to transcribe the spoken archive in order to an-
alyze the semantic relationships. Taking the ASR transcriptions as
the text, query expansion techniques developed for text information
retrieval can be directly applied for such purposes, in which words
are semantically correlated to the query can be automatically identi-
fied and added to the query [12]. An example approach is to utilize
the pseudo relevance feedback (PRF) concept. In this approach the
top-N segments in the first-pass retrieval results are assumed to be
pseudo-relevant. Those words frequently occurring in these pseudo
relevant segments are then used to expand the query, and therefore
the spoken segments not containing the query term can be retrieved.
All these semantic retrieval approaches for spoken content rely on
reasonable quality of the ASR transcriptions of the spoken content,
which is practically difficult in many situations.

Fig. 1. The framework of the proposed approach.

This paper presents the first known effort of semantic retrieval
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of spoken content without using any annotated corpora, but based
on query expansion with automatically discovered acoustic patterns
obtained in a completely unsupervised way. The framework of the
proposed approach is shown in Fig. 1. At the lower half of the
figure for off-line processing, acoustic patterns including acous-
tic/language models and lexicon for them are automatically discov-
ered from the spoken archive in an unsupervised manner. With these
acoustic/language models and lexicon for the acoustic patterns, an
Acoustic Pattern Decoder at the lower left corner at Fig. 1 (very
similar to an ASR decoder but it is not ASR since it is for acoustic
patterns, not for phonemes or words) is constructed and performed
to transcribe each spoken segment in the archive into a one-best list.
On the upper half of Fig. 1 for on-line processing, when a spoken
query is entered by the user, the conventional DTW in Retrieval
Engine 1 on the right is applied to compute the similarity between
the spoken segments and the query to generate the first-pass results
on the middle right, in which the top-ranked segments are taken as
pseudo-relevant. Those acoustic patterns frequently occurring in
these pseudo-relevant segments are thus assumed to correspond to
the terms semantically related to the query and used in the Query
Expansion in the middle. Therefore the Retrieval Engine 2 based
on acoustic patterns on the left can search for the spoken segments
containing those query-related patterns. The results of Retrieval
Engine 2 are finally integrated with the DTW results from Retrieval
Engine 1 and then presented to the user.

2. PROPOSED APPROACH

2.1. Preprocessing - Acoustic Pattern Discovery

Unsupervised signal pattern discovery techniques [13, 14, 15, 16, 17]
have been widely developed to identify repeated acoustic patterns.
Such techniques have been utilized for enhancing spoken document
classification [18, 19], spoken term detection [5, 6, 7, 8], music re-
trieval [20], video retrieval [21] and spoken document retrieval [22];
but not yet properly leveraged for semantic retrieval of spoken con-
tent. Here in this study the recently proposed approach [5, 22] for
discovering the two-level acoustic patterns is employed, which in-
cludes subword-like and word-like patterns (a word-like pattern is
a sequence of one to several subword-like patterns), the lexicon of
word-like patterns in terms of subword-like patterns, and the n-gram
language model for word-like patterns. Each subword-like acoustic
patterns is modeled as an HMM. All parameters including HMM pa-
rameters for the subword-like acoustic patterns, the alphabet size of
subword-like patterns, the lexicon size of word-like patterns, and the
n-gram language model parameters for the word-like patterns are all
automatically learned in an unsupervised manner [5] from the spo-
ken archive to be retrieved. This is achieved by integrating a dynamic
lexicon into the process of the conventional HMM-training, and per-
forming three stages of iterative optimization between the assumed
labels and the trained models, such that the models, parameters, and
the two-level linguistic structure can then collect knowledge from
the corpora layer after layer iteratively and adjust themselves accord-
ingly [5]. These acoustic/language models and lexicon for two-level
acoustic patterns are used to construct the Acoustic Pattern Decoder
completely based on these acoustic patterns (very similar to but not
an ASR decoder, with word-like patterns considered like words and
subword-like patterns like phonemes), which generates a one-best
list in terms of word-like acoustic patterns for each spoken segment.
This is shown on the left of the lower part of Fig. 1. These one-best
lists in terms of word-like acoustic patterns will be utilized for query
expansion in Sections 2.3- 2.5.

2.2. Retrieval Engine 1 - Frame-based DTW

In the Retrieval Engine 1 on the right of the upper part of Fig. 1,
frame-based DTW is performed for the input spoken query against
all segments in the spoken archive, in order to retrieve the spoken
segments containing the terms in the spoken queries. In the DTW
process the two feature vector sequences of different lengths, one
for the spoken segment and the other for the query, are matched for
distance evaluation based on an optimal warping path [2]. The seg-
ments in the spoken archive with minimum distances to the query are
obtained as the first-pass retrieved results ranked by the distances.
Those spoken segments ranked top N on the list are taken as pseudo
relevant.

2.3. Language Model Retrieval Approach and Query Expansion

The purpose of Retrieval Engine 2 on the left of upper part of Fig. 1
is to retrieve spoken segments semantically related to the query but
not necessarily including the query terms. This can be achieved by
the query expansion approach based on the language modeling re-
trieval approach [23], but here this approach has to be performed
with acoustic patterns as described below. The basic idea is that we
respectively represent each spoken segment x in the archive and the
query Q as language models, θx and θQ, but these language mod-
els are expressed in terms of acoustic patterns obtained off-line in
Section 2.1 at the lower part of Fig. 1, rather than in terms of words
as in conventional language models. In other words, all language
models below refer to probabilities of acoustic patterns instead of
words. The KL divergence KL(θQ|θx) between the language mod-
els θQ and θx is used to evaluate the relevance score S(Q, x) be-
tween a segment x and the query Q. All language models below
are unigram plus bigram plus trigram models in the experiments re-
ported below, although the proposed approach is not limited to this
case. Additionally, all language models below refer to probabilities
of acoustic patterns instead of words. With pseudo-relevant spoken
segments identified by DTW as in Section. 2.2, the acoustic pat-
terns frequently appearing in these pseudo-relevant segments may
represent some terms semantically related to the query. Therefore,
the counts of such frequently appearing acoustic patterns can be em-
ployed to expand the language model for the query. For example, for
the query ”U.S. president”, the acoustic patterns for the term ”White
House” may occur frequently in the pseudo-relevant segments, thus
these patterns can be used to expand the query language model θQ.
As a result, the expanded query language model θQ includes the
acoustic patterns not only for terms in the query, but also for those
semantically related to the query.

2.4. Acoustic Pattern Language Model for Spoken Segments

Here, we describe how to obtain the segment model θx for a spoken
segment x. With each spoken segment x in the archive transcribed
into a one-best list of the word-like acoustic patterns and then fur-
ther expressed as a sequence of subword-like acoustic patterns as
described in Section 2.1, a language model θ′x based on the one-best
result can be obtained:

P (t|θ′x) =
C(t, x)∑
t C(t, x)

(1)

where t is the label of a unigram, bigram or trigram of the subword-
like patterns, and C(t, x) is the count of t in the sequence of
subword-like patterns in the one-best decoded result of the segment
x. Similarly we can estimate an acoustic pattern background model
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θb trained from the whole spoken archive:

P (t|θb) =
∑

x∈C C(t, x)∑
t

∑
x∈C C(t, x)

(2)

which is the probability of observing the n-gram with label t for the
subword-like acoustic patterns in the whole spoken archive, and C
is the spoken archive considered. The segment model θx to be used
below is then the interpolation of θ′x in (1) and the background model
θb in (2):

P (t|θx) = αP (t|θ′x) + (1− α)P (t|θb) (3)

where α is the weight for interpolating P (t|θ′x) and P (t|θb).

2.5. Acoustic Pattern Language Model for Expanded Query

Here we adopt the query-regularized mixture model widely used
for text information retrieval, but use it with the acoustic patterns.
This model assumes that the words in pseudo-relevant documents
are either query-related words or general words, with a document-
dependent ratio between the two. For example, for those irrelevant
documents taken as pseudo-relevant, this ratio for the query-related
words to the general ones should be very low. These document-
dependent ratios and which words are query-related are actually un-
known, but can be estimated from the pseudo-relevant documents.
Therefore, query-related word distributions can be estimated with
this model from the pseudo-relevant documents, based on which the
query language model can be expanded.

The above model is adopted here directly, except the words in
the documents are replaced by acoustic patterns in the spoken seg-
ments. Therefore, for the work here, distributions for query-related
acoustic patterns are estimated from the pseudo-relevant spoken
segments obtained from DTW , which are used to construct the
expanded query language model θQ in terms of acoustic patterns.
Suppose the N pseudo-relevant spoken segments (that is, the top
N segments in the first-pass retrieval results ranked by DTW )
are x1, x2, ..., xn, ..., xN . With the assumption that the acoustic
patterns in each pseudo-relevant spoken segment are either query-
related or general, the segment language model θ′xn

of (1) for each
pseudo-relevant segment xn should be close to an estimated model
θ′′xn

which is the interpolation of the expanded query model θQ to be
estimated (for query-related acoustic patterns) and the background
language model θb in (2) (for general acoustic patterns) with a
segment dependent weight αn.

P (t|θ′′xn
) = αnP (t|θQ) + (1− αn)P (t|θb), (4)

whereαn is the segment-dependent interpolation weight for segment
xn, which is to be estimated as well. Therefore, we utilized this
segment language model in (4) to minimize (5) in order to estimate
the expanded query model θQ.

F1(θQ, α1, ..., αN ) =

N∑
n=1

KL(θ′xn
|θ′′xn

) (5)

which means the query model θQ should be expanded in such a way
that the sum of the KL divergence between each segment model θ′xn

in (1) and the corresponding interpolated language model θ′′xn
in (4)

for all the N pseudo-relevant segments is minimized.
However, the expanded query model θQ minimizing (5) can be

just for the common acoustic pattern distributions in the pseudo-
relevant segments, not necessarily query-related. To handle this

problem, θQ should be regularized by an original query model θ′Q.
However, a mismatched situation exists here. The query entered
by the user is in spoken form, only the frame-based DTW tem-
plate matching was performed between the query and the spoken
segments. If the query is simply decoded by the Acoustic Pattern
Decoder trained from the spoken archive as described in Section 2.1,
then a serious mismatch in signals between the spoken query and the
spoken segments in the archive (such as those due to very different
speakers, speaking rates and acoustic conditions) may produce very
seriously corrupted acoustic patterns significantly different from
those corresponding to the terms in the query. This problem can be
properly solved by the frame-based DTW performed by Retrieval
Engine 1 as described in Section 2.2. DTW provides the hypothe-
sized regions within those top N spoken segments in the first-pass
retrieved results which may possibly contain the query. On the
other hand, all the spoken segments in the archive have already
been decoded into one-best sequences of acoustic patterns using
the Acoustic Pattern Decoder completely based on acoustic patterns
as shown in the lower left corner of the lower part of Fig. 1 and
described in Section 2.1. Therefore, we can align the hypothesized
regions for the topN pseudo-relevant segments obtained from DTW
to the one-best sequences of acoustic patterns for those segments.
In this way a query model θ′Q representing the original query can be
estimated as below:

P (t|θ′Q) =
∑N

n=1 C
′(t, xn)∑

t

∑N
n=1 C

′(t, xn)
(6)

where C′(t, xn) is the count of acoustic pattern n-gram t appearing
in the hypothesized region of a pseudo-relevant spoken segment xn.
Here the acoustic patterns totally within the hypothesized region is
counted as one, while those acoustic patterns with only a part of the
signal within the hypothesized regions are counted by the percent-
age of the duration of the acoustic pattern within the hypothesized
region. The numerator of (6) is the sum over all N pseudo-relevant
segments, and further summed over all acoustic pattern n-grams t in
the denominator of (6) for normalization. The goal here is then to
have the expanded query model θQ not too different from the model
θ′Q in (6) representing the original query, or minimizing (7) below,

F2(θQ, θ
′
Q) = KL(θ′Q|θQ) (7)

which is the KL divergence between θ′Q and θQ.
The final expanded query model θQ is then obtained by mini-

mizing both the KL divergence with all pseudo-relevant segments as
in (5) and the KL divergence with the original query as in (7) at the
same time. Therefore the expanded query model θQ and the cor-
responding weights αn for all pseudo-relevant segments in (4) are
actually estimated by minimizing the following objective function:

F (θQ, α1, ..., αN ) = F1(θQ, α1, ..., αN ) + µF2(θQ, θ
′
Q) (8)

where the first termF1(θQ, α1, ..., αN ) in (5) is to learn the common
pattern distribution from all the pseudo-relevant segments, and the
second term µF2(θQ, θ

′
Q) is to make sure θQ is close enough to θ′Q

in (6). µ is a parameter controlling the influence of the second term.

2.6. Retrieval Engine 2 and Integration

The Retrieval Engine 2 on the left of the upper part of Fig.1 then
simply performs the language modeling retrieval approach by eval-
uating the KL divergence KL(θQ|θx) between the expanded query
model θQ obtained by minimizing (8) in Section 2.5 and the segment
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model θx in (3) of Section 2.4.
The final results shown to the user is then ranked according

to the weighted sum S(Q, x) of the two relevance scores, the first
RQE(Q, x) evaluated with the language model retrieval approach
with query expansion, and the secondRDTW (Q, x) with DTW, both
normalized between 0 and 1.

S(Q, x) = −[w1RDTW (Q, x) + (1− w1)RQE(Q, x)] (9)

3. EXPERIMENTS

3.1. Experimental Setup

The spoken archive to be retrieved through in the experiments in-
cluded 4 hours of Mandarin broadcast news stories collected daily
from local radio stations in Taiwan in 2001, and further manually
segmented into 5034 spoken segments, each with one to three ut-
terances. We selected 30 spoken terms as the test queries, and all
collected from the speakers in the same corpus. All utterances con-
taining the spoken queries were excluded from the 5034 utterances.
Two answer sets were used for evaluation. The first answer set was
for semantic retrieval, which contained not only those spoken seg-
ments including the query, but also those semantically related to the
query but not including it in the utterances. The second answer set
was for the conventional spoken term detection, which simply con-
tained the spoken segments including the query. The first set con-
tained in average 171.9 relevant segments for each query, and the
second in average 27.6 relevant segments for each query. Mean av-
erage precision (MAP) was used as the performance measure.

We also performed some supervised approaches utilizing ASR
with models trained with annotated data for comparison. For these
experiments, a trigram language model trained from a 40M news
corpus collected in 1999 and a lexicon of 62K words was used for
recognition. The acoustic models included a total of 151 right-
context-dependent intra-syllable Initial-Final (I-F) models and it
was trained by 8 hrs of broadcast news stories collected in 2000.
The recognition character accuracy obtained for the 5034 segments
was 75.27%.

3.2. Acoustic Pattern N-grams

With the two-level acoustic patterns and the Acoustic Pattern De-
coder as shown in the lower part of Fig. 1, and discussed in Sec-
tion. 2.1, the acoustic models for the subword-like acoustic patterns,
and the language model for the word-like acoustic patterns were
trained using the whole corpus of the total 5034 spoken segments. A
total of 208 different subword-like acoustic patterns were obtained,
and we use the unigram, bigram, and trigram of these subword-like
acoustic patterns (a total of 85534) to construct the acoustic pat-
tern language models (θx, θQ and so on) used in retrieval. Most
of the subword-like patterns are very close to syllables in Mandarin,
so the bigram and trigram are similar to bi-syllable or tri-syllable
words in Mandarin. Some example n-grams of acoustic patterns
with the corresponding sample realizations are listed in Table. 1.
Row(1) is an example acoustic pattern unigram which sounds sim-
ilar to the Mandarin syllable /dian/, with sample realizations cor-
responding to different Chinese mono-syllable characters店(shop),
點(point),電(electricity). Row(2) is an example acoustic pattern bi-
gram including the unigram in row(1), with sample realizations cor-
responding to different Chinese bi-syllable words. For row (3) and
(4), it is similar to row (1) and (2). Note that in each case characters
or words sounding similarly are clustered together in some acoustic
pattern n-grams.

t (n-grams): (IDs) Sample Realizations
店(/dian/, shop),

(1) unigram: (106) 點(/dian/, point),電(/dian/, electricity)
電腦(/dian-nau/, computer),

(2) bigram: (106)-(27) 電能(/dian-neng/, electricity)
手(/shou/, hand),

(3) unigram: (93) 收(/shou/, receive),熟(/shou/, mature)
受傷(/shou-shang/, injured),

(4) bigram: (93)-(145) 首相(/shou-shiang/, prime minister)

Table 1. Some examples of unigram and bigram t of the subword-
like acoustic patterns and their sample realizations as Chinese mono-
syllabic characters and bi-syllabic words

3.3. Experimental Results

The results of the proposed unsupervised approach were listed in the
upper part of Table. 2. We list the results of Retrieval Engine 1 or
DTW alone (w1 = 1.0 in (9)) in row (1), Retrieval Engine 2 or lan-
guage modeling retrieval with query expansion alone (w1 = 0.0 in
(9)) in row (2), and the integration of them (row(3)) with different
weights w1. Note the Retrieval Engine 2 cannot operate without re-
trieval engine 1, but in row (2) we simply set w1 = 0.0. Column
(A) is for the semantic retrieval discussed here evaluated with the
first answer set, while column (B) is for conventional spoken term
detection evaluated with the second answer set. The MAP values in
column (A) are much lower than those in column (B), obviously be-
cause for semantic retrieval the answer set used for column (A) con-
tains much more segments which were semantically relevant but did
not include the query, and therefore difficult to identify. Although
all values in column (A) are below 10%, these are reasonable for
such a very difficult task, just like some other difficult tasks such
as video retrieval. It is clear from column (A) that query expansion
with automatically discovered acoustic patterns was able to improve
the performance of semantic retrieval (row (3) vs. (1) in column
(A)), obviously because some semantically relevant segments not
containing the query terms may include some acoustic patterns co-
occurring with the query terms in some segments detected by DTW.
Of course the improvement achieved was not large (e.g. 0.94% in
row(4), 9.70% for w1 = 0.7 vs. 8.76% for w1 = 1.0). This im-
plies the initial approaches proposed here may be relatively weak for
such a very difficult task and better approaches are definitely needed.
It is interesting to note that query expansion with acoustic patterns
also improved the performance of spoken term detection (row (3)
vs. (1) in column (B)). For spoken term detection, although all rel-
evant segments contain the query term, some of them may not be
detected in DTW due to signal mismatch, e.g. speaking rate vari-
ation, speaker variation, pronunciation variation or acoustic varia-
tion. These query terms may co-occur with some other semantically
related terms, so the appearance of some acoustic patterns corre-
sponding to such query-related terms may lead to the detection of
these query terms in the spoken segments. The MAP value was not
very sensitive to w1, while w1 = 0.7 seemed to be good, so we set
w1 = 0.7 in the following experiments.

Alternatively, we performed supervised semantic retrieval with
query expansion using ASR with models trained with annotated
data for comparison, and the results are listed in the lower part
(row(5)(6)(7)) of Table. 2. First, we use ASR with models trained
with annotated data to transcribe the spoken segments into word-
based lattices and the queries into one-best word sequences, and
then create the word-based unigram language models θx and θQ
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from the lattices using similar approaches as in [22]. Note that
the bigram/trigram of subword-like patterns for unsupervised ap-
proaches proposed above carry roughly the word-level information,
which is in principle in parallel with the word-based unigram model
used here. Then the KL divergence between the language models of
each spoken segment and each query is computed and used to rank
the spoken segments in the first-pass retrieval with results listed in
row(5). Then query expansion was performed using the approach
similar to that in Section. 2.3 to 2.5, with results listed in row (6).
We then integrated the first-pass results with query expansion with
w1 = 0.7 exactly as in row(3), with results listed in row (7) and the
improvement in row (8). We can see that the supervised approach
provided much better performance, but the improvement obtained
with query expansion on ASR transcribed lattices and one-best word
sequences was not much either, 1.28% (row (8)). This seemed to
imply the task considered here was really difficult. While for the
unsupervised method, we achieved an improvement of semantic
retrieval about 0.94% (row(4)), which is actually comparable to the
supervised approach.

(A) (B) spoken
semantic term

MAP retrieval detection

un
su

pe
rv

is
ed (1) DTW alone (w1 = 1.0) 8.76% 28.30%

(2) Query Expansion (w1 = 0.0) 6.03% 7.82%

(3) Integration
w1 = 0.9 9.28% 29.94%
w1 = 0.7 9.70% 30.31%

(4) improvement (w1 = 0.7) 0.94% 2.01%

su
pe

rv
is

ed (5) first-pass (w1 = 1.0) 29.49% 70.07%
(6) Query Expansion (w1 = 0.0) 30.30% 68.86%
(7) Integration (w1 = 0.7) 30.77% 76.80%
(8) improvement 1.28% 6.73%

Table 2. MAP for semantic retrieval (column(A)) and spoken term
detection (column(B)) for DTW alone (row(1)), query expansion
alone (row(2)), the integration (row(3)) and the improvement by
integration (row(4)), all with the proposed unsupervised approach.
Row(5)(6)(7)(8) are for supervised approaches using ASR with
models trained with annotated data, including first-pass(row(5)),
with query expansion(row(6)), integration(row(7)), and improve-
ments(row(8)). The number of pseudo-relevant segments isN = 12,
and µ in equation (8) is 300.

In order to analyze how the proposed approach really helped in
the goal of semantic retrieval, we collected the top 200 segments
ranked by DTW alone and by the proposed approach (w1 = 0.7)
given each of the 30 queries. Therefore, total 6000 segments were
collected for each approach. In Table. 3, the total numbers of truly
semantically relevant segments in the first answer set, with or with-
out query out of the 6000 are listed in column (A). Those segments
in column (A) are further divided into two parts, those including the
query in column (B) and those not including the query in column
(C). Note that in row (1) of Table. 3 for DTW alone, still quite good
number (264) of segments not including the query can be detected,
probably because most of which included parts of the phoneme se-
quences of the queries. With the proposed approach (w1 = 0.7) in
row (2), we can see that the relevant segments in both columns (B)
and (C) are increased, regardless of whether the query is included or
not, by roughly 11%− 15% as shown in row (3).

We further analyze how the results depended on the parameter
µ in (8) of Section 2.5, the number N of pseudo-relevant segments

(A) All (C) Those
semantically (B) Those in in (A) not

MAP relevant (A) including including
segments the query the query

(1)DTW alone
589 325 264(w1 = 1.0)

(2) Proposed
668 374 294(w1 = 0.7)

(3) Improved 13.41% 15.07% 11.36%

Table 3. Number of all semantically related segments (column(A)),
those including (column(B)) and not including (column(C)) the
query out of the total of 6000 segments collected from the top 200
segments ranked for the 30 queries, with N = 12,µ = 300.

in (5) of Section 2.5, and the weight w1 in (9) of Section 2.6. This
is shown in Fig. 2 (a) and (b). The MAP values with respect to
the first answer set for semantic retrieval was plotted as functions of
the weight w1 in the proposed approach integrating DTW and query
expansion. In Fig. 2 the baseline is DTW results. In Fig. 2 (a), N
is fixed to 12, and results for µ = 0, 300, 900, 1500 are shown. We
note the performance was close to the baseline with µ = 0, or the
expanded queries were drifted away by the pseudo-relevant segments
when µ = 0. The best performance was achieved at µ = 300. We
also see improved performance for w1 ranging from roughly 0.45 to
0.95, or the result was not very sensitive to w1, although w1 = 0.7
as in Table 2 was a good choice.

In Fig. 2 (b), µ is fixed to 300, and the results with N =
4, 12, 20, 32, 64 are plotted. Similarly we see improved perfor-
mance for w1 ranging from 0.45 to 0.95 regardless of the value of
N. We note that as N was increased, the MAP first increased a little
and then started to decrease when N was larger than 32. This is rea-
sonable, because larger N means that more top-N segments were
considered pseudo-relevant, so there were more training data for
query expansion. However, if the N was too large, more irrelevant
segments were considered relevant, which resulted in performance
degradation.

3.4. Semantic Pattern Analysis

Table. 4 lists an example showing that the proposed method indeed
expanded the query to include some semantically related acoustic
patterns. This table includes the top 5 n-grams with the largest
probabilities P (t|θQ) after query expansion for a query ”學校(/xue-
xiao/, school)”. The regions hypothesized to include the query in
the top N segments offered by DTW, aligned with the one-best
sequences provided by the Acoustic Pattern Decoder, all included
the two unigrams listed in rows(1) and (2). Clearly the unigrams
in rows(1)(2) were the dominating acoustic patterns for the query.
Those n-grams in rows(3)(4)(5) were then added by query expan-
sion. Row(3) is a bigram combined by the original two unigram
query in row(1)(2). Row(4) is a unigram pronounced very similar
to row(2) but has a different acoustic pattern representation. Row(5)
is obviously an added semantically related bigram since it sounds
like ”學生(/xue-shang/, students)”, highly related to the query ”學
校(/xue-xiao/, school)” but with a very different pronunciation. This
verified the query expansion actually worked.
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(a) N = 12

(b) µ = 300

Fig. 2. MAP yielded by integrating query expansion and DTW.
DTW is taken as the baseline. (a) The total number of pseudo-
relevant segments N = 12, for different values of the weight µ in
(8). (b) µ = 300 for different values of N .

t(n-grams): (IDs) P (t|θQ) Sample Realizations
(1) unigram: (87) 0.4280 校(/xiao/, school)
(2) unigram: (56) 0.3880 學(/xue/, learning)
(3) bigram: (56)-(87) 0.0040 學校(/xue-xiao/, school)
(4) unigram: (129) 0.0030 學(/xue/, learning)
(5) bigram: (129)-(23) 0.0016 學生(/xue-sheng/, students)

Table 4. Top 5 n-grams in the expanded query θQ for the query ”學
校(/xue-xiao/, school)”

4. CONCLUSIONS

This work presents an initial effort to perform unsupervised semantic
retrieval of spoken content using query expansion. Query expansion
was originally developed for text retrieval, but here we try to ex-
tend it to spoken content with automatically discovered acoustic pat-
terns. We perform query expansion over automatically discovered
acoustic patterns using the top N results of DTW. The preliminary
experimental results indicate that this approach improves not only
the desired semantic retrieval, but the spoken term detection as well,
since the co-occurring acoustic patterns also help in identifying the
existence of the queries.
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