
THE TAO OF ATWV: PROBING THE MYSTERIES OF KEYWORD SEARCH
PERFORMANCE

Steven Wegmann, Arlo Faria, Adam Janin, Korbinian Riedhammer, Nelson Morgan

International Computer Science Institute, Berkeley, CA, USA

ABSTRACT

In this paper we apply diagnostic analysis to gain a deeper
understanding of the performance of the the keyword search
system that we have developed for conversational telephone
speech in the IARPA Babel program. We summarize the
Babel task, its primary performance metric, “actual term
weighted value” (ATWV), and our recognition and keyword
search systems. Our analysis uses two new oracle ATWV
measures, a bootstrap-based ATWV confidence interval, and
includes a study of the underpinnings of the large ATWV
gains due to system combination. This analysis quantifies
the potential ATWV gains from improving the number of
true hits and the overall quality of the detection scores in our
system’s posting lists. It also shows that system combination
improves our systems’ ATWV via a small increase in the
number of true hits in the posting lists.

Index Terms— keyword search, spoken term detection

1. INTRODUCTION

In this paper we will describe the strengths and weaknesses of
the keyword search (KWS) system that we have developed for
conversational telephone speech in the IARPA Babel program
[1]. The goal of the IARPA Babel program [1] “is to rapidly
develop speech recognition capability for keyword search
in a previously unstudied language, working with speech
recorded in a variety of conditions with limited amounts of
transcription.” Our approach to solving this problem has been
to develop a relatively straightforward recognition system
that requires moderate computational resources. This sim-
plicity also facilitates close integration with our university
partners (Columbia, OSU, Northwestern, and UW) and di-
agnostic analysis both of which drive innovation and future
improvements.
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Code Name Release Version
101 Cantonese babel101b-v0.4c
104 Pashto babel104b-v0.4bY
105 Turkish babel105b-v0.4
106 Tagalog babel106b-v0.2g
107 Vietnamese babel107b-v0.7

Table 1. The Babel languages, identifying codes, and release
versions.

The first section of this paper covers background: Sec-
tion 2.1 describes the salient components of the Babel task
(including the performance metric ATWV in Section 2.1.2),
while Section 2.1 and Section 2.3 describe our recognition
and KWS systems respectively. The heart of the paper is
Section 3 which describes the novel analysis that we have
undertaken to gain a deeper understanding how our KWS is
performing and where the largest potential improvements are.
This analysis includes constructing two new oracle measures
in Section 3.1 and a bootstrap-based confidence interval for
ATWV in Section 3.2. System combination appears to give
much larger gains in ATWV than in the underlying speech
recognition accuracy. In Section 3.3 we investigate where
these gains are coming from with the larger goal of realiz-
ing these gains from a simpler, single system. We wrap-up
with a discussion in Section 4.

2. BACKGROUND

2.1. A summary of the Babel task

In this section we describe the main features of the Babel’s
performers task. We will concentrate on the features of the
task that are applicable outside the Babel program and avoid
describing many of the technical aspects of the evaluation
protocol.

2.1.1. The data

The audio data in each language is conversational telephone
speech recorded in a variety of environments and handset
types. There were 5 languages that program participants
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worked with: Cantonese, Pashto, Turkish, Tagalog, and Viet-
namese. Each language comes with 80 hours of transcribed
training data (FullLP), a pronunciation lexicon that covers
the words in the training data, and a 10 hour development
test set. For technical reasons the amount of Vietnamese
evaluation data is 75 hours, while the rest of the languages
have 15 hours. All of the results in this paper report KWS
results using the keywords (KW) provided for the evaluation.
Also, when we report results on the evaluation data we will
be restricting our results to the subsets, called “eval-part1”,
where the ground truth was released to participants: a 15 hour
subset in the case of Vietnamese and 5 hour subsets for the
rest of the languages. Finally, Table 1 gives the Babel codes
(and data release versions) for the languages, which we will
use in tables and graphs.

2.1.2. The KWS performance metric: ATWV

In this section we describe ATWV, which was developed for
the NIST 2006 Spoken Term Detection evaluation [2] and
is the primary metric for the Babel program: participants’
ATWV must be above 0.30. To score a posting list (a list
of putative hits with start, end times, and system detection
scores) for a given KW, kw, and detection threshold, θ, en-
tries in the list are matched to reference occurrences using
an objective function that accounts for both temporal overlap
between the reference and posting list occurrences and the
detection scores assigned by the system. The probabilities of
miss and false alarm errors at detection threshold θ are com-
puted using

PMiss(kw, θ) = 1−NCorrect(kw, θ)/NRef(kw)

PFA(kw, θ) = NSpurious(kw, θ)/NNT(kw)

whereNCorrect(kw, θ) is the number of correctly hypothesized
posting list entries with detection scores≥ θ,NSpurious(kw, θ)
is the number of incorrectly hypothesized posting list entries
with detection scores ≥ θ, NRef(kw) is the number of refer-
ence occurrences, and NNT(kw) is the number of non-target
trials for kw in the data. The number of non-target trials for
a term is related to the total audio stream duration in seconds,
TAudio, via

NNT(kw) = TAudio −NRef(kw).

For the 2006 STD evaluation NIST defined a single num-
ber performance metric called “term weighted value” (TWV)
that specifies the trade-off between misses and false alarms.
Given the predefined constant β = 999.9, it is convenient to
first define the KW-specific TWV as

TWV(kw, θ) ≡ 1− PMiss(kw, θ)− βPFA(kw, θ),

then, assuming that there are K KWs and they live in K, the
TWV to be the average of the KW-specific TWVs:

TWV(θ) ≡
∑

kw∈K

TWV(kw, θ)/K.

Ideally, the system will choose a detection threshold, θ̂, that
attains TWV’s maximum value. NIST defined actual term
weighted value (ATWV) to be the value of TWV at the sys-
tem’s chosen detection threshold, θ̂, i.e., ATWV = TWV(θ̂).

We wrap up this section with several observations con-
cerning KW-specific TWV (which carry over to TWV and
ATWV.) First note that for every KW kw the range of
TWV(kw, θ) is (−∞, 1]. More specifically, TWV(kw, θ)
attains the value 1 if and only if there are no false alarms and
no misses; if the posting list is empty, then it takes the value
0; large numbers of false alarms will drive TWV(kw, θ) to-
wards −∞. Second note that in TWV(kw, θ) the cost of a
false alarm is effectively constant across KWs, ≈ 1/TAudio,
since in practice TAudio >> NRef(kw), while the cost of a
miss is variable and depends on the number of true occur-
rences of KWs, = 1/NRef(kw).

2.2. The recognition system

The Kaldi speech recognition toolkit [3], along with the
TNet1 toolkit, were used for recognition and lattice genera-
tion. This section follows in most parts [4], but is updated
and extended to document recent changes.

We use 13 MFCCs as primary features after cepstral mean
subtraction. We extract pitch and probability-of-voicing
(PoV) features using a sub-band autocorrelation classifica-
tion, SAcC [5]. These two features are smoothed, interpo-
lated, and then pasted with the cepstral features to form a
15-dimensional feature vector. While we use ∆ and ∆∆s for
early systems in the initialization, we use a variant of HLDA
features for the final systems. The LDA transformation takes
as input a context of 7 spliced static MFCC vectors and is
trained using the context dependent states as targets; we
project the features down to 30 dimensions. During training,
this LDA matrix is composed with global MLLT matrices as
well as speaker dependent fMLLR matrices [6].

We also use 30-dimensional tandem bottleneck (BN) fea-
tures [7] that are obtained using a hierarchical NN [8]. See
[4] for more details. For the tandem features, we paste com-
binations of cepstral, pitch and bottleneck features together to
form the tandem feature vector. Note that HLDA is applied to
the cepstral part of the features only, while MLLT and fMLLR
are applied to the combined feature stream.

The first two decoding passes are done with a standard
continuous acoustic model where the emission probabilities
of the context dependent states are derived from GMMs as-
sociated with each of the (clustered) states. We initialize the
mixtures with a single component each, and subsequently
allocate more components by splitting components at every
training iteration until a pre-determined total number of com-
ponents is reached. This model has 5k context dependent
states and 80k Gaussian components. The third and final

1http://speech.fit.vutbr.cz/software/neural-network-trainer-tnet
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decoding pass is done with subspace Gaussian mixture mod-
els (SGMM) [9]. Here, we use the SGMM2 variant, which
extends the conventional SGMMs by two ideas. First, by
a “symmetrization” which makes the speaker subspace and
phonetic subspace behave the same way [10]. And second, an
idea similar to state-clustered tied mixtures that involves shar-
ing Gaussians among fairly small sets of context-dependent
states, but applied at the SGMM sub-state level rather than
the Gaussian level [11]. This model has 8k states and 50k
sub-states derived from 700 Gaussians.

We estimate a 3-gram language model on the training
transcripts, and apply Kneser-Ney smoothing and interpo-
lated counts [12, 13].

2.3. The KWS system

Our KWS system consists of three steps: i) converting recog-
nition lattices to indexes, ii) searching the indexes for a
given KW and constructing a posting list, iii) and setting the
KW-specific detection threshold in order to optimize ATWV.
These are further described below. Note that the KWS sys-
tems described here are entirely word-based, i.e., we are not
combining the word-based search with a separate subword-
based search in order to handle out-of-vocabulary (OOV)
KWs, e.g., as in [14, 15].

i. We use “lattice-tool” from SRILM [12] to convert lat-
tices to word-level indexes. We set the lattice-tool parame-
ter that controls how far apart in time two occurrences of a
word have to be in the lattice before we consider them sepa-
rate entries in the index to be 0.1 sec. We use Nelder-Mead
optimization (the downhill simplex algorithm) on the devel-
opment set to determine the relative weights of the acoustic
and language model scores in the conversion of these scores
into “lattice posterior probabilities.”

ii. For single word KWs the posting list is simply all of
the occurrences of the KW sorted by their posterior proba-
bilities. To construct the posting list for a multi-word KW
we follow [14]: the individual words are first retrieved from
the index in the correct order with respect to their start and
end times, but occurrences are discarded when the time gap
between adjacent words is more than 0.5 seconds. The sur-
viving occurrences are assigned a detection probability equal
to the minimum of the individual word probabilities.

iii. To determine the detection threshold for a given KW
we use the distribution of the KWs posting list probabilities
to construct an approximation to the true TWV function for
that KW. The detection threshold is chosen to maximize this
approximation to TWV.

3. ANALYSIS OF KWS PERFORMANCE

In this section we will describe the results of three types of
analysis that we have used to gain a deeper understanding
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Fig. 1. Comparison of KWS performance on development
data using fair thresholds to two optimal thresholds (using the
language codes in Table 1.)

of how our KWS is performing and where the largest po-
tential improvements are. We compare the performance of
our thresholding algorithm to two useful oracle measures in
Section 3.1, apply a bootstrap-based confidence interval for
ATWV in Section 3.2, and study the effects of system combi-
nation in Section 3.3.

3.1. Two oracle measures

We compare the performance of our thresholding algorithm to
two “oracle” measures that use knowledge of ground truth in
different ways to set optimal thresholds. The first oracle mea-
sure [16] chooses the KW-specific detection thresholds that
actually maximizes TWV for every KW. Comparison of our
actual performance to this oracle measure gives us an upper
bound on how much gain in ATWV we could realize through
improvements to our thresholding algorithm.

The second oracle measure first modifies the detection
probabilities on the posting lists by setting the probabilities
of all of the true hits to 1 and all of the false alarms to 0. Then
the KW-specific detection thresholds are chosen just like the
first oracle measure, namely to actually maximize the KW-
specific TWVs. However, any θ ∈ (0, 1] (e.g., θ = 0.5) is
optimal due to the way the detection probabilities have been
set. Comparison of our actual performance and the previous
oracle measure to this measure gives us two types of insight:
first, an upper bound on the gain in ATWV that we could real-
ize through improvements to the detection probabilities; and
second, an indication of how many true hits make it on to
the posting lists since the resulting oracle ATWV is the aver-
age fraction of true hits that actually occur in the KW-specific
posting lists.

Fig. 1 shows the results of these oracle measures. Note
that there are large gaps between performance of the fair and
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the two oracle measures across all of the languages. This
means that there is opportunity for substantial gains in ATWV
via improving the thresholding algorithm. Since the gaps be-
tween the performance of the two optimal thresholds appears
to be even larger, this suggests that improving the ordering
in our posting lists via more accurate detection probabilities
may be more important. Note that for all of the languages,
except for 107 (Vietnamese), on average 70-76% of the true
hits make it onto the posting lists; in Vietnamese only 52% of
the true hits make it onto the posting lists. This anomaly is
a large source of potential improvement that we are currently
studying.

3.2. Confidence intervals for ATWV

ATWV can be an extremely unstable performance measure,
e.g., small changes in underlying recognition performance
may result in large changes to ATWV. This led us to use
Efron’s bootstrap [17] to estimate confidence intervals for
ATWV performance on all of the languages’ development
data which we applied to several statistical inference prob-
lems. First, during system development we used our esti-
mates of ATWV’s standard error to assess the significance
levels of potential improvements. Second, we used this prior
to the evaluation to get an estimate of the range of expected
performance on the evaluation data given our results on the
development data. Third, we used this post-evaluation as a
diagnostic tool by focusing our attention to languages where
our actual performance on the evaluation data was worse than
expected.

To help understand how we use the bootstrap to obtain
a confidence interval for ATWV on a given language, imag-
ine that we have 100 (instead of just a single) 10 hour de-
velopment test sets. In this imaginary and profligate world
we would simply run recognition, indexing, and KWS to get
posting lists with detection thresholds on these 100 test sets.
Scoring with the corresponding ground truths would result in
100 corresponding ATWVs, from which we would compute
the mean and standard error. Providing that these 100 test sets
were random, independent draws from the larger population
of test sets, this confidence interval would be a good estimate
of the range of ATWV on future test sets.

In reality, we have only one collection of KW-specific
posting lists for each language (obtained by running recog-
nition, indexing, and KWS on a single development test set).
However, the bootstrap enables us to construct 100 KW-
specific posting lists, ground truths, and resulting ATWVs
from the single collection of KW-specific posting lists and
ground truth via simulation using a process called “resam-
pling”. Once we have these 100 ATWVs we use them, just as
in our imaginary experiment, to estimate the mean and stan-
dard error of ATWVs computed from the larger population of
potential test sets.

To apply the bootstrap we use each posting list to con-
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Fig. 2. Boxplots of the bootstrap replicates’ ATWVs together
with development and eval-part1 ATWVs (using the language
codes in Table 1.)

struct the empirical distribution–a non-parametric approxima-
tion to the true population distribution of the KW’s posting
lists–and we simulate from this empirical distribution to con-
struct pseudo posting lists that approximate lists drawn from
the true population distribution (as in our imaginary experi-
ment.) In this context, simulation consists of a random draw
with replacement from the posting list. To actually do this,
we first use the ground truth to label each entry in the posting
lists with whether or not it is a true hit. We also use the ground
truth to augment the posting lists with true occurrences of the
KWs that didn’t make it into the posting lists (each of these
extra entries are given detection probability = 0 to distinguish
them from the original entries that all have detection proba-
bilities > 0.) After removing the times, the result is a list
of all of the true occurrences of the KWs together with all of
our hypothesized occurrences with their detection probabil-
ities and correctness labels. We resample from this list the
requisite number of times to get a pseudo posting list with the
same length as the original list.

Fig. 2 displays boxplots (min, 1st quartile, median, 3rd
quartile, max) of the 100 bootstrap replicates’ ATWV to-
gether with the ATWVs of the real development data and
eval-part1 for each of the languages. Note that only the Can-
tonese (101) eval-part1 performed as expected. This means
that for all of the other languages there were properties of
eval-part1 that were markedly different from the development
data. Here is a brief, preliminary analysis for Tagalog (106)
and Vietnamese (107).

On the Tagalog development data none of the occurring
KWs were OOV with respect to the recognition lexicon, but
on eval-part1 ≈ 10% of the KWs are OOV and all of these
KW-specific TWVs are 0; on the 90% of KWs that were in-
vocabulary the ATWV was 0.477 which is in our bootstrap
estimated range of performance; hence unexpected OOVs ac-

195



Distribution of TWVs

TWV

Fr
eq
ue
nc
y

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

25
0

30
0

Fig. 3. The distribution of Vietnamese KW-specific TWVs.

count for the difference in performance.
For Vietnamese there were also no OOV KWs in the de-

velopment data and only 1% of the KWs were OOV on eval-
part1, so OOVs do not account for the bulk of the difference
in performance. Of the 1309 KWs that occur in eval-part1,
418 also occur in the development data and these KWs have
very similar ATWV performance on these two sets ≈ 0.36;
this is also in the bootstrap estimated range of performance.
In addition 57% of the true hits made onto these KWs’ posting
lists in both the development data and eval-part1. However,
ATWV on the 891 remaining KWs that do not occur in the
development data is much lower 0.331 and outside the esti-
mated performance range. Only 41% of the true hits made it
onto the posting lists for these KWs, which strongly suggests
that recognition performance was much lower around these
KW occurrences. The inherent variability of TWVs may also
be the culprit. Fig. 3 displays a histogram of the KW-specific
TWVs on the development data. Generally speaking KW-
specific TWVs have a broad, multi-modal distribution, and
Vietnamese is no exception to this. Note that the mean of this
distribution doesn’t “mean” very much!

3.3. System combination

In this section we shed some light on why system combina-
tion can give large gains in ATWV. To merge two systems’
KWS results, for each KW we first take the union of the two
posting lists without modifying the probabilities, we merge
any overlapping entries taking the max of overlapping proba-
bilities, and then compute the KW-specific threshold.

We combined Vietnamese KWS results from an HTK-
based system with the Kaldi baseline system described in Sec-
tion 2.2 and two additional Kaldi-based systems. The HTK-

based system [18] is an analog of the continuous baseline
Kaldi system (i.e., it does not use SGMMs). The two addi-
tional Kaldi-based systems differ only from the baseline in
the front-end feature sets that they use. The first variant’s
feature set uses only the bottleneck features and is labeled
“BNO” in Table 2. The second variant, labeled “PLP” in Ta-
ble 2, has the baseline’s MFCC features replaced with PLP
[19] features. The second column in Table 2 shows the stand
alone performance of the four systems, which are quite simi-
lar, while the third column shows the performance gain due to
merging search results: each row gives the result of merging
all of the systems listed above and including that row. The
largest ATWV gain comes from merging the HTK and Kaldi
baseline systems (0.389→ 0.425 or 0.036 absolute), but sub-
sequent merges give further absolute ATWV gains (0.013).

System ATWV Merge ATWV Unhyped Misses
Kaldi 0.389 NA 1145
HTK 0.382 0.425 959
BNO 0.369 0.438 866
PLP 0.396 0.451 818

Table 2. Vietnamese ATWV before and after merging.

We will examine the following possible explanations for
these gains: 1) Merging increases the number of entries on
the posting lists which results in better thresholds. 2) The
merging process improves the detection probabilities in the
posting lists. 3) Merging cuts down on single system misses.

Misses happen in precisely two ways, namely, when a true
hit is on the posting list but its detection probability is lower
than the system threshold or when a true hit doesn’t make it
onto the posting list. We call the latter an “unhyped miss”.
The fourth column of Table 2 shows that the number of un-
hyped misses definitely decreases as we merge search results,
but that doesn’t necessarily mean that we are converting these
new hits to detections.

We will look more carefully at the differences between
the posting lists produced by the Kaldi baseline and the first
merge between the baseline HTK and Kaldi systems. From
Table 2 we see that the difference in ATWV between these
two systems is 0.036. For each KW’s posting list we examine
the difference in the KW-specific TWV, the difference in the
number of entries in the posting list, which we will call the
“hypDiff”, and the difference in the number of true hits in the
posting list, which we will call the “hitDiff” (hitDiff is inde-
pendent of whether or not the true hits are correctly detected,
i.e., above threshold.) Recall that only 899 KWs occur in the
Vietnamese development set. A quarter of these have hypDiff
= 0 and the change in ATWV due to merging is 0. Another
quarter of the KWs have hypDiff = 1 or 2 and these KWs ac-
count for nearly all of the improvement in ATWV: 0.032. Re-
stricting our attention to to the posting lists that have hypDiff
= 1 or 2 we find that the difference in ATWV from KWs that
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have hitDiff = 0 is 0, but that the difference from KWs that
have hitDiff = 1 is 0.032. Thus, in this case nearly all of the
improvement due to merging comes from adding just 1 true
hit in 1 or 2 extra entries to the posting lists. The improvement
is not due to better detection probabilities or thresholding.

4. DISCUSSION

To gain a deeper sense of how our KWS system is perform-
ing we have used three complimentary forms of diagnostic
analysis across the 5 Babel languages. First, we compared
our thresholding algorithm’s ATWV to two oracle ATWVs
that use knowledge of TWV to set optimal thresholds with-
out and with knowledge of the correctness of the posting list
entries. Next, we used bootstrap-based estimates of ATWV
confidence intervals to compare expected versus actual eval-
uation performance. Finally, we analyzed the cause of the
large gain in ATWV that results from merging two KWS re-
sults that perform similarly but arise from different recogni-
tion systems. While this may seem obvious in hindsight, this
analysis has shown that there are two key opportunities for
improving our KWS system: 1) getting more true hits into
the posting lists; and 2) getting more accurate detection prob-
abilities for the existing entries in the lists. There is also a
smaller opportunity available from potential improvements to
the detection threshold algorithm.

Are there ways to make progress in 1) without resorting to
brute force methods that result in huge expenditures in CPU
cycles and storage, e.g., system combination and gigantic lat-
tices? This was partly the motivation of our system combina-
tion analysis and it is an active area in our research. Another
active area in our research, which addresses 2), is a novel
application of machine learning to compute the posting list
probabilities.
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