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Abstract—This paper proposes a novel HMM adaptation
algorithm for robust automatic speech recognition (ASR) system
in noisy environments. The HMM adaptation using vector Taylor
series (VTS) significantly improves the ASR performance in noisy
environments. Recently, the power normalized cepstral coefficient
(PNCC) that replaces a logarithmic mapping function with a
power mapping function has been proposed and it is proved that
the replacement of the mapping function is robust to additive
noise. In this paper, we extend the VTS based approach to the
cepstral coefficients obtained by using a power mapping function
instead of a logarithmic mapping function. Experimental results
indicate that HMM adaptation in the cepstrum obtained by using
a power mapping function improves the ASR performance com-
paring the VTS based conventional approach for mel-frequency
cepstral coefficients (MFCCs).

I. INTRODUCTION

Although the performance of automatic speech recognition
systems (ASRs) adopting a statistical model based approach
has been dramatically improved in clean environment, the
presence of acoustic interferences such as background noise
still degrades the ASR performance due to the mismatches
between the features extracted for the test stage and for the
training stage. Therefore, many algorithms try to maintaining
the inherent property of speech signals by reducing the acous-
tic mismatch [1]-[9].

Compensation techniques to minimize the mismatch effect
caused by background noise are divided into three groups:
signal domain algorithm, feature domain algorithm, and model
domain algorithm. Firstly, signal domain algorithm, typically
called speech enhancement such as Wiener filter and spectra
subtraction, estimate the denoised signal prior to the feature
extraction. The well-known speech enhancement algorithm
for robust speech recognition is a two stage mel-warped
Wiener filter noise reduction method used in the European
telecommunications standards institute (ETSI) advanced front
end (AFE) [8]. Secondly, feature domain algorithms such as
power normalized cepstral coefficient (PNCC) and perceptual
linear predictive (PLP) make the features robust to additive
noise [3][7]. These type of algorithms aim at extracting robust
features from noisy signals. Finally, model domain algorithms
such as maximum likelihood linear regression (MLLR), par-
allel model combination (PMC), and vector Taylor series
(VTS) approximation adjust the hidden Markov model (HMM)
parameters so that the ASR system becomes better matched

to the distorted environment [2][4].
Model adaptation algorithms show more improvement in

ASR performance than other types of algorithms. In [2], an
approximation based on Taylor series for HMM adaptation is
proposed. The static and dynamic means and variances are
adjusted by the parameters related to the background noise.
The VTS approximation based approach significantly takes
advantage of the extra knowledge provided by the model to
reduce the data requirements and dramatically improves the
ASR performance in noisy environments.

In addition, the PNCC recently proposed by Kim and Stern
shows improved performance in noisy conditions compared
to conventional MFCC and PLP features. PNCC replaces
a natural logarithmic mapping function used for extracting
MFCC with a power mapping function. It is indicated that the
replacement of spectral mapping function is useful in adverse
environments.

In this paper, we propose an VTS based model adaptation,
which is an extension of [2] from the approach for MFCCs
to the approach for power mapping function based cepstral
coefficient. We use the generalized cepstral coefficient ob-
tained by the generalized logarithmic function [10]. It covers
much wider range of factors than the fractional power function
used for computing PNCCs and PLP. Firstly, we reformulate
the generalized cepstral coefficient of the observed speech in
noisy environments. Then, the VTS approximation schemes
for HMM adaptation is applied to the generalized cepstrum.
Experimental results show that the HMM adaptation in the
generalized cepstrum based ASR system improves the word
accuracy in noisy environments by reducing deletion errors,
which is very effective compared to the conventional HMM
adaptation approach for MFCC.

The layout of this paper is as follows. Section II intro-
duces the generalized cepstral coefficient. In Section IV, the
VTS based conventional approach for MFCC is showed. Its
extension to the generalized cepstrum based ASR system is
described in Section V. Experimental results on Aurora 2
are given in Section VI. Finally, conclusions are followed in
Section VII.

II. GENERALIZED CEPSTRAL COEFFICIENTS

The generalized cepstral coefficient, introduced in [10], is
the generic form of cepstral coefficients. Commonly, mel-
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Fig. 1. Curves of generalized logarithmic function.

frequency cepstral coefficients (MFCCs) are used for ASR
system. It is obtained by taking a discrete cosine transform
to logarithmic spectrum on a nonlinear mel-scale frequency.
On the other hand, the generalized cepstral coefficients are
obtained from the generalized logarithmic function based
spectrum instead of logarithmic spectrum.

The generalized logarithmic function is defined by

fγ (x) =
1

γ
(xγ − 1) , γ ̸= 0, (1)

where γ is a real value. Fig. 1 shows the curves of the
generalized logarithmic function fγ(x) for several values of
γ. It is observed that as the value of γ is close to 0, its
corresponding curve is close to the logarithmic function, which
is mathematically proved in [10]. Consequently, the mapping
function fγ(x) is redefined as

fγ (x) =

{
1
γ (xγ − 1) 0 < γ ≤ 1

log x γ = 0
. (2)

Note that the derivative of fγ(x) in terms of x is depends on
the value of γ. In case γ = 1, its curve is linear function and
the derivative is constant regardless of x. On the other hands,
when γ < 1, the slope of corresponding curve depends on
the amplitude of x. The derivative in the small values of x
is larger than in the high values of x. It is indicates that if
the noise components is even small, the distortion in spectral
valleys can be significant. For this reason, MFCC based ASR
performance is tremendously degraded in noisy environments.

III. SIGNAL MODEL

Let the clean speech be corrupted by the channel noise h(n)
and the additive noise d(n):

y(n) = x(n) ∗ h(n) + d(n). (3)

where n is a time index. Assuming that the additive noise and
speech signal are independent and the noise has zero mean, the

i-th filterbank coefficient of the observed signal is represented
by

Yi = XiHi +Di, (4)

where Xi represents the filterbank coefficient of the clean
speech x(n), Hi the filterbank coefficient of the channel noise
h(n), and Di the filterbank coefficient of the additive noise. In
this work, we assume that the length of h(n) is much shorter
than the window length.

IV. VTS BASED CONVENTIONAL APPROACH FOR MFCC

In this section, the conventional HMM adaptation algorithm
based on VTS approximation for robust speech recognition is
described. The conventional algorithm is operated in the mel-
frequency cepstral domain which is obtained from the log-
spectrum.

A. Cepstral Coefficients in Noisy Environments

Let the length M cepstral coefficient vector of the observed
signal be defined by

y = C[ log Y0 log Y1 · · · log YN−1 ]T (5)

where C is the (M × N) DCT matrix and N denotes the
number of the filterbank. Combining Eq. (4) with (5) and
after some manipulation, the cepstral coefficient vector of the
observed signal is represented by

y = x+ h+C log
(
1+ exp

(
C−1(d− x− h)

))
(6)

In practice, the length of cepstral coefficient is smaller than
the number of filterbanks, so that C−1 is the pseudo-inverse
matrix of C. From Eq. (6), the relationship between the
log spectral features representing clean and noisy speech in
noisy environments is formulated. It is indicated that when
the cepstrum of the additive noise d, the cepstrum of the
convolutive noise h, and the cepstrum of the clean speech x are
given, the cepstrum of the corrupted speech can be computed.

B. Model Adaptation

Given Gaussian random variable vectors x, h, and d with
means µx, µh, and µd, and covariance matrices σx, σh, and
σd, the cepstrum of the observed speech is approximated by
a first order Taylor series expansion at (µx, µh, µd) [2]:

y ≈ µx + µh

+C log
(
1+ exp

(
C−1 (µd − µx − µh)

))
+ Fx (x− µx) + Fh (h− µh) + Fd (d− µd) , (7)

where Fx, Fh, and Fd denote the derivative of y in terms of
x, h, and d at the point (µx, µh, µd), respectively. The (i, j)th

entries of matrix Fx, Fh, and Fd are obtained by

Fx(i, j) =
∂xi

∂xj
−
∑
m

Ci,m

(
ξ̄m + 1

)−1
C−1

m,j , (8)

Fh(i, j) =
∂hi

∂hj
−
∑
m

Ci,m

(
ξ̄m + 1

)−1
C−1

m,j , (9)
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and
Fd(i, j) =

∑
m

Ci,m

(
ξ̄m + 1

)−1
C−1

m,j , (10)

where

ξ̄m = exp

{∑
i

C−1
m,i (µxi + µhi

− µdi)

}
. (11)

Then, the mean and covariance matrix of y are obtained by

µy ≈µx + µh

+C log
(
1+ exp

(
C−1 (µd − µx − µh)

))
,

(12a)

σy ≈FxσxFx
T + FhσhFh

T + FdσdFd
T. (12b)

The mean and covariance matrix of delta cepstrum are repre-
sented by

µ∆y ≈ Fxµ∆x, (13a)

σ∆y ≈ Fxσ∆xFx
T + Fdσ∆dFd

T. (13b)

In addition, for the delta-delta cepstrum, the mean and covari-
ance matrix are given by

µ∆2y ≈ Fxµ∆2x, (14a)

σ∆2y ≈ Fxσ∆2xFx
T + Fdσ∆2dFd

T. (14b)

V. HMM ADAPTION FOR GENERALIZED CEPSTRAL
COEFFICIENTS

At the previous section, the VTS based conventional model
adaptation algorithm that operated in the cepstral domain
(MFCCs) has been shown. Here, we extend the VTS based
model adaptation algorithm to the generalized cepstrum based
ASR system, which is introduced at Section II. First, the rela-
tionship between the generalized cepstral coefficients obtained
from the the observed signal and the clean speech. In addition,
the model update equation is reformulated for the acoustic
model trained in the generalized cepstral domain.

A. Generalized Cepstral Coefficients in Noisy Environment

Using Eq. (2) and (4), the generalized logarithmic spectrum
of the observed signal is obtained by

fγ (Yi) = fγ (Xi)

+ (γfγ (Xi) + 1) fγ (Hi)

+ (γfγ (Di) + 1) gγ (ξi) , (15)

where
ξi = XiHi/Di, (16)

and
gγ (x) = fγ(x+ 1)− fγ(x). (17)

It is indicated that the generalized logarithmic spectrum of the
observed signal is represented by those obtained from the clean
speech and two additive distortion terms. The first distortion
term related to the convolutive noise in the frequency domain
depends on fγ(Xi) and fγ(Hi). The second related to the
additive noise is determined by the spectrum of the additive
noise component and SNR depending term.

We now proceed with the representation of the generalized
cepstrum of the observed signal. After taking DCT and some
manipulation, the generalized cepstral coefficient of the ob-
served signal can be obtained by

yγ = xγ +M(x̂γ)hγ +M(d̂γ)gγ (ξ) , (18)

where

xγ = C
[
fγ(X0) fγ(X1) · · · fγ(XN−1)

]T
, (19)

hγ = C
[
fγ(H0) fγ(H1) · · · fγ(HN−1)

]T
, (20)

dγ = C
[
fγ(D0) fγ(D1) · · · fγ(DN−1)

]T
, (21)

gγ (ξ) = C
[
gγ (ξ0) gγ (ξ1) · · · gγ (ξN−1)

]T
, (22)

x̂γ =
[
γxγ

0 + 1 γxγ
1 · · · γxγ

N−1

]T
, (23)

d̂γ =
[
γdγ

0 + 1 γdγ
1 · · · γdγ

N−1

]T
, (24)

and
M(a)i,j = wiwj

(
aj+i

2wj+i
+

aj−i

2wj−i

)
. (25)

In Eq. (25), wi denotes the weighting factor for DCT, which
is given by

wi =

{
1/
√
N i = 0√

2/N 1 ≤ i < N
(26)

In case γ = 0, since the first entries of the vector x̂γ and d̂γ

are one and the other entries of those vectors are zero, M(x̂γ)
and M(d̂γ) are identity matrices. Then, it is proved that when
γ = 0, Eq. (18) are equal to Eq. (6). It is indicated that MFCC
is the specific case of the generalized cepstral coefficient, as
shown at Eq. (1).

B. Model Adaptation
Assuming that xγ , hγ , and dγ are Gaussian in the gen-

eralized cepstral domain with means µγ
x, µγ

h, and µγ
d, and

covariance matrices σγ
x, σγ

h, and σγ
d, the generalized cepstrum

of the observed signal can be approximated using a first order
Taylor series expansion at (µγ

x, µγ
h, µγ

d):

yγ ≈ µγ
x +M(µγ

x)µ
γ
h +M(µγ

n)g
γ(ξ̄)

+ Fγ
x(x

γ − µγ
x) + Fγ

h(h
γ − µγ

h) + Fγ
d(d

γ − µγ
d) (27)

where Fx
γ , Fh

γ , and Fd
γ denote the derivative of yγ in terms

of xγ , hγ , and dγ at the point (µx, µh, µd), respectively, and

ξ̄ =

(
γC−1µγ

x + 1
)1/γ(

γC−1µγ
h + 1

)1/γ
(γC−1µγ

d + 1)
1/γ

. (28)

The (i, j)th entry of Fx, Fh, and Fd are represented by

Fγ
x (i, j) =

∂xγ
i

∂xγ
j

+ wi

∑
m′=0

wm′hγ
m′

2wm′+i

∂x̂γ
m′+i

∂xγ
j

+ wi

∑
m′=0

wm′hγ
m′

2wm′−i

∂x̂γ
m′−i

∂xγ
j

+ wi

∑
m′=0

(
wm′ d̂γ

m′+i

2wm′+i
+

wm′ d̂γ
m′−i

2wm′−i

)
∂gγ

m′

∂xγ
j

, (29)
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Fγ
h (i, j) = wi

∑
m′=0

(
wm′ x̂γ

m′+i

2wm′+i
+

wm′ x̂γ
m′−i

2wm′−i

)
∂hγ

m′

∂hγ
j

+ wi

∑
m′=0

(
wm′ d̂γ

m′+i

2wm′+i
+

wm′ d̂γ
m′−i

2wm′−i

)
∂gγ

m′

∂hγ
j

, (30)

Fγ
d (i, j) = wi

∑
m′=0

(
wm′ d̂γ

m′+i

2wm′+i
+

wm′ d̂γ
m′−i

2wm′−i

)
∂gγ

m′

∂dγ
j

+ wi

∑
m′=0

wm′gγ
m′

2wm′+i

∂d̂γ
m′+i

∂dγ
j

+ wi

∑
m′=0

wm′gγ
m′

2wm′−i

∂d̂γ
m′−i

∂dγ
j

, (31)

where

∂gγ
i

∂xγ
j

=
∑
m

Ci,m

{
ξ̄m
(
ξ̄m + 1

)γ−1
+
(
ξ̄m
)γ}

·

(
γ
∑
k

C−1
m,kµxk

+ 1

)−1

C−1
m,j , (32)

∂gγ
i

∂hγ
j

=
∑
m

Ci,m

{
ξ̄m
(
ξ̄m + 1

)γ−1
+
(
ξ̄m
)γ}

·

(
γ
∑
k

C−1
m,kµhk

+ 1

)−1

C−1
m,j , (33)

∂gγ
i

∂dγ
j

=
∑
m

Ci,m

{
ξ̄m
(
ξ̄m + 1

)γ−1
+
(
ξ̄m
)γ}

·

(
γ
∑
k

C−1
m,kµdk

+ 1

)−1

C−1
m,j , (34)

∂x̂γ
i

∂xγ
j

= γ
∑
m=0

Ci,mC−1
m,j , (35)

and
∂d̂γ

i

∂dγ
j

= γ
∑
m=0

Ci,mC−1
m,j . (36)

Then, the mean and covariance matrices of yγ , its delta
cepstrum, and its delta-delta cepstrum can be obtained by

µγ
y ≈ µγ

x +M (µγ
x)µ

γ
h +M (µγ

d)g
γ
(
ξ̄
)

(37a)

σγ
y ≈ Fγ

xσx(F
γ
x)

T
+ Fγ

hσh(F
γ
h)

T
+ Fγ

dσd(F
γ
d)

T (37b)

µγ
∆y ≈ Fγ

xµ
γ
∆x (38a)

σγ
∆y ≈ Fγ

xσ∆x(F
γ
x)

T
+ Fγ

dσ∆d(F
γ
d)

T (38b)

µγ
∆2y ≈ Fγ

xµ
γ
∆2x (39a)

σγ
∆2y ≈ Fγ

xσ∆2x(F
γ
x)

T
+ Fγ

dσ∆2d(F
γ
d)

T (39b)
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Fig. 2. Recognition performance for test Set A of Aurora 2.
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Fig. 3. Recognition performance for test Set B of Aurora 2.

When γ = 0, Eq. (37), (38), and (39) become equivalent to
Eq. (12), Eq. (13), and Eq. (14), respectively. It is indicated
that the proposed HMM update equation is the generic form
of the conventional approach.

VI. EXPERIMENTS

In this section, we compare the ASR performance of VTS
approximations of order zero and one in the cepstral domain
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Fig. 4. Recognition performance for test Set C of Aurora 2.

and in the generalized cepstral domain. The VTS based
approach of order zero models the effect of the environment
on clean speech distributions only as a shift of the mean by
Eq. (37). The word accuracy for Aurora 2 database and its
error pattern are showed.

A. Experimental Setups
The recognition experiment is conducted with Aurora 2

database, which is a noisy speech database distributed by
European telecommunications standards institute (ETSI). The
source speech is the downsampling version of TIDIGITS
consisting of English connected digit strings. The different
types of the noise are added to clean speech with various
SNRs. Test data of Aurora 2 database are composed of three
different sets such as Test set A, Test set B and Test set
C. In Test set C, speech samples are filtered with an MIRS
characteristic to show the influence of recognition performance
in the telephone channel distortion environment.

The simulation setup is designed by the method introduced
in [11] with HTK toolkit v3.4. A 39 component feature vector
including 13 MFCCs and its delta and acceleration coefficients
is used for the recognizer. The acoustic model that has eleven
whole word HMMs with 16 states and 3 Gaussian mixtures
is trained by using clean training set comprised of 8440
utterances.

In the VTS based model adaptation approach, it is assumed
that the mean and covariance matrices of the generalized
cepstrum of the noise signal and the channel distortion are
known. In practical situations, these environment parameters
can be estimated using a traditional iterative EM approach
from noisy signals. In addition, the value of γ is set to 0.2.

B. Recognition Results
Fig. 2, 3, and 4 show the word accuracy of the VTS based

model adaptation approach of order zero and one. When 0th

order VTS approach is used, the generalized cepstrum based
system has a significant performance improvement comparing
MFCC based system. In addition, in the case of 1st order VTS
approach, the word accuracy is increased by model adaptation
in the generalized cepstral domain.

Fig. 5 depicts the error patterns that count the recognition
errors by dividing them into tree types: deletion error, sub-
stitution error, and insertion error. In addition, the averaged
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Fig. 5. Error distributions of the ASR system.

accuracy is also showed. Note that the model adaptation in
the generalized cepstral domain reduces deletion errors and
substitution errors. While insertion errors are increased, the
total ASR performance is improved. The average relative WER
improvement are 5.26% and 2.11% in the case of 0th and 1st

order VTS approaches, respectively.

VII. CONCLUSION

In this paper, the method for estimating HMM parameters
composed of the generalized cepstrum under noisy envi-
ronments has been proposed. We extended the VTS based
approach to the generalized cepstrum based ASR system. It
was proved that the expression of the generalized cepstral
coefficient is the generic form of MFCCs and the VTS
approximation in the generalized cepstrum is useful for ASR in
noisy environments. Notably, the number of deletion errors are
reduced compared to the conventional approach for MFCCs.
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