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ABSTRACT
In this paper, a modification to the training process of the popu-
lar SPLICE algorithm has been proposed for noise robust speech
recognition. The modification is based on feature correlations, and
enables this stereo-based algorithm to improve the performance in
all noise conditions, especially in unseen cases. Further, the mod-
ified framework is extended to work for non-stereo datasets where
clean and noisy training utterances, but not stereo counterparts,
are required. Finally, an MLLR-based computationally efficient
run-time noise adaptation method in SPLICE framework has been
proposed. The modified SPLICE shows 8.6% absolute improvement
over SPLICE in Test C of Aurora-2 database, and 2.93% overall.
Non-stereo method shows 10.37% and 6.93% absolute improve-
ments over Aurora-2 and Aurora-4 baseline models respectively.
Run-time adaptation shows 9.89% absolute improvement in mod-
ified framework as compared to SPLICE for Test C, and 4.96%
overall w.r.t. standard MLLR adaptation on HMMs.

Index Terms— Robust speech recognition, SPLICE, stereo
data, feature normalisation, MFCC.

1. INTRODUCTION

The goal of robust speech recognition is to build systems that can
work under different noisy environment conditions. Due to the
acoustic mismatch between training and test conditions, the perfor-
mance degrades under noisy environments. Model Adaptation and
Feature Compensation are two classes of techniques that address this
problem. The former methods adapt the trained models to match the
environment, and the latter methods compensate either or both noisy
and clean features so that they have similar characteristics.

Stereo-based piece-wise linear compensation for environments
(SPLICE) is a popular and efficient noise robust feature enhance-
ment technique. It partitions the noisy feature space into M classes,
and learns a linear transformation based noise compensation for each
partition class during training, using stereo data. Any test vector
y is soft-assigned to one or more classes by computing p (m |y)
(m = 1, 2, . . . ,M), and is compensated by applying the weighted
combination of linear transformations to get the cleaned version x̂.

x̂ =

M∑
m=1

p (m |y) (Amy + bm) (1)

In this paper, instead of using only bias, full transformation of
SPLICE has been used to obtain better performance [1, 2]. Am and
bm are estimated during training using stereo data. The training
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noisy vectors {y} are modelled using a Gaussian mixture model
(GMM) p(y) of M mixtures, and p (m |y) is calculated for a test
vector as a set of posterior probabilities w.r.t the GMM p(y). Thus
the partition class is decided by the mixture assignments p (m |y).

Over the last decade, techniques such as maximum mutual in-
formation based training [2], speaker normalisation [3], uncertainty
decoding [4] etc. were introduced in SPLICE framework. There
are two disadvantages of SPLICE. The algorithm fails when the test
noise condition is not seen during training. Also, owing to its re-
quirement of stereo data for training, the usage of the technique is
quite restricted. So there is an interest in addressing these issues.

In a recent work [5], an adaptation framework using Eigen-
SPLICE was proposed to address the problems of unseen noise
conditions. The method involves preparation of quasi stereo data
using the noise frames extracted from non-speech portions of the
test utterances. For this, the recognition system is required to have
access to some clean training utterances for performing run-time
adaptation.

In [6], a stereo-based feature compensation method was pro-
posed. Clean and noisy feature spaces were partitioned into vector
quantised (VQ) regions. The stereo vector pairs belonging to ith VQ
region in clean space and jth VQ region in noisy space are classified
to the ijth sub-region. Transformations based on Gaussian whiten-
ing expression were estimated from every noisy sub-region to clean
sub-region. But it is not always guaranteed to have enough data to
estimate a full transformation matrix from each sub-region to other.

In this paper, we propose a simple modification based on an
assumption made by SPLICE on the correlation of training stereo
data, which improves the performance in unseen noise conditions.
This method does not need any adaptation data, in contrast to the
recent work proposed in literature [5]. We call this method as mod-
ified SPLICE (M-SPLICE). We also extend M-SPLICE to work
for datasets that are not stereo recorded, with minimal performance
degradation as compared to conventional SPLICE. Finally, we use
an MLLR-based run-time noise adaptation framework, which is
computationally efficient and achieves better results than MLLR
HMM-adaptation. This method is done on 13 dimensional MFCCs
and does not require two-pass Viterbi decoding, in contrast to con-
ventional MLLR done on 39 dimensions.

The rest of the paper is organised as follows: a review of SPLICE
is given in Section 2, proposed modification to SPLICE is presented
in Section 3, extension to non-stereo datasets is explained in Section
4, run-time noise adaptation is described in Section 5, experiments
and results are presented in Section 6, detailed discussion and com-
parison of existing versus proposed techniques is given in Section
7 and the paper is concluded in Section 8 indicating possible future
extensions.
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2. REVIEW OF SPLICE

As discussed in the introduction, SPLICE algorithm makes the fol-
lowing two assumptions:

1. The noisy features {y} follow a Gaussian mixture density of
M modes

p(y) =

M∑
m=1

P (m)p(y |m) =

M∑
m=1

πmN
(
y ; µy,m,Σy,m

)
(2)

2. The conditional density p(x |y,m) is the Gaussian

p(x |y,m) ∼ N (x ; Amy + bm,Σx,m) (3)

where {x} are the clean features.

Thus, Am and bm parameterise the mixture specific linear trans-
formations on the noisy vector y. Here y and m are independent
variables, and x is dependent on them. Estimate of the cleaned fea-
ture x̂ can be obtained in MMSE framework as shown in Eq. (1).

The derivation of SPLICE transformations is briefly discussed
next. Let Wm =

[
bm Am

]
and y′ =

[
1 yT

]T . Using N
independent pairs of stereo training features {(xn,yn)} and max-
imising the joint log-likelihood

L =

N∑
n=1

log p(xn,yn) =

N∑
n=1

log

[
M∑
m=1

p(xn|yn,m)p(yn|m)P (m)

]
(4)

yields

Wm =

[
N∑
n=1

p (m |yn)xny′Tn

][
N∑
n=1

p (m |yn)y′ny′Tn

]−1

(5)

Alternatively, sub-optimal update rules of separately estimating
bm and Am can be derived by initially assuming Am to be identity
matrix while estimating bm, and then using this bm to estimate Am.

A perfect correlation between x and y is assumed, and the fol-
lowing approximation is used in deriving Eq. (5) [7].

p (m |xn,yn) ≈ p (m |xn) ≈ p (m |yn) (6)

Given mixture indexm, Eq. (5) can be shown to give the MMSE
estimator of x̂m = Amy + bm [1], given by

x̂m = µx,m + Σxy,mΣ−1
y,m

(
y − µy,m

)
(7)

where

µx,m =

N∑
n=1

p (m |yn)xn

N∑
n=1

p (m |yn)
, µy,m =

N∑
n=1

p (m |yn)yn

N∑
n=1

p (m |yn)
(8)

Σxy,m =

N∑
n=1

p (m |yn)xnyTn

N∑
n=1

p (m |yn)
, Σy,m =

N∑
n=1

p (m |yn)ynyTn

N∑
n=1

p (m |yn)

(9)
i.e., the alignments p(m |yn) are being used in place of p(m |xn)
and p(m |xn,yn) in Eqs. (8) and (9) respectively. Thus from (7),

Am = Σxy,mΣ−1
y,m (10)

bm = µx,m −Amµy,m (11)

To reduce the number of parameters, a simplified model with
only bias bm is proposed in literature [1].

A diagonal version of Eq. (7) can be written as

x̂c = µx,c +
σ2
xy,c

σ2
y,c

(y − µy,c) (12)

where c runs along all components of the features and all mixtures.
Since this method does not capture all the correlations, it suffers
from performance degradation. This shows that noise has significant
effect on feature correlations.

3. PROPOSED MODIFICATION TO SPLICE

SPLICE assumes that a perfect correlation exists between clean and
noisy stereo features (Eq. (6)), which makes the implementation
simple [7]. But, the actual feature correlations Σxy,m are used to
train SPLICE parameters, as seen in Eq. (10). Instead, if the train-
ing process also assumes perfect correlation and eliminates the term
Σxy,m during parameter estimation, it complies with the assump-
tions and gives improved performance. This simple modification
can be done as follows:

Eq. (12) can be rewritten as

x̂− µx
σx

=
σ2
xy

σxσy

(
y − µy
σy

)
= ρ

(
y − µy
σy

)

where ρ =
σ2
xy

σxσy
is the correlation coefficient. A perfect correlation

implies ρ = 1. Since Eq. (6) makes this assumption, we enforce it
in the above equation and obtain

x̂c = µx,c +
σx,c
σy,c

(y − µy,c)

Similarly, for multidimensional case, the matrix Σ
− 1

2
x,mΣxy,mΣ

− 1
2

y,m

should be enforced to be identity as per the assumption. Thus, we
obtain

x̂m = µx,m + Σ
1
2
x,mΣ

− 1
2

y,m

(
y − µy,m

)
(13)

Hence M-SPLICE and its updates are defined as

x̂ =

M∑
m=1

p (m |y) (Cmy + dm) (14)

Cm = Σ
1
2
x,mΣ

− 1
2

y,m (15)

dm = µx,m −Cmµy,m (16)

All the assumptions of conventional SPLICE are valid for M-
SPLICE. Comparing both the methods, it can be seen from Eqs. (7)
and (15) that while Am is obtained using MMSE estimation frame-
work, Cm is based on whitening expression. Also, Am involves
cross-covariance term Σxy,m, whereas Cm does not. The bias terms
are computed in the same manner, using their respective transfor-
mation matrices, as seen in Eqs. (11) and (16). More analysis on
M-SPLICE is given in Section 4.1.
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Fig. 1: Estimation of piecewise linear transformations

3.1. Training

The estimation procedure of M-SPLICE transformations is shown in
Figure 1a. The steps are summarised as follows:

1. Build noisy GMM1 p(y) using noisy features {yn} of stereo
data. This gives µy,m and Σy,m.

2. For every noise frame yn, compute the alignment w.r.t. the
noisy GMM, i.e., p(m |yn).

3. Using the alignments of stereo counterparts, compute the
means µx,m and covariance matrices Σx,m of each clean
mixture from clean data {xn}.

4. Compute Cm and dm using Eq. (15) and (16).

3.2. Testing

Testing process of M-SPLICE is exactly same as that of conventional
SPLICE, and is summarised as follows:

1. For each test vector y, compute the alignment w.r.t. the noisy
GMM, i.e., p(m |y).

2. Compute the cleaned version as:

x̂ =

M∑
m=1

p (m |y) (Cmy + dm)

4. NON-STEREO EXTENSION

In this section, we motivate how M-SPLICE can be extended to
datasets which are not stereo recorded. However some noisy training
utterances, which are not necessarily the stereo counterparts of the
clean data, are required.

4.1. Motivation

Consider a stereo dataset of N training frames (xn,yn). Suppose
two M mixture GMMs p(x) and p(y) are independently built using
{xn} and {yn} respectively, and each data point is hard-clustered

1We use the term noisy mixture to denote a Gaussian mixture built using noisy data.
Similar meanings apply to clean mixture, noisy GMM and clean GMM.

to the mixture giving the highest probability. We are interested in
analysing a matrix VM×M , built as

Vij =
N∑
n=1

1 (xn ∈ i,yn ∈ j)

where 1() is indicator function. In other words, while parsing the
stereo training data, when a stereo pair with clean part belonging to
ith clean mixture and noisy part to jth noisy mixture is encountered,
the ijth element of the matrix is incremented by unity. Thus each
ijth element of the matrix denotes the number of stereo pairs be-
long to the ith clean − jth noisy mixture-pair. When data are soft
assigned to all the mixtures, the matrix can instead be built as:

Vij =

N∑
n=1

p(i |xn)p(j |yn)

Figure 2a visualises such a matrix built using Aurora-2 stereo
training data using 128 mixture models. A dark spot in the plot
represents a higher data count, and a bulk of stereo data points do
belong to that mixture-pair.

In conventional SPLICE and M-SPLICE, only the noisy GMM
p(y) is built, and not p(x). p (m |yn) are computed for every noisy
frame, and the same alignments are assumed for the clean frames
{xn} while computing µx,m and Σx,m. Hence µx,m, Σx,m and
p (m |y) can be considered as the parameters of a clean hypothetical
GMM p(x). Now, given these GMMs p(y) and p(x), the matrix V
can be constructed, which is visualised in Figure (2b). Since the
alignments are same, and ith clean mixture corresponds to the ith

noisy mixture, a diagonal pattern can be seen.
Thus, under the assumption of Eq. (6), conventional SPLICE

and M-SPLICE are able to estimate transforms from ith noisy
mixture to exactly ith clean mixture by maintaining the mixture-
correspondence.

When stereo data is not available, such exact mixture correspon-
dence do not exist. Figure 2a makes this fact evident, since stereo
property was not used while building the two independent GMMs.
However, a sparse structure can be seen, which suggests that for most
noisy mixtures j, there exists a unique clean mixture i∗ having high-
est mixture-correspondence. This property can be exploited to esti-
mate piecewise linear transformations from every mixture j of p(y)
to a single mixture i∗ of p(x), ignoring all other mixtures i 6= i∗.
This is the basis for the proposed extension to non-stereo data.
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(b) GMMs of SPLICE and M-SPLICE
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(c) Noisy GMM and MLLR-EM based clean GMM

Fig. 2: Mixture assignment distribution plots for Aurora-2 stereo training data

4.2. Implementation

In the absence of stereo data, our approach is to build two separate
GMMs viz., clean and noisy during training, such that there exists
mixture-to-mixture correspondence between them, as close to Fig.
2b as possible. Then whitening-based transforms can be estimated
from each noisy mixture to its corresponding clean mixture. This
sort of extension is not obvious in the conventional SPLICE frame-
work, since it is not straight-forward to compute the cross-covariance
terms Σxy,m without using stereo data. Also, M-SPLICE is ex-
pected to work better than SPLICE due to its advantages described
earlier.

The training approach of two mixture-corresponded GMMs is as
follows:

1. After building the noisy GMM p(y), it is mean adapted by
estimating a global MLLR transformation using clean training
data. The transformed GMM has the same covariances and
weights, and only means are altered to match the clean data.
By this process, the mixture correspondences are not lost.

2. However, the transformed GMM need not model the clean
data accurately. So a few steps of expectation maximisation
(EM) are performed using clean training data, initialising with
the transformed GMM. This adjusts all the parameters and
gives a more accurate representation of the clean GMM p(x).

Now, the matrix V obtained through this method using Aurora-2
training data is visualised in Figure 2c. It can be noted that no stereo
information has been used while obtaining p(x), following the above
mentioned steps, from p(y). It can be observed that a diagonal pat-
tern is retained, as in the case of M-SPLICE, though there are some
outliers. Since stereo information is not used, only comparable per-
formances can be achieved. Figure 1b shows the block diagram of
estimating transformations of non-stereo method. The steps are sum-
marised as follows:

1. Build noisy GMM p(y) using noisy features {y}. This gives
µy,m and Σy,m.

2. Adapt the means of noisy GMM p(y) to clean data {x} using
global MLLR transformation.

3. Perform at least three EM iterations to refine the adapted
GMM using clean data. This gives p(x), thus µx,m and
Σx,m.

4. Compute Cm and dm using Eq. (15) and (16).

The testing process is exactly same as that of M-SPLICE, as ex-
plained in Section 3.2.

5. ADDITIONAL RUN-TIME ADAPTATION

To improve the performance of the proposed methods during run-
time, GMM adaptation to the test condition can be done in both con-
ventional SPLICE and M-SPLICE frameworks in a simple manner.
Conventional MLLR adaptation on HMMs involves two-pass recog-
nition, where the transformation matrices are estimated using the
alignments obtained through first pass Viterbi-decoded output, and a
final recognition is performed using the transformed models.

MLLR adaptation can be used to adapt GMMs in the context of
SPLICE and M-SPLICE as follows:

1. Adapt the noisy GMM through a global MLLR mean trans-
formation

µ(a)
y,m ← µy,m

2. Now, adjust the bias term in conventional SPLICE or M-
SPLICE as

d(a)
m = µx,m −Cmµ(a)

y,m (17)

This method involves only simple calculation of alignments of the
test data w.r.t. the noisy GMM, and doesn’t need Viterbi decod-
ing. Clean mixture means µx,m computed during training need to
be stored. A separate global MLLR mean transform can be esti-
mated using test utterances belonging to each noise condition. The
steps for testing process for run-time compensation are summarised
as follows:

1. For all test vectors {y} belonging to a particular environment,
compute the alignments w.r.t. the noisy GMM, i.e., p(m |y).

2. Estimate a global MLLR mean transformation using {y},
maximising the likelihood w.r.t. p(y).

3. Compute the adapted noisy GMM p(a)(y) using the estimated
MLLR transform. Only the means µy,m of the noisy GMM
would have been adapted as µ(a)

y,m.

4. Using Eq. (17), recompute the bias term of SPLICE or M-
SPLICE.
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Table 1: Results on Aurora-2 Database

(a) Comparison of SPLICE, M-SPLICE and non-stereo methods

Noise
Level

Baseline SPLICE M-SPLICE Non-
Stereo

Method
Clean 99.25 98.97 99.01 99.08
SNR 20 97.35 97.84 97.92 97.68
SNR 15 93.43 95.81 96.10 95.15
SNR 10 80.62 89.48 91.03 87.37
SNR 5 51.87 72.71 77.59 68.49
SNR 0 24.30 42.85 50.72 39.00
SNR -5 12.03 18.52 22.27 16.73

Test A 67.45 81.39 83.47 77.44
Test B 72.26 83.24 84.18 79.63
Test C 68.14 69.42 78.06 73.54

Overall 69.51 79.74 82.67 77.54

(b) Comparison of adaptation methods

MLLR
(39)

SPLICE +
Run-time

Adaptation

M-SPLICE
+ Run-time
Adaptation

Non-Stereo Method
+ Run-time
Adaptation

99.28 99.05 99.02 99.08
98.33 97.96 98.18 97.77
96.82 96.21 96.87 95.47
91.88 90.61 93.10 88.80
73.88 75.05 82.00 72.36
41.94 46.27 57.51 44.98
18.71 20.10 27.32 20.43

79.31 82.45 86.47 80.12
82.55 84.09 85.91 81.67
79.14 73.01 82.90 75.79

80.57 81.22 85.53 79.88

Table 2: Results on Aurora-4 Database

Clean Car Babble Street Restaurant Airport Station Average

Baseline
Mic-1 87.63 75.58 52.77 52.83 46.53 56.38 45.30

54.73
Mic-2 77.40 64.39 45.15 42.03 36.26 47.69 36.32

Non-Stereo Method
Mic-1 86.85 77.71 62.62 58.96 55.93 61.95 55.37 61.66
Mic-2 79.10 68.58 55.24 51.67 45.88 55.45 47.88

5. Compute the cleaned test vectors as

x̂ =

M∑
m=1

p (m |y)
(
Cmy + d(a)

m

)

6. EXPERIMENTAL SETUP

Aurora-2 task of 8 kHz sampling frequency [8] has been used to per-
form comparative study of the proposed techniques with the existing
ones. Aurora-2 consists of connected spoken digits with stereo train-
ing data. The test set consists of utterances of ten different environ-
ments, each at seven distinct SNR levels. The acoustic word models
for each digit have been built using left to right continuous density
HMMs with 16 states and 3 diagonal covariance Gaussian mixtures
per state. HMM Toolkit (HTK) 3.4.1 has been used for building and
testing the acoustic models.

All SPLICE-based linear transformations have been applied on
13 dimensional MFCCs, including C0. During HMM training, the
features are appended with 13 delta and 13 acceleration coefficients
to get a composite 39 dimensional vector per frame. Cepstral mean
subtraction (CMS) has been performed in all the experiments. 128
mixture GMMs are built for all SPLICE-based experiments. Run-
time noise adaptation in SPLICE framework is performed on 13
dimensional MFCCs. Data belonging to each SNR level of a test
noise condition has been separately used to compute the global trans-
formations. In all SPLICE-based experiments, pseudo-cleaning of
clean features has been performed.

To test the efficacy of non-stereo method on a database which
doesn’t contain stereo data, Aurora-4 task of 8 kHz sampling fre-
quency has been used. Aurora-4 is a continuous speech recognition

task with clean and noisy training utterances (non-stereo) and test
utterances of 14 environments. Aurora-4 acoustic models are built
using crossword triphone HMMs of 3 states and 6 mixtures per state.
Standard WSJ0 bigram language model has been used during decod-
ing of Aurora-4. Noisy GMM of 512 mixtures is built for evaluating
non-stereo method, using 7138 utterances taken from both clean and
multi-training data. This GMM is adapted to standard clean training
set to get the clean GMM.

6.1. Results

Tables 1a and 1b summarise the results of various algorithms dis-
cussed, on Aurora-2 dataset. All the results are shown in % accuracy.
All SNRs levels mentioned are in decibels. The first seven rows re-
port the overall results on all 10 test noise conditions. The rest of the
rows report the average values in the SNR range 20-0 dB. Table 2
shows the experimental results on Aurora-4 database.

For reference, the result of standard MLLR adaptation on HMMs
[9] has been shown in Table 1b, which computes a global 39 dimen-
sional mean transformation, and uses two-pass Viterbi decoding.

It can be seen that M-SPLICE improves over SPLICE at all noise
conditions and SNR levels and gives an absolute improvement of
8.6% in test-set C and 2.93% overall. Run-time compensation in
SPLICE framework gives improvements over standard MLLR in
test-sets A and B, whereas M-SPLICE gives improvements in all
conditions. Here 9.89% absolute improvement can be observed over
SPLICE with run-time noise adaptation, and 4.96% over standard
MLLR. Finally, non-stereo method, though not using stereo data,
shows 10.37% and 6.93% absolute improvements over Aurora-2
and Aurora-4 baseline models respectively, and a slight degradation
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w.r.t. SPLICE in all test cases. Run-time noise adaptation results of
non-stereo method are comparable to that of standard MLLR, and
are computationally less expensive.

7. DISCUSSION

In terms of computational cost, the methods M-SPLICE and non-
stereo methods are identical during testing as compared to conven-
tional SPLICE. Also, there is almost negligible increase in cost dur-
ing training. The MLLR mean adaptation in both non-stereo method
and run-time adaptation are computationally very efficient, and do
not need Viterbi decoding.

In terms of performance, M-SPLICE is able to achieve good re-
sults in all cases without any use of adaptation data, especially in
unseen cases. In non-stereo method, one-to-one mixture correspon-
dence between noise and clean GMMs is assumed. The method
gives slight degradation in performance. This could be attributed
to neglecting the outlier data.

Comparing with other existing feature normalisation techniques,
the techniques in SPLICE framework operate on individual feature
vectors, and no estimation of parameters is required from test data.
So these methods do not suffer from test data insufficiency prob-
lems, and are advantageous for shorter utterances. Also, the testing
process is usually faster, and are easily implementable in real-time
applications. So by extending the methods to non-stereo data, we
believe that they become more useful in many applications.

8. CONCLUSION AND FUTURE WORK

A modified version of the SPLICE algorithm has been proposed for
noise robust speech recognition. It is better compliant with the as-
sumptions of SPLICE, and improves the recognition in highly mis-
matched and unseen noise conditions. An extension of the methods
to non-stereo data has been presented. Finally, a convenient run-time
adaptation framework has been explained, which is computationally
much cheaper than standard MLLR on HMMs. In future, we would
like to improve the efficiency of non-stereo extensions of SPLICE,
and extend M-SPLICE in uncertainty decoding framework.
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