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ABSTRACT

Cepstral Mean and Variance Normalization (CMVN) is a compu-

tationally efficient normalization technique for noise robust speech

recognition. The performance of CMVN is known to degrade for

short utterances, due to insufficient data for parameter estimation

and loss of discriminable information as all utterances are forced to

have zero mean and unit variance. In this work, we propose to use

posterior estimates of mean and variance in CMVN, instead of the

maximum likelihood estimates. This Bayesian approach, in addition

to providing a robust estimate of parameters, is also shown to pre-

serve discriminable information without increase in computational

cost, making it particularly relevant for Interactive Voice Response

(IVR)-based applications. The relative WER reduction of this ap-

proach w.r.t. Cepstral Mean Normalization, CMVN and Histogram

Equalization are (i) 40.1%, 27% and 4.3%with the Aurora2 database

for all utterances, (ii) 25.7%, 38.6% and 30.4% with the Aurora2

database for short utterances, and (iii) 18.7%, 12.6% and 2.5% with

the Aurora4 database.

Index Terms— Robust speech recognition, CMVN, HEQ, VTS,

Bayesian estimation.

1. INTRODUCTION

The performance of speech recognition systems degrade under

noisy environments due to mismatch between training and test con-

ditions. Numerous techniques have been published in the literature

to address this issue [1, 2, 3, 4, 5, 6, 7]. These techniques can

be broadly classified into two categories; Model Adaptation and

Feature Normalization. Model adaptation techniques adapt the

trained models to match the test utterance, whereas feature nor-

malization techniques modify the noisy test features to match the

statistics of the clean training features.

Feature normalization techniques can be further categorized as

parametric and non-parametric approaches. In this paper we focus

on parametric feature normalization techniques; specifically, Cep-

stral Mean Normalization (CMN) [1], Cepstral Mean and Variance

Normalization (CMVN) [3, 8] and Quantile-based Histogram Equal-

ization (HEQ) [4, 5].

CMN was initially proposed to compensate the channel effects

in the form of convolutive noise [1]. CMN matches the first order

moment of every training and test utterance by removing their re-

spective time average, and transforming each utterance to zero mean.

CMVN matches both mean and variance by transforming ev-

ery training and test utterance to zero mean and unit variance.

This paper focuses on conventional per-utterance CMVN and not

the segmental version of CMVN [3, 8, 9], although the meth-

ods proposed in this paper can be easily extended to segmental-

CMVN. Let xt denote a 13-dimensional cepstral vector at time t

of an utterance, and xt(i) represent the ith component of xt. Let

X = [x1,x2, · · · ,xt, · · · ,xT ] denote an utterance of length T .

CMVN is performed by first computing the mean (µ) and variance

(σ2) independently for every dimension in maximum likelihood

(ML) framework, as shown below.

µML(i) =
1

T

T
∑

t=1

xt(i) 1 ≤ i ≤ 13 (1)

σ
2
ML(i) =

1

T − 1

T
∑

t=1

(xt(i)− µML(i))
2 1 ≤ i ≤ 13 (2)

The mean and variance normalized frame x̂t is computed for all 13

dimensions and for all frames as shown in Eq. (3) to obtain the

normalized utterance X̂ .

x̂t(i) =
xt(i)− µML(i)

σML(i)
1 ≤ t ≤ T, 1 ≤ i ≤ 13 (3)

HEQ can be considered as an extension to CMN and CMVN.

HEQ equalizes the training and test utterances to match the statistics

of a reference cumulative distribution function (cdf), thus matching

the higher order moments [4, 5].

1.1. Motivation

CMN, CMVN and HEQ techniques work best for long utterances.

The performance of HEQ is better compared to CMVN and CMN,

as HEQ matches all the moments of the training and test utterance;

whereas CMVN matches only the mean and variance, and CMN

matches only the mean.

The performances of CMVN and HEQ degrade for short utter-

ances due to lack of sufficient data for parameter estimation [10].

While CMVN estimates only mean and variance, HEQ estimates the

entire cdf of the utterance before normalization. The estimate of

these parameters are therefore not robust for short utterances leading

to performance degradation.

Further, there is also loss of discriminable information when

CMVN and HEQ are applied for short utterances [10]. CMVN

forces all utterances to transform to zero mean and unit variance;

i.e., the mean and the variance of every dimension of an utterance

after CMVN are zero and one respectively. In the case of HEQ,

all the utterances are forced to match the reference cdf. The mean

and the variance of an utterance after HEQ would be the reference

mean and the reference variance respectively. Since every utterance

and all its feature components are forced to have the same statistics,

some amount of discriminable information is lost in the process of

normalization.

Other algorithms like the vector Taylor series (VTS) work for

short utterances [7], but are computationally expensive [11]. Hence

an improvement over simple approaches such as CMN, CMVN and

HEQ could still be important for real-time Interactive Voice Re-

sponse (IVR) applications.
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1.2. Proposed Method

As discussed above, there is not enough data to obtain robust es-

timate of parameters for short utterances. We propose to use a

Bayesian framework for parameter estimation to address this prob-

lem. A Bayesian framework compensates for insufficient data by

having a prior distribution for the parameters to be estimated. This

prior knowledge is then used during parameter estimation to com-

pute the posterior estimates.

In this work, we use the Bayesian framework in the conven-

tional per-utterance CMVN. We propose to use a posterior estimate

of mean and variance (µpost(i) and σ2
post(i)) in CMVN instead of

the maximum likelihood estimates. The choice of the prior distri-

bution and the method to estimate the posteriors are explained in

section 2. These posterior parameters are then used to perform mean

and variance normalization to obtain the normalized utterance X̌ as

shown below.

x̌t(i) =
xt(i)− µpost(i)

σpost(i)
1 ≤ t ≤ T, 1 ≤ i ≤ 13 (4)

We use the term Bayesian-CMVN (BCMVN) to denote this method

of using Bayesian estimates for performing CMVN.

Our analysis (section 3) shows that the proposed method, in

addition to computing robust estimates, is also able to retain some

amount of utterance-specific and dimension-specific information

compared to CMVN and HEQ. This improves the recognition per-

formance of BCMVN over CMN, CMVN and HEQ, and the results

of the experiments (section 6) indicate that this improvement is not

just for short utterances, but also for long utterances. In the Aurora2

database, the relative word error rate (WER) reduction of BCMVN

w.r.t. CMN, CMVN and HEQ for all utterances are 40.1%, 27% and

4.3% respectively, and 25.7%, 38.6% and 30.4% respectively for

short utterances. The WER of BCMVN with the Aurora4 database

is also consistently lesser compared to CMN, CMVN and HEQ, and

the relative reduction is 18.7%, 12.6% and 2.5% respectively.

The rest of the paper is organized as follows. Section 2 explains

the methodology of choosing the prior distribution and the BCMVN

algorithm. This is followed by detailed analysis in section 3, on how

BCMVN is able to preserve discriminable information compared to

CMVN and HEQ. In section 4, we present a modified version of the

BCMVN. The experimental setup is explained in section 5 and the

results are discussed in section 6. Finally, conclusions and future

work are presented in section 7.

2. BAYESIAN CEPSTRAL MEAN AND VARIANCE

NORMALIZATION (BCMVN)

In this section, we discuss the implementation of the proposed

BCMVN algorithm. The parameters that are of interest for perform-

ing CMVN are µ(i) and σ2(i) for all dimensions 1 ≤ i ≤ 13.
Since the parameters for each dimension are estimated indepen-

dently and in the same manner, all further discussion is made for

one particular feature component. The dimension index i is dropped

hereafter for notational convenience. It is to be noted that non-bold

symbols indicate one feature component of the corresponding vector

counterpart.

The parameters that are estimated for performing conventional

CMVN are µ and σ2. The maximum likelihood estimate of these

parameters are obtained by maximizing the likelihood of the param-

eters (µ, σ2) w.r.t. the data (X); i.e.,

(µML, σ
2
ML) = argmax

µ,σ2

p(X;µ, σ2)

To estimate these parameters in an ML framework, each dimension

of the input cepstral feature is assumed to be Gaussian distributed

[9]. Then, the ML estimates of mean and variance for a Gaussian

distribution can be computed using Eq. (1) and Eq. (2).

A Bayesian approach is used to obtain robust estimates of

parameters when data are insufficient or are corrupted by noise.

Bayesian estimation treats the parameters to be estimated as random

variables with a prior probability density function (pdf) p(µ, σ2).
One method to estimate the parameters using the Bayesian frame-

work is to choose the mean of the posterior distribution as the

estimate of the parameters. This estimate is also known as the

minimum-mean-square-error (MMSE) estimate. The posterior dis-

tribution of the parameters is given by

p(µ, σ2|X) =
p(X|µ, σ2) p(µ, σ2)

p(X)

and the MMSE estimate of parameters are

(µpost, σ
2
post) = E

[

µ, σ
2|X

]

where E is the expectation operator. The method of choosing the

prior distribution is discussed next.

2.1. Choosing the Prior Distribution

The choice of the prior distribution is based on two factors, (i) do-

main knowledge and (ii) mathematical tractability. As in the case

of CMVN, we assume that each component of the cepstral features

follows a Gaussian distribution. Now, a prior distribution has to be

chosen for the parameters of the Gaussian random variable. Many

kinds of priors for the parameters of a Gaussian distribution are stud-

ied in the literature and a compilation is available [12].

In this work, we choose a joint conjugate prior distribution

p(µ, λ) for the mean µ and the precision λ = 1
σ2 for mathematical

convenience. Normal-Gamma conjugate prior with four parameters

(µ0, κ0, α0, β0) is chosen.

NG(µ, λ;µ0, κ0, α0, β0) ∼ N (µ;µ0, (κ0λ)
−1)Γ(λ;α0, β0) (5)

where N represents a Gaussian pdf as the prior for the mean µ

given λwith parameters (µ0, κ0), and Γ represents a Gamma pdf for

the precision λ with parameters (α0, rate = β0) [12].

The parameters µ0, κ0, α0, β0 are estimated using the training

data in the maximum likelihood framework by maximizing the log

likelihood of Eq. (5). Let N denote the total number of training

utterances. Let µn and λn denote the mean and precision of the nth

training utterance. Now, µ0 and κ0 can be derived as follows.

µ0 =

N
∑

n=1

µnλn

N
∑

n=1

λn

(6)

κ0 =
N

N
∑

n=1

λn(µn − µ0)2
(7)

The parameters α0 and β0 can be estimated by fitting a Gamma pdf

to the training precision values, i.e., {λn} 1 ≤ n ≤ N . We use

MATLAB command gamfit to estimate these parameters. It is to be

noted that, MATLAB estimates the scale parameter of the Gamma

distribution instead of the rate β0. The rate parameter β0 is ob-

tained by inverting the scale parameter [12]. The prior parameters

µ0, κ0, α0, β0 are estimated for all the 13 cepstral feature dimen-

sions independently.
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Table 1: CMVN vs BCMVN

Notation: X = [x1,x2, . . . ,xt, . . . ,xT ] - an utterance of length T ; xt - 13 dimensional cepstral vector at time instance t; xt(i) - ith component of xt

CMVN BCMVN

Normalized frame x̂t is obtained as

x̂t(i) =
xt(i)− µML(i)

σML(i)
1 ≤ t ≤ T, 1 ≤ i ≤ 13 (8)

where

µML(i) =
1

T

T∑

t=1

xt(i) 1 ≤ i ≤ 13 (9)

σ2
ML(i) =

1

T − 1

T∑

t=1

(xt(i)− µML(i))
2 1 ≤ i ≤ 13 (10)

Normalized frame x̌t is obtained as

x̌t(i) =
xt(i)− µpost(i)

σpost(i)
1 ≤ t ≤ T, 1 ≤ i ≤ 13 (11)

where

µpost(i) =
κ0(i)µ0(i) + TµML(i)

κ0(i) + T
(12)

σ2
post(i) =

β0(i) +
T
2
σ2
ML(i) +

κ0(i)T (µML(i)−µ0(i))
2

2(κ0(i)+T )

α0(i) +
T
2

(13)

µ0(i), κ0(i), α0(i), β0(i) are estimated from the training data

2.2. BCMVN Algorithm

As in the case of CMVN, BCMVN is also applied for both training

and test utterances to reduce the mismatch between the two. Given

an utteranceX (training or test) of length T , the ML estimate of the

mean (µML) and the variance (σ2
ML) are first computed using Eq.

(9) and Eq. (10) respectively, as shown in Table 1.

Now, the posterior pdf p(µ, λ|X) is also of the same form as

the prior pdf, but with different parameters µp, κp, αp, βp [12]. The

posterior pdf is given by

p(µ, λ|X) ∼ NG(µ, λ|µp, κp, αp, βp) (14)

The parameters µp, κp, αp, βp are estimated using the ML esti-

mates (µML, σ
2
ML), the utterance length T and the prior parameters

(µ0, κ0, α0, β0) as shown next.

µp =
κ0µ0 + TµML

κ0 + T
(15)

κp = κ0 + T, αp = α0 +
T

2
(16)

βp = β0 +
T

2
σ2
ML +

κ0T (µML − µ0)
2

2(κ0 + T )
(17)

These parameters are estimated for all the 13 dimensions using the

respective priors and the ML estimates.

Then, the posterior estimates or MMSE estimates of the mean

and the variance are obtained as the mean of the marginal pdfs of

µ and λ. The marginal distribution of mean µ is a Student’s t-

distribution, and for precision λ it is a Gamma distribution [12]. The

MMSE estimate of the mean and the variance is given by

µpost = µp σ
2
post =

1

λpost

=
βp

αp

(18)

and the expressions are shown in column 2 of Table 1 (Eq. (12) and

Eq. (13)). These posterior estimates are then used to perform the

BCMVN as shown in Eq. (11) in Table 1.

It is to be noted that the BCMVN algorithm is different from

the other variations of CMVN proposed to estimate the parameters

[3, 8, 9]. These methods implement segmental CMVN and use the

estimate of parameters from the previous utterances or frames to ob-

tain the current estimate. BCMVN is proposed as a per-utterance

normalization where the entire utterance is available. BCMVN can

also be extended to segmental implementation to reduce the latency

for long utterances.

3. ANALYSIS

We next analyze and compare the BCMVN algorithm with CMVN

and HEQ, and discuss its computational advantages over HEQ.

3.1. CMVN vs BCMVN

• Non-zero mean and non-unit variance : For a given utter-

ance, the mean of every dimension of the CMVN-transformed

features is zero, i.e., E(x̂) = 0 and the variance is unity, i.e.,

V ar(x̂) = 1, where V ar denotes the variance. In case of

BCMVN, E(x̌) 6= 0 and V ar(x̌) 6= 1.

• Dimension-specific information : In the CMVN-transformed

features, the mean and the variance of ith and jth dimension

are equal for a given utterance, i.e., E(x̂(i)) = E(x̂(j)) = 0
and V ar(x̂(i)) = V ar(x̂(j)) = 1. In case of BCMVN,

E(x̌(i)) 6= E(x̌(j)) and V ar(x̌(i)) 6= V ar(x̌(j)). This is

because µpost and σ2
post are a function of the prior parame-

ters (µ0, κ0, α0, β0) and the ML estimates µML,σ
2
ML (Eq.

(12), Eq. (13)). Each dimension would have its own distinct

prior values and ML values.

• Utterance-specific information : Figures Fig. 1a and Fig.

1b show the distribution of mean and the distribution of vari-

ance of input features respectively. The mean and variance

are computed from every utterance. The histogram of this set

of mean and variance values are plotted for the training set

and also for various SNRs of the test data of Aurora2 database

for 2nd cepstral coefficient. Now, if we look at the distribu-

tion of E(x̂) (distribution of mean after CMVN), it would be

an impulse at zero, as all utterances after CMVN would have

zero mean. But for BCMVN, the distribution of E(x̌) has a

distribution around zero as shown in Fig. 1d. Similar behav-

ior can be observed with variance distribution as-well (Fig.

1e). The distribution of variance after CMVN is an impulse

at one, whereas the distribution has a spread after BCMVN.

The spread in the case of both mean and variance distribution

after BCMVN is because the posterior values (µpost, σ
2
post)

are computed using utterance length T and the ML estimates

( µML and σ2
ML), and these parameters vary with every ut-

terance. This spread in mean and variance distribution after

BCMVN could correspond to capturing utterance-specific in-

formation, which does not happen in CMVN.

• Short Utterances : BCMVN compensates for the insuffi-

cient data by utilizing the prior information to obtain robust
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Fig. 1: Histogram of means, variances and features of utterances for 2nd cepstral coefficient under different noise conditions for Aurora2

data-set input features (top row) and after BCMVN (bottom row). Figure also shows the effect of CMVN.

estimates. In addition, BCMVN preserves utterance-specific

information. Fig. 2 shows the distribution of mean and vari-

ance of 2nd cepstral coefficient of 4 digits (1, 2, 6 and 9) taken

from the Aurora2 training set after applying BCMVN. Utter-

ances with only the particular digit spoken are taken and the

histograms are plotted. Clearly, each digit has a distinct mean

and variance distribution even after BCMVN. On the other

hand, after CMVN, all the digits would have the same mean

(zero) and variance (one) and the distribution is an impulse as

shown in the same figure.

• Noisy Cases : The Bayesian approach computes robust es-

timate of the parameters as it uses the prior information. As

seen from Fig. 1d and Fig. 1e, BCMVN retains the infor-

mation in the mean and variance by having a spread even in

noisy cases, unlike CMVN.

The goal of CMVN is to reduce the mismatch between the

training utterances and the noisy test utterances. The Fig. 1f

shows the histogram of features after BCMVN and CMVN. It

can be clearly seen that the histogram of features under noisy

cases closely match (overlap) the histogram of the training

features for both CMVN and BCMVN. This indicates that

the BCMVN is also able to reduce the mismatch between the

training and test features similar to CMVN.

3.2. BCMVN vs HEQ

If we look at the distribution of utterance mean after HEQ, it would

be an impulse at the reference mean, as all utterances are equalized to

have the same cdf. Similarly, the distribution of variance after HEQ

would be an impulse at the reference variance. This behavior of

HEQ is similar to CMVN and the discussion in the previous section

(section 3.1) is applicable to HEQ as well.

3.3. Computational Analysis

Before training, BCMVN estimates the parameters of the Normal-

Gamma prior distribution for all the 13 dimensions. This is a one
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Fig. 2: Digit specific mean and variance distribution of 2nd cepstral

coefficient of Aurora2 train dataset after performing BCMVN

time computation and is similar to estimating the reference cumula-

tive distribution function (cdf) for HEQ.

During normalization (training and testing), BCMVN performs

only a few additional computations when compared to CMVN, i.e.,

Eq. (12) and Eq. (13). The order of computation is very minimal

for BCMVN when compared with HEQ. For performing Quantile-

based HEQ, test cdfs are estimated from the given utterance for all

13 dimensions (involves sorting) and are equalized to the reference

pdfs using interpolation.

In summary, the analysis indicates that the BCMVN algorithm

achieves the purpose of CMVN by reducing the mismatch between

the training and test conditions. In addition, BCMVN captures dis-

criminative information compared to CMVN and HEQ without any

additional computational overhead.
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Table 2: BCMVN-M recognition results for various γ (% Accuracy)

γ Values 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Aurora2 All 78.34 81.62 81.75 81.55 81.46 81.34 81.29 81.26 81.23 81.23

Aurora2 Short 63.75 81.62 83.43 84.14 84.40 84.39 84.30 84.25 84.21 84.14

Aurora4 65.00 65.48 65.13 64.80 64.79 64.05 63.88 63.50 63.35 63.06

Table 3: Recognition results on Aurora4 database (% Accuracy)

Test Case 01 02 03 04 05 06 07 08 09 10 11 12 13 14 Average

Baseline 90.64 64.17 38.88 44.01 41.36 42.87 38.73 69.79 47.84 31.01 32.73 28.47 33.70 28.40 45.19

CMN 89.78 80.38 56.66 55.58 49.71 58.99 48.98 81.28 67.63 47.43 44.26 36.99 49.47 38.67 57.56

CMVN 90.72 78.98 59.67 59.95 57.74 62.17 54.23 81.49 66.73 49.32 47.49 43.62 50.51 44.39 60.50

HEQ 90.92 79.66 64.62 63.07 62.19 66.49 61.70 81.82 69.16 55.20 52.49 50.31 55.37 51.50 64.61

BCMVN 90.70 79.32 62.94 62.17 61.91 64.80 59.39 82.18 68.50 52.44 49.88 47.51 53.20 47.88 63.06

BCMVN-M 90.73 81.08 66.21 64.06 64.15 67.38 61.82 83.39 71.32 55.54 53.00 51.00 56.04 51.04 65.48

4. MODIFIED BCMVN (BCMVN-M)

The posterior estimate can be interpreted as a weighted combination

of the prior (µ0) and the ML estimate (µML). For instance, Eq. (12)

can be re-written as

µpost =
κ0

κ0 + T
µ0 +

T

κ0 + T
µML (19)

It can be seen that as T increases, more weight is given to the ML

estimate. In the limit T → ∞, the posterior estimate (µpost) would
converge to the ML estimate. As T increases, the amount of discrim-

inable information captured could decrease for BCMVN as the pos-

terior estimates would start converging towards the ML estimates. If

the weight of the prior information can be made higher compared

to the weight of the ML estimate, BCMVN would be able to pre-

serve more discriminable information (as discussed in section 3.1)

and could improve the recognition performance.

BCMVN can be modified to give more weight to the prior infor-

mation, by weighting T by γ such that 0 < γ < 1, i.e., Tw = T ×γ.

This modified Tw is then used in Eq. (12) and Eq. (13) instead of

T , to estimate the posterior parameters. We denote this approach of

modifying BCMVN as BCMVN-M.

The value of γ can be empirically chosen for different databases

based on the length of the utterances and the recognition perfor-

mance. Experiments were performed on Aurora2 and Aurora4

databases to study the behavior of BCMVN-M. T was modified

by varying γ from 0.1 to 1.0 in steps of 0.1. Table 2 shows the

recognition performance of the BCMVN-M for various γ values for

the databases. It can be observed that for long utterances (Aurora4)

higher performance is obtained with smaller γ = 0.2, and for short

utterances (Aurora2 Short) the optimal γ is at 0.5.

5. EXPERIMENTAL SETUP

Databases: The experiments are conducted on the Aurora2 [13]

and the Aurora4 [14] databases distributed by ELRA. The Aurora2

database comprises of connected spoken digits contaminated with

different types of noise at various SNR levels. In addition to com-

paring the performances of entire test data set, we do tests on short

utterances as well. Utterances that have a maximum of two spoken

digits are considered as short utterances. There are 70070 utterances

in the entire test data set inclusive of all noise conditions, out of

which 29799 are short utterances (one or two spoken digits).

The Aurora4 database is a continuous speech database built as

a dictation task on texts from the Wall Street Journal with a word

size of 5000. It comprises of 1 clean training, 7 types of additive

noise test cases (test 01 to test 07) and another 7 test cases with both

convolutional and additive noise.

Feature Extraction: HMM Toolkit (HTK) 3.4 is used for

experiments. Standard MFCC vectors are used for basic feature

parametrization. Short time Fourier transform of pre-emphasized

speech signal is obtained using 25ms window and shift size of

10ms. 23 Mel-scaled filter banks are used for smoothing the spec-

trum. 13-dimensional cepstral coefficients are used (inclusive of

C0).

CMN features are obtained by subtracting utterance-wise mean

value from each cepstral coefficient of the given utterance. CMVN

is also performed utterance-wise as in Eq. (3). HEQ features are

obtained by transforming the utterances to match clean speech cdf

as done in [5]. Clean speech cdf is obtained from all the training ut-

terances. BCMVN is implemented as described in section 2. Finally

for each experiment, 13 delta and 13 acceleration coefficients are

appended to get composite 39-dimensional MFCC vector per frame.

All four feature normalization techniques are applied on both train-

ing data and test data.

Acoustic Modeling: For the Aurora2 database, the acoustic

model is a left to right continuous density HMM with 16 states

and 3 diagonal covariance Gaussian mixtures per state. Word level

HMM model is used. Training is done using clean train utterances

from the Aurora2 dataset.

In the case of Aurora4 database, continuous cross-word tri-

phone models with 3 states are used. Each state is modeled using

16 Gaussian mixtures and silence state with 32 mixtures. A total of

3063 tied-states are built. Standard WSJ0 bi-gram language model

is used.

6. RESULTS

The performance of the BCMVN algorithm is compared against

CMN, CMVN and HEQ for both the Aurora2 and the Aurora4

databases. We also compare the performance on short utterances

(refer to section 5) in the Aurora2 database.

Table 3 compares the performances of the algorithms in the Au-

rora4 database. The recognition rate of the BCMVN is consistently

better than CMVN and CMN for the reasons discussed in section 3.

In addition, the performance of the BCMVN is comparable to HEQ.

BCMVN-M is reported with γ = 0.2 for which the optimal perfor-

mance was obtained (Table 2). It can be seen that BCMVN-M has

higher recognition performance compared to HEQ. BCMVN-M has

a relative WER reduction of 18.7%, 12.6% and 2.8% compared to

CMN, CMVN and HEQ respectively.
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Table 4: Recognition results on Aurora2 database

(a) % Accuracy - All Utterance

Baseline CMN CMVN HEQ BCMVN BCMVN-M

Clean 99.12 99.25 99.11 99.08 99.16 99.14

SNR20 95.49 97.35 96.99 97.66 97.71 97.88

SNR15 84.85 93.43 93.67 95.54 95.87 96.10

SNR10 60.39 80.62 85.76 90.14 90.82 91.15

SNR5 30.70 51.87 65.96 76.07 76.29 76.68

SNR0 13.24 24.30 32.63 45.32 45.46 46.95

SNR-5 8.15 12.03 12.64 16.70 18.99 19.20

Average 56.93 69.51 75.00 80.94 81.23 81.75

(b) % Accuracy - Short Utterance

Baseline CMN CMVN HEQ BCMVN BCMVN-M

Clean 99.47 99.49 99.22 98.98 99.33 99.31

SNR20 92.61 98.22 96.44 96.14 97.90 97.95

SNR15 72.98 95.91 92.40 93.37 96.58 96.91

SNR10 32.77 88.54 83.81 85.90 92.47 92.84

SNR5 -5.59 68.60 65.18 71.25 80.40 80.50

SNR0 -10.29 43.77 35.14 41.33 53.35 53.80

SNR-5 -2.58 22.12 14.44 15.59 26.80 24.84

Average 36.49 79.01 74.59 77.60 84.14 84.40

BCMVN-M All Utterance : γ = 0.3, BCMVN-M Short Utterance : γ = 0.5

For the Aurora2 database, it can be seen from Table 4a that the

BCMVN works better compared to CMN, CMVN and HEQ for all

utterances. For the short utterances (Table (4b)), the performance of

HEQ and CMVN decrease compared to CMN for the reasons dis-

cussed in section (1.1). BCMVN has higher recognition rate com-

pared to CMN, CMVN and HEQ for both short and all utterances, as

BCMVN preserves additional information (section 3) compared to

other normalization techniques. The BCMVN has relative WER re-

duction of 38.6% compared to CMVN and 30.4% compared to HEQ

in the case of short utterances. As in the case of Aurora4, BCMVN-

M further improves the performance of BCMVN for both short ut-

terances and all utterances. The optimal value for BCMVN-M for

all utterances was obtained with γ = 0.3 and for short utterances the
optimal performance was obtained with γ = 0.5 (Table 2).

7. CONCLUSION AND FUTURE WORK

In this paper we have presented a computationally efficient fea-

ture normalization technique, BCMVN - an improved version of

CMVN. BCMVN uses the posterior estimates of mean and vari-

ance in CMVN instead of the ML estimates. Our analysis indicate

that BCMVN captures more discriminable information compared

to CMVN. Experiments conducted on the Aurora2 and the Au-

rora4 databases show that BCMVN outperforms CMN, CMVN and

HEQ. BCMVN works for short utterances as well, whereas the per-

formances of HEQ and CMVN degrade. BCMVN has negligible

increase in the computational cost when compared to CMVN and

is significantly efficient compared to HEQ. The higher recognition

performance and computational efficiency makes BCMVN very

relevant for IVR-based applications where the utterances could be

short and noisy.

BCMVN is currently performed on conventional per-utterance

CMVN. This can be extended to segmental CMVN and this work is

in progress. Research is also being conducted to extend this tech-

nique to other normalization algorithms.
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