
AUTOMATIC MODEL COMPLEXITY CONTROL
FOR GENERALIZED VARIABLE PARAMETER HMMS

Rongfeng Su1,3, Xunying Liu2,1 & Lan Wang1,3

1Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
2Cambridge University Engineering Dept, Trumpington St., Cambridge, CB2 1PZ U.K.

3The Chinese University of Hong Kong, Hong Kong, China
rf.su@siat.ac.cn, xl207@cam.ac.uk, lan.wang@siat.ac.cn

ABSTRACT

An important task for speech recognition systems is to handle
the mismatch against a target environment introduced by acoustic
factors such as variable ambient noise. To address this issue, it is
possible to explicitly approximate the continuous trajectory of opti-
mal, well matched model parameters against the varying noise using,
for example, using generalized variable parameter HMMs (GVP-
HMM). In order to improve the generalization and computational ef-
ficiency of conventional GVP-HMMs, this paper investigates a novel
model complexity control method for GVP-HMMs. The optimal
polynomial degrees of Gaussian mean, variance and model space
linear transform trajectories are automatically determined at local
level. Significant error rate reductions of 20% and 28% relative were
obtained over the multi-style training baseline systems on Aurora 2
and a medium vocabulary Mandarin Chinese speech recognition task
respectively. Consistent performance improvements and model size
compression of 57% relative were also obtained over the baseline
GVP-HMM systems using a uniformly assigned polynomial degree.
Index Terms: model complexity control, generalized variable pa-
rameter HMM, robust speech recognition

1. INTRODUCTION

An important task for automatic speech recognition (ASR) systems
is to robustly handle the mismatch against a target environment intro-
duced by time-varying factors such as environment noise. To handle
this issue, a range of model based techniques can be used: multi-
style training [19] exploits the implicit modelling power of mixture
models, and more recently deep neural networks [29], to obtain a
good generalization to unseen noise conditions; noise adaptive train-
ing [12, 13] structurally models the variability introduced to the ob-
served speech signals by environment noise and other factors; uncer-
tainty decoding [8, 24, 9, 15], propagates the uncertainty that varies
with the noise represented by, for example, a conditional distribution
of the corrupted speech, into the recognizer. In addition to these ap-
proaches, it is also possible to explicitly approximate the continuous
trajectories of optimal model parameters against the varying noise
condition using a polynomial function [10, 6, 33, 18], for example, as
in multiple regression HMMs (MR-HMM) [10] and variable param-
eter HMMs (VP-HMM) [6, 33]. In order to reduce the interpolation
cost incurred at Gaussian component level when mean or variance

This work is supported by National Natural Science Foundation of China
(NSFC 61135003), National Fundamental Research Grant of Science and
Technology (973 Project: 2013CB329305) ShenZhen Fundamental Research
Program JC01005280621A, JCYJ20130401170306806.

trajectory modelling are used, an extension to both MR-HMMs and
VP-HMMs, generalized variable parameter HMMs (GVP-HMMs),
were proposed in [3, 4, 16, 17]. In addition to Gaussian parameters,
GVP-HMMs can also provide a more compact trajectory modelling
for model space tied linear transformations, and thus provide a flex-
ible form of parameter trajectory modelling.

An important issue associated with MR-HMMs, VP-HMMs and
GVP-HMMs is the appropriate polynomial degree to use. In order to
reduce the oscillation occurring when higher degree polynomials are
used [27], lower degree polynomials of the same order, for example,
the second order, were used in previous research [10, 6, 3, 4, 16, 17].
However, there are two issues with this approach. First, the variabil-
ity introduced by ambient noise manifests itself in a locally varying
fashion on different dimensions in the acoustic space. For example,
lower order cepstral parameters, which contain richer information of
speech than higher order cepstras, are more prone to the distortion
introduced by environment noise. A uniformly assigned polynomial
degree can cause an under-fitting for the lower order cepstras, while
at the same time an over-fitting for the higher order cepstras that are
more related to noise in nature and thus more invariant to the distor-
tion. Such lack of modelling flexibility can lead to a poor generaliza-
tion to unseen noise conditions. Secondly, over-fitting higher degree
polynomials increases the interpolation cost during recognition.

To address these issues, this paper investigates a novel model
complexity control method for GVP-HMMs. The optimal polyno-
mial degrees of Gaussian mean, variance and model space linear
transform trajectories are automatically determined at local level.
The rest of the paper is organized as follows. The GVP-HMM frame-
work is reviewed in section 2. An efficient Bayesian model com-
plexity control criterion is presented in section 3. The detailed com-
plexity control algorithm for GVP-HMMs is proposed in section 4.
In section 5 various complexity controlled GVP-HMM systems are
evaluated on Aurora 2 and a medium vocabulary Mandarin speech
recognition task. Section 6 is the conclusion and future research.

2. GENERALIZED VARIABLE PARAMETER HMMS

Generalized variable parameter HMMs (GVP-HMMs) [3, 4, 16, 17]
explicitly model the trajectory of optimal acoustic parameters that
vary with respect to the underlying noise condition. The type of
parameter trajectories are not restricted to those of means and co-
variances of conventional tied mixture HMMs. Other more compact
forms of parameters, such as model or feature space linear transfor-
mations [14, 11], may also be considered. In this paper, trajectories
of Gaussian mean transforms are modelled. For a D dimensional
observation ot emitted from Gaussian mixture component m, as-
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suming P th order polynomials are used, this is given by

o(t) ∼ p
(
o(t);µ(m)(vt),Σ

(m)(vt),W
(rm)(vt)

)
(1)

where v�
t is a (P + 1) dimensional Vandermonde vector [2], such

that vt,p = vp−1
t . vt is an auxiliary feature, and in this paper, the

speech-noise-ratio (SNR) condition [25] at frame t. W (rm)(vt) is
the (D+1)×D mean transform that component m is assigned to at
frame t. µ(m)(·), Σ(m)(·) and W (rm)(·) are the P th order mean,
covariance and mean transform trajectory polynomials of component
m respectively. Assuming diagonal covariances are used, then the
trajectories of the ith dimension of the mean and variance, and the
transform element in row i and column j, are

µ
(m)
i (vt) = vt · c(µ

(m)
i )

σ
(m)
i,i (vt) = σ̌

(m)
i,i vt · c(σ

(m)
i,i )

w
(rm)
i,j (vt) = vt · c(w

(rm)
i,j ) (2)

where c(·) is a (P + 1) dimensional polynomial coefficient vector
such that c(·)p = c

(·)
p−1, and c

(·)
p−1 the (p − 1)th order polynomial

coefficient of the parameter trajectory being considered. σ̌
(m)
i,i is

the clean speech based variance estimate. By definition, the mean
transform polynomials are modelled on top of the component mean
trajectories, thus the final updated mean vector of component m at
time instance t is computed as

µ̃(m)(vt) = W (rm)(vt)ζ
(m)
t (3)

where the (D + 1) dimensional extended mean vector trajectory
ζ
(m)
t = [µ(m)(vt), 1]

�.
GVP-HMMs share the same instantaneous adaptation power as

standard MR-HMMs and VP-HMMs. For any noise characteristics
as indicated by the auxiliary feature, e.g. the SNR level as consid-
ered in this work, present or unseen in the training data, GVP-HMMs
can instantly produce the matching Gaussian component and mean
transform parameters by-design without requiring any multi-pass de-
coding and adaptation process. GVP-HMMs also provide a more
compact and flexible form of parameter trajectory modelling. For
example, when only limited amounts of noisy training data is avail-
able, to ensure all polynomial coefficients are robustly estimated,
only the trajectories associated with the elements of a globally tied
mean transform can be considered. When large amounts of noisy
training data is used, a more refined modelling resolution can also be
obtained by increasing the number of tied transformations, or mod-
elling the trajectories of multiple parameter types simultaneously.
The use of locally optimized polynomial degree for different model
parameters is expected to further improve their modelling flexibility
and generalization.

3. MODEL COMPLEXITY CONTROL

A standard problem in speech recognition, and statistical modelling
in general, is how to select a model structure, M̂, that general-
izes well to unseen data, from a set of candidate model structures
{M}. In Bayesian learning, when no prior knowledge over indi-
vidual model structures is available, the optimal model structure or
complexity, is determined by maximizing the evidence integral,

p(O|W,M) =

∫
p(O|λ,W,M)p(λ|M)dλ (4)

where λ denotes a parameterization of M, O = {o1, ...,oT } is a
training data set of T frames and W the reference transcription.

For standard HMMs, MR-HMMs, VP-HMMs and GVP-HMMs,
it is computationally intractable to directly compute the evidence
integral in equation (4). To handle this problem, a variety of ap-
proximation schemes can be used: a first order asymptotic expan-
sion based Bayesian Information Criterion (BIC) [28], a second or-
der asymptotic expansion based Laplace’s approximation [31, 21,
22, 23], variational approximation [30], and Markov Chain Monte
Carlo (MCMC) based sampling schemes [26]. Among these, BIC
(or equivalently MDL [1]) is the most widely used technique. It
is expressed in terms of a penalized log likelihood evaluated at the
maximum likelihood (ML) estimate of model parameters λ̂. The
model selection is based on the following approximation

log p(O|W,M) ≈ log p(O|λ̂,W,M)− ρ · k
2
log T (5)

where k denotes the number of free parameters in M and ρ is a
penalization coefficient which may be tuned for the specific task [5,
20]. When ρ = 1, BIC was shown to be a first order asymptotic
expansion of the evidence integral [28].

One issue with the BIC based complexity control of equation
(5) is that the log-likelihood for each model structure is required.
For HMMs and their variants such as GVP-HMMs this can be com-
putationally expensive. One method to avoid this is to derive a lower
bound that may be assumed to be applicable for multiple different
structures. Let λ̃ denote the current parameterization for M. Using
the EM algorithm the following inequality may be derived [7]

log p(O|λ,W,M) ≥ L(M)
ml (λ, λ̃)

= log p(O|λ̃,W,M) +Q(M)
ml (λ, λ̃)−Q(M)

ml (λ̃, λ̃) (6)

where the auxiliary function, Q(M)
ml (λ, λ̃), is given by

Q(M)
ml (λ, λ̃) =

∑
m,t

γm(t) log p(ot|θt = m,λ,M). (7)

θt = m indicates that an acoustic observation ot was generated by
a hidden state m, and the hidden state posterior γm(t) = P (θt =

m|O,W, λ̃,M).
Accumulating the above statistics for all possible systems is in-

feasible. To handle this problem, a range of model structures can
use the same set of statistics generated using a single system. This
allows the lower bound in (6) to be efficiently computed [21, 22, 23].
For example, when determining the appropriate order of a Gaussian
component mean’s trajectory polynomial on a particular dimension
in equation (2) for an GVP-HMM system, the sufficient statistics
{γm(t)} to be used for a range of different polynomial orders to
select can be derived from a common baseline HMM system, or a
conventional GVP-HMM system that uses a globally assigned poly-
nomial order across all dimensions for every Gaussian mean vector
in the system. In the same fashion, sufficient statistics can also be
shared when determining the degrees of Gaussian’s variance or mean
transformation trajectory polynomials in equation (2).

The only term in the lower bound of equation (6) dependent
on the model parameters, λ, is the auxiliary function Q(M)

ml (λ, λ̃).
When multiple model structures use the same set of statistics, the
rank ordering derived from the marginalization of L(M)

ml (λ, λ̃) is
equivalent to that of Q(M)

ml (λ, λ̃) 1. Under these conditions, the op-

1When multiple sets of statistics are used, the other terms in the lower
bound cannot be ignored and must be computed.
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timal model complexity is finally determined by

M̂ = argmax
M

{
Q(M)

ml (λ̂, λ̃)− ρ · k
2
log T

}
. (8)

4. MODEL COMPLEXITY CONTROL FOR GVP-HMMS

When using the lower bound based BIC metric of equation (8) for
the complexity control of GVP-HMMs, the computation of the ML
auxiliary function of equation (7) is required. For the form of GVP-
HMMs of equation (1) introduced in section 2, the associated ML
auxiliary function is given by [7, 3, 4, 17],

QGVP
ml (λ, λ̃) =

∑
m,t

γm(t) log p
(
o(t);µ(m)(vt),

Σ(m)(vt),W
(rm)(vt)

)
(9)

where γm(t) is the posterior probability of frame ot being emitted
from component m at a time instance t.

Combining the above with equations (1) and (2), the correspond-
ing parts of the above auxiliary function associated with the polyno-
mial coefficient vectors of the Gaussian mean, variance scaling and
mean transform element trajectories respectively can be re-arranged
into convex quadratic forms,

Q(µ
(m)
i )

ml (λ, λ̃) = −1

2
c(µ

(m)
i )�U(µ

(m)
i )c(µ

(m)
i )

+k(µ
(m)
i )c(µ

(m)
i ) + const

Q(σ
(m)
i,i )

ml (λ, λ̃) = −1

2
c(σ

(m)
i )�U(σ

(m)
i )c(σ

(m)
i )

+k(σ
(m)
i )c(σ

(m)
i ) + const′

Q(w
(rm)
i )

ml (λ, λ̃) = −1

2
c(w

(rm)
i )�U(w

(rm)
i )c(w

(rm)
i )

+k(w
(rm)
i )c(w

(rm)
i ) + const′′ (10)

where the constant terms independent of the coefficient vectors c(·)

can be ignored.
Setting the above gradients against the respective polynomial

coefficient vectors to zero, the following ML solutions of the co-
efficient vectors can then be derived

ĉ(µ
(m)
i ) = U(µ

(m)
i )−1k(µ

(m)
i )

ĉ(σ
(m)
i,i ) = U(σ

(m)
i,i )−1k(σ

(m)
i,i )

ĉ(w
(rm)
i ) = U(w

(rm)
i )−1k(w

(rm)
i ) (11)

where c(w
(rm)
i ) is a (D+1)×(P+1) dimensional meta polynomial

coefficient vector spanning across all elements of row i of transform
W (rm), and the sufficient statistics are

U(µ
(m)
i ) =

∑
t

γm(t)σ
(m)−1
i,i (vt)v

�
t vt

k(µ
(m)
i ) =

∑
t

γm(t)σ
(m)−1
i,i (vt)o

(t)
i v�

t

U(σ
(m)
i,i ) =

∑
t

γm(t)σ̌
(m)
i,i v�

t vt

k(σ
(m)
i,i ) =

∑
t

γm(t)
(
o
(t)
i − µ

(m)
i (vt)

)2

v�
t (12)

U(w
(rm)
i ) is a [(D + 1) × (P + 1)] × [(D + 1) × (P + 1)] meta

Vandermonde matrix, and k(w
(rm)
i ) a (D+1)×(P+1) dimensional

meta regression target vector. The sub-matrices and sub-vectors as-
sociated with transform element w(rm)

i,j are

U(w
(rm)
i,j ) =

[ ∑
m∈rm,t

γm(t)σ
(m)−1
i,i (vt)ζ

(m)
t,j ζ

(m)
t,1 v�

t vt ,

...,∑
m∈rm,t

γm(t)σ
(m)−1
i,i (vt)ζ

(m)
t,j ζ

(m)
t,i v�

t vt,

...,∑
m∈rm,t

γm(t)σ
(m)−1
i,i (vt)ζ

(m)
t,j ζ

(m)
t,D+1v

�
t vt

]

k(w
(rm)
i,j ) =

∑
m∈rm,t

γm(t)σ
(m)−1
i,i (vt)ζ

(m)
t,j o

(t)
i v�

t (13)

where the (D + 1) dimensional extended mean vector trajectory is
given by ζ

(m)
t = [µ(m)(vt), 1]

�, as previously defined in section 2.
When determining the optimal order for a particular polyno-

mial associated with the ith dimension of the mth Gaussian com-
ponent in the system, µ(m)

i (·), for example, the above statistics in
equations (12) and (13) are accumulated for the highest order Pmax

being considered. The corresponding statistics for any other order

0 ≤ P (µ
(m)
i ) < Pmax can be derived by taking the associated sub-

matrices or subvectors from the full matrix statistics accumulated
for Pmax. Using these statistics and the ML solutions in equation
(11), the ML auxiliary function associated with µ

(m)
i (·) in equation

(10), can be efficiently evaluated at the optimum for each candidate
polynomial degree. The number of free parameters (polynomial co-

efficients) in the BIC metric of equation (8) is k = P (µ
(m)
i ) + 1.

The number of frame samples for the current Gaussian is computed
as the component level occupancy counts T (m) =

∑
t,m γm(t). An

overview of this algorithm is shown in figure 1.

Fig. 1. Complexity control of GVP-HMM mean polynomials using
BIC locally for each dimension of all Gaussian components.

The same approach can also be used to determine the optimal or-
der of Gaussian variance and mean transform polynomials, by eval-
uating the respective auxiliary functions to compute the BIC metric
in equation (8).
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Poly. Types #PolyCoef (Aurora2) #PolyCoef (In-Car)
System mean var tran base BIC(ρ = 1/2/3) base BIC(ρ = 1/2/3)
mean

√ × × 120K 67.4K/58.1K/53.6K 3.66M 1.97M/1.77M/1.67M
mv

√ √ × 240K 119K/105.6K/99.1K 7.32M 3.79M/3.47M/3.3M
tran2 × × √

9.4K 8.68K/8.44K/8.16K 10.8K 7.22K/7.18K/7.18K
tran8 × × √

37.4K 32.56K/32.16K/31.56K - -
tran256 × × √

- - 1.39M 0.98M/0.97M/0.97M
mvt2

√ √ √
249K 126.2K/112K/106K 7.32M 3.79M/3.47M/3.3M

Table 1. Description of various GVP-HMMs: parameter polynomial types and the number of polynomial coefficients.

5. EXPERIMENTAL RESULTS

In this section, complexity controlled GVP-HMM systems are eval-
uated on two tasks: Aurora2 and a medium vocabulary Mandarin
Chinese In-car navigation command recognition task.

5.1. Description of GVP-HMM Variant Systems

As discussed in section 2, in order to adjust the trade-off between
modelling resolution, robustness in estimation and computational ef-
ficiency, a wide rage of GVP-HMM configurations may be consid-
ered to suit different purposes. The description of these GVP-HMM
variant systems’ configurations and the number of polynomial coef-
ficients used for the standard Aurora2 task and a Mandarin Chinese
In-car navigation command recognition system are shown in table 1.
Two standard VP-HMM configurations, which allow trajectory mod-
elling of Gaussian component means, and optionally variances, are
shown in the first two lines of the table, as “mean” and “mv” respec-
tively. In the 2nd section (line 3 to 5) of table 1, three GVP-HMM
systems modelling the polynomial trajectories of 2, 8 or 256 mean
transforms are shown as “tran2”, “tran8” and “tran256”. Finally, the
most complex GVP-HMM system that uses trajectory modelling for
Gaussian means and variances, plus 2 model space transforms are
shown as “mvt2” in the bottom section of the table. The number of
polynomial coefficients for various GVP-HMM systems are shown
in the last 4 columns of table 1 for the Aurora 2 and In-Car tasks
respectively. All the baseline GVP-HMMs using 2nd degree poly-
nomials for all parameter trajectories are shown as “base” in the 5th
and 7th columns. The number of polynomial coefficients of BIC
based complexity controlled GVP-HMM systems with varying set-
tings, ρ = 1, 2, 3, are given in the 6th and 8th columns of table 1. For
all polynomials the range of candidate degree to consider is [0, 5].

5.2. Experiments on Aurora 2

The Aurora2 speaker independent digit sequence recognition
database contains 4 noisy conditions: subway, babble, car and exhi-
bition. A total of 420 utterances from four different SNR conditions
(-5dB, 5dB, 15dB, 25dB) were used to train both the baseline multi-
style HMMs and various GVP-HMM systems. A total of 1000 ut-
terances selected from the car noise environment at 0dB, 5dB, 10dB,
15dB and 20dB SNR were used for word error rate (WER) eval-
uation. 39 dimensional MFCC plus log energy features including
their 1st and 2nd order differentials were used. Performance of the
baseline multi-style HMM and GVP-HMM systems, as described
in table 1 are shown in table 2. Modelling the trajectories of all
three parameter types, including Gaussian means, variances and two
shared mean transforms, gave the best performance for the baseline
GVP-HMMs, as shown in the last line of table 2. Using this “mvt2”

system, average WER reductions of 0.79%-0.81% absolute (9% rel-
ative) across all SNR conditions were obtained over the “mcond”
multi-style baseline, and the mean only VP-HMM/GVP-HMM sys-
tem shown as “mean” in table 2.

System 0dB 5dB 10dB 15dB 20dB Ave
clean.base 75.33 41.42 15.63 6.14 3.14 28.34
mcond.base 22.88 9.42 4.29 3.58 2.78 8.95
mean 25.63 9.52 4.32 3.10 2.26 8.97
mv 23.16 9.12 4.30 3.09 2.28 8.39
tran2 23.64 8.77 4.05 2.89 2.32 8.33
tran8 21.73 8.17 4.14 3.37 2.17 7.92
mvt2 22.34 8.96 4.18 3.04 2.29 8.16

Table 2. WER performance of baseline HMM and GVP-HMM sys-
tems using a uniform parameter polynomial degree on Aurora 2

ComCtrl System 0dB 5dB 10dB 15dB 20dB Ave

BIC
(ρ = 1)

mean 23.60 9.01 4.29 2.92 2.38 8.44
mv 19.03 8.38 4.08 2.95 2.35 7.36
tran2 22.60 8.62 4.17 2.86 2.38 8.13
tran8 20.95 8.14 4.17 3.37 2.11 7.75
mvt2 18.85 8.23 4.02 3.22 2.32 7.33

BIC
(ρ = 2)

mean 23.60 8.92 4.23 3.01 2.35 8.42
mv 18.71 8.11 4.14 2.98 2.62 7.31
tran2 22.45 8.56 4.08 2.89 2.38 8.07
tran8 20.71 7.99 4.02 3.40 2.11 7.65
mvt2 18.38 7.81 4.11 3.13 2.71 7.23

BIC
(ρ = 3)

mean 23.12 9.19 3.99 3.01 2.32 8.33
mv 18.62 7.84 3.93 2.95 2.62 7.19
tran2 22.80 8.59 4.05 2.92 4.41 8.15
tran8 20.62 7.99 3.99 3.37 2.11 7.62
mvt2 18.68 7.87 4.08 3.13 2.71 7.30

Table 3. WER performance of BIC optimized GVP-HMM systems
with a locally varying polynomial degree on Aurora 2

The performance of a comparable set of GVP-HMMs with a lo-
cally varying polynomial degree are shown in table 3. These were
derived using the BIC based complexity control method described
in sections 3 and 4. For both the standard BIC penalty setting
ρ = 1 and more aggressive configurations ρ = 2 or 3, complex-
ity controlled GVP-HMMs were found to consistently outperform
their comparable GVP-HMM baselines in table 2. For example,
the complexity controlled “mv” system on average outperformed the
baseline GVP-HMM system using a uniform 2nd degree for all poly-
nomials in table 2 by 1.03%-1.20% absolute (12%-14% relative) in
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error rate. The best performance was obtained using the BIC com-
plexity controlled “mv” system with ρ = 3, as is shown in the 2nd
line in the bottom section of table 3. This GVP-HMM “mv” sys-
tem outperformed the the multi-style baseline “mcond.base” system
shown in the 2nd line of table 2 by 1.76% absolute (20% relative).
The setting of the BIC penalty ρ was also found to have only a small
impact on WER performance in table 3.
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Fig. 2. Avg. polynomial degree P over feature dimensions in com-
plexity controlled GVP-HMM “mv” system using BIC (ρ = 1.0)

A consistent reduction in model complexity was also obtained
using the BIC complexity controlled GVP-HMM systems over the
comparable GVP-HMM baselines. This is shown in the 5th and 6th
columns of table 1. For example, using the BIC complexity con-
trolled “mv” system with ρ = 3 (shown in the last line, 6th column
in table 1), the number of polynomial coefficients was reduced by
57% relative from 249K in the baseline GVP-HMM system (shown
in the last line, 5th column in table 1) down to 106K. As discussed
in section 1, a locally varying polynomial degree is preferred as the
variability introduced by noise manifests itself on a dimension by
dimension basis in the acoustic space. This is shown in figure 2 for
the BIC complexity controlled GVP-HMM “mv” system (ρ = 1.0)
across different dimensions in the 39 dimensional feature space con-
structed by augmenting 1st to 12th order MFCC parameters plus log
energy augmented with their 1st and 2nd order differentials. For both
the static and differential features, a general trend can be found that
lower order cepstras of up to the 3rd order and the log energy, which
contain more information of speech, tend to use more complex poly-
nomial trajectories than higher order cepstras.

5.3. Experiments on Mandarin In-Car Task

The medium vocabulary Mandarin In-Car navigation command
recognition system was developed using 25 hours of clean training
data. A multi-style training data set was constructed by artificially
corrupting the clean speech data with added car engine noise. Noise
corrupted speech data generated under six sentence level SNR condi-
tions: 0dB, 4dB, 8dB, 12dB, 16dB and 20dB, were used in training,
while a corrupted 5 hour test set consists of five sentence level SNR
conditions: 2dB, 6dB, 10dB, 14dB, and 18dB, was used for charac-
ter error rate (CER) evaluation. The baseline HMM acoustic models

were ML trained using HTK [32] on 42-dimensional HLDA pro-
jected PLP features augmented with smoothed pitch parameters. De-
cision tree clustered cross-word tonal triphones HMMs were used. A
total of 2.4k tied states with 12 components per state were used. A
5k word list and a tri-gram language model was used in decoding.

System 2dB 6dB 10dB 14dB 18dB Ave
mcond.base 44.15 27.56 20.08 17.76 17.51 25.41
mean 39.95 27.31 21.62 17.87 16.84 24.72
mv 34.22 23.66 20.24 18.47 17.98 22.91
tran2 34.62 20.72 17.12 16.09 14.51 20.61
tran256 32.59 19.85 16.95 16.28 16.47 20.43
mvt2 31.05 21.87 17.88 17.31 16.62 20.95

Table 4. CER performance of baseline HMM and GVP-HMM sys-
tems using a uniform parameter polynomial degree on In-Car task

ComCtrl System 2dB 6dB 10dB 14dB 18dB Ave

BIC
(ρ = 1)

mean 32.66 22.76 16.24 13.35 13.28 19.66
mv 26.73 19.40 15.82 14.69 15.68 18.46
tran2 33.43 20.32 16.61 15.57 15.90 20.37
tran256 31.13 19.45 15.68 14.87 14.32 19.09
mvt2 26.73 19.40 15.65 14.89 15.81 18.50

BIC
(ρ = 2)

mean 32.65 22.64 16.19 13.37 13.14 19.60
mv 26.88 19.08 15.45 14.37 15.66 18.29
tran2 31.45 20.32 16.61 15.57 15.90 19.97
tran256 30.96 19.55 15.70 14.87 14.40 19.10
mvt2 26.51 19.25 15.51 14.76 15.68 18.34

BIC
(ρ = 3)

mean 32.71 22.74 15.89 13.40 13.24 19.60
mv 27.09 19.25 15.31 14.47 15.74 18.37
tran2 31.45 20.32 16.61 15.57 15.90 19.97
tran256 31.01 19.55 15.66 14.86 14.37 19.19
mvt2 26.46 19.21 15.50 14.79 15.51 18.29

Table 5. CER performance of BIC optimized GVP-HMM systems
with a locally varying polynomial degree on Mandarin In-Car Task

A set of experiments similar to those for Aurora 2 presented in
table 3 were conducted on the In-Car data. Performance of the base-
line multi-style and GVP-HMM systems, are shown in table 4. Con-
sistent with the trend found in table 3, every BIC complexity con-
trolled GVP-HMM system in table 5 outperformed its comparable
GVP-HMM baseline in table 4. For example, the complexity con-
trolled model space transform based GVP-HMM system, “tran256”,
using a matrix row level varying polynomial degree (4th, 9th and
14th lines in table 5) gave an average CER reduction of 5.7% abso-
lute (23% relative) over the baseline “tran256” GVP-HMM system
(5th line in table 4), and a 30% relative reduction in model com-
plexity, as is shown in the 5th line, 7th and 8th columns in table 1.
The two more complex BIC GVP-HMM systems, “mv” (ρ = 2) and
“mvt2” (ρ = 3), both outperformed the multi-style trained baseline
“mcond.base” system in the 1st line of table 4 by 7.12% absolute
(28% relative). They gave the lowest average error rate among all
GVP-HMM systems in table 5, and a 52%-55% relative reduction in
the number of polynomial coefficients against their respective base-
lines, as is shown the 2nd and bottom line, 7th and 8th columns in
table 1.
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6. CONCLUSION

An efficient BIC based model complexity control technique was in-
vestigated for GVP-HMMs in this paper. The optimal polynomial
degrees of Gaussian mean, variance and mean transform trajectories
were automatically determined at local level. The proposed tech-
nique was shown to improve both the generalization and computa-
tional efficiency of GVP-HMM based acoustic models. Significant
error rate reductions of 20%-28% relative obtained on Aurora 2 and
a medium vocabulary Mandarin speech recognition task suggest the
proposed method may be useful for speech recognition. Future re-
search will focus on discriminative training and modelling multiple
sources of acoustic variability.
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