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ABSTRACT

This paper is concerned with the problem of building acoustic mod-
els for automatic speech recognition (ASR) using speech data from
multiple languages. Techniques for multi-lingual ASR are developed
in the context of the subspace Gaussian mixture model (SGMM)[2,
3]. Multi-lingual SGMM based ASR systems have been config-
ured with shared subspace parameters trained from multiple lan-
guages but with distinct language dependent phonetic contexts and
states[11, 12]. First, an approach for sharing state-level target lan-
guage and foreign language SGMM parameters is described. Sec-
ond, semi-tied covariance transformations are applied as an alterna-
tive to full-covariance Gaussians to make acoustic model training
less sensitive to issues of insufficient training data. These techniques
are applied to Hindi and Marathi language data obtained for an agri-
cultural commodities dialog task in multiple Indian languages.

Index Terms— Low-resource speech recognition, Subspace
Methods, Multi-lingual speech recognition, Semi-tied Covariances,
Indian languages

1. INTRODUCTION

There has been a great deal of interest in the problem of rapid con-
figuration of automatic speech recognition (ASR) systems in under-
resourced languages [4, 5, 6]. The scenario that is of particular inter-
est in this paper is one where a voice enabled service has been devel-
oped for a given task domain in one language, and there is a need to
develop a service for the same domain in another language [7, 8, 9].
Of course, it would be desirable to leverage as many resources as
possible from the system developed for a given language to use in
developing a system in a new language. The project,“Speech-based
access for agricultural commodity prices in six Indian languages”,
sponsored by the Government of India, is a good example of where
this resource sharing would be desirable [10]. The project aims to
develop a nation-wide spoken dialogue system that allows Indian
farmers to obtain prices of daily agricultural commodities in multi-
ple languages. The work described in this paper focuses on minimiz-
ing the need for acoustic training data in configuring an ASR system
in a new language for the Indian commodities dialog task. Given a
reasonably large amount of Marathi language speech data collected
for this domain, the goal is to leverage this data for configuring an
ASR system in the linguistically similar Hindi language with only a
very small amount of Hindi language speech data.

There are two techniques that are investigated to achieve this
goal. Both techniques are applied in the context of subspace
Gaussian mixture model (SGMM) based ASR [2]. The SGMM
parametrization is summarized in Section 2 as consisting of state
level acoustic probabilities that are formed from multiple subspace
projections. Multilingual SGMM based ASR systems have been
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configured with shared subspace parameters trained from multiple
languages but having distinct language dependent phonetic contexts
and states [11, 12, 2]. The general architecture of these multilingual
systems is described in Section 2.

The first technique investigated here involves sharing state level
target language (Hindi) and foreign language (Marathi) SGMM pa-
rameters to improve speech recognition performance in the Hindi
language. A procedure for identifying Marathi language states that
are “similar” to a given target language state, the process of shar-
ing these states, and weighting them appropriately are discussed in
Section 4. The issue of sharing state-level SGMM parameters is re-
lated to previous work presented by Qian et al. in [14]. Their work
involved “borrowing” speech segments from a well-resourced for-
eign language that were acoustically “similar” to segments in a tar-
get language. The acoustic similarity of segments was determined
by using a distance measure between the target language and for-
eign language state-dependent parameters that had been decoded for
those segments. This “borrowed” data was then used to update the
state-dependent parameters in the target language. The approach
presented here differs from this previous work in that it involves
borrowing model parameters from the non-target language model to
improve performance in the target language rather than borrowing
foreign language data.

The second technique investigated involves reducing the num-
ber of shared parameters in the SGMM in an effort to make acoustic
model training less sensitive to issues of insufficient training data.
Semi-tied covariance (STC) transformations are used to replace the
shared full covariance matrices generally used in SGMMs. Section 5
describes how the use of STC transformations is adapted from the
well known approach for STC estimation in continuous density hid-
den Markov models (CDHMMs) [15]. The impact of STC transfor-
mations on ASR performance and model size is also presented in
Section 5.

The work presented in this paper represents an extension of pre-
vious work in leveraging Marathi data in a multilingual SGMM ar-
chitecture to improve ASR performance in Hindi for the Indian agri-
cultural dialog domain [1]. A review of this previous work and a
summary of the task domain is provided in Section 3. The cor-
pus used for training and evaluation consisted of narrowband speech
collected from actual rural users under varying background and en-
vironmental conditions and over varying mobile handsets and chan-
nels. It was shown in [1] that the multilingual SGMM system pro-
vided a 14.5 percent relative reduction in word error rate compared
to the best monolingual SGMM or CDHMM systems. One partic-
ularly interesting aspect of the multilingual scenario investigated in
this work is the linguistic similarity of the two languages, Marathi
and Hindi. It is believed that because of their similarity, this lan-
guage pair is an ideal case for the study of multilingual acoustic
modeling.
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2. SUBSPACE GAUSSIAN MIXTURE MODEL FOR
MULTI-LINGUAL SPEECH RECOGNITION

This section provides a brief description of the implementation used
in this paper for SGMM acoustic modelling [2] in multi-lingual
speech recognition. The description of the SGMM in Section 2.1
follows the work of Rose et al.[3]. Section 2.2 describes the SGMM
parametrization for multi-lingual speech recognition.

2.1. The subspace Gaussian mixture model
For an ASR system configured with J states, the observation density
for a givenD dimensional feature vector, x(t) for a state j ∈ 1 . . . J
can be written as,

p(x(t)|j) =
I∑

i=1

wjiN (x(t)|µji,Σi), (1)

where I full-covariance Gaussians are shared between J states. The
state dependent mean vector, µji, for state j is a projection into the
ith subspace defined by a linear subspace projection matrixMi,

µji =Mivj . (2)

In Eq(2), vj is the state projection vector for state j. The subspace
projection matrix Mi is of dimension D × S where S is the di-
mension of the state projection vector vj for state j. In this work,
S = D. The state specific weights in Eq.(2), are obtained from the
state projection vector vj using a log-linear model,

wji =
expwT

i vj∑I
i
′
=1

expwT

i
′ vj

. (3)

In addition, to add more flexibility to the SGMM parametrization at
the state level, the concept of substates is adopted where the distri-
bution of a state can be represented by more than one vector vjm,
where m is the substate index. This “substate” distribution is again
a mixture of Gaussians. The state distribution is then a mixture of
substate distributions which are defined as follows:

p(x(t)|j) =
Mj∑
m=1

cjm

I∑
i=1

wjmiN (x(t)|µjmi,Σi), (4)

where cjm is the relative weight of substate m in state j and the
means and mixture weights are obtained from substate projection
vectors, vjm:

µjmi =Mivjm, (5)

wjmi =
expwT

i vjm∑I
i
′
=1

expwT

i
′ vjm

. (6)

2.2. SGMM for Multi-lingual ASR
The SGMM for multi-lingual ASR was first proposed by Burget et
al[11]. From the description of the SGMM formalism in Section
2.1, it is clear that the context-dependent HMM states “share” pa-
rameters with only a small number of parameters attached to each
state. The parametrization for multi-lingual SGMM training is de-
scribed in Figure 1. The figure shows a separate set of sub-word
units PH

1 , . . . , P
H
K for Hindi and PM

1 , . . . , PM
L for Marathi. This

gives rise to separate sets of context-dependent HMM states for
each language, and hence separate sets of language specific state-
projection vectors namely vH

1 , . . . ,v
H
R for Hindi and vM

1 , . . . ,vM
S

for Marathi. The figure shows that although language-specific con-
text dependent states are maintained, all of these context-dependent
states share parameters ,Mi,wi and Σi.

For multi-lingual acoustic modelling, the shared parameters Mi,
wi and Σi, are trained by pooling data from multiple languages.
Separate phone sets are maintained by adding a language specific
tag to each phone and thereby each clustered HMM state. Each state
projection vector vj , which is attached to a clustered state, is then
trained only with data specific to each language.

Fig. 1. Parametrization of the Multi-lingual SGMM

����������	�
��������

�
�
��

�
��

�

���	�
������	�����

�������
������	�����

���
�
��� ��

�

�
� ��� ��

�

�
���
�
��� ��

�

�
� ��� ��

	

�

���	�
�����������������

������

�������
�����������������

������


 ��
�
��� � 


�

�
� ��� �


�

�


 ��
�
��� � 


�

�
� ��� � 




�

Table 1. Speech data used for experimental study
Amount of data (Hrs.) Characteristics

Language Train Test Words Phones
Hindi 1.22 1.24 119 54

Marathi 7.94 2.5 551 60

3. HINDI AND MARATHI SYSTEMS

This section provides a description of the task domain and the data
set, CDHMM mono-lingual systems, SGMM mono-lingual systems,
and the multi-lingual SGMM system. The material in this section is
an extension of earlier work appearing in[1, 12].

3.1. Agricultural Commodities Task Domain
Table 1 provides a summary of the subset of the Indian agricultural
commodities spoken dialog corpus introduced in Section 1.The first
two columns of Table 1 display the number of hours of speech data
for each language, Hindi and Marathi. Hindi, spoken predominantly
in northern India, and Marathi, spoken predominantly in the western
part of India, are considered to be linguistically similar. The last
two columns of Table 1 show the number of words and the number
of phones in the Marathi and Hindi data sets. Note that this is a
relatively small vocabulary task consisting primarily of the names of
commodities and geographical regions.

3.2. Hindi and Marathi Continuous Density HMM Systems
The baseline CDHMM systems were based on conventional three
state left-to-right HMM triphone models. Clustered states were ob-
tained after decision tree clustering for the systems in each language.
Acoustic models were trained with 161 clustered states for Hindi and
476 clustered states for Marathi. A fixed number of 16 Gaussians per
state were used for Marathi, and 8 Gaussians per state were used for
Hindi. The features used were 13 MFCC coefficients concatenated
with first and second difference cepstrum coefficients. Mean normal-
ization was performed for each utterance. The CDHMM baseline
systems in each language were configured using the HTK Speech
Recognition Toolkit [17].

The Hindi ASR performance was evaluated on utterances of
commodity names [1]. For Hindi, a separate language model is
trained for recognizing either commodities or districts, since these
represent dialog states in the Hindi spoken dialog system. For
Marathi on the other hand, a single language model is trained for
recognizing both commodities and districts.

The CDHMM and SGMM ASR performance for the Hindi and
Marathi language test sets are presented in Tables 2 & 3 respectively.
The percentage of words correctly decoded (%Corr) is used as the
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performance measure for recognition. Word Accuracy (%WAc.) fig-
ures have also been provided for comparison. The baseline CDHMM
results are presented in the first row of Tables 2 & 3 for Hindi and
Marathi respectively. The Hindi system with only one hour of data
is seen to have a performance of 68.7% Corr., while the Marathi sys-
tem with close to 8 hours of data is seen to have a performance of
82.2%Corr.

The impact of performing speaker adaptive training (SAT) dur-
ing CDHMM training and constrained maximum likelihood linear
regression (CMLLR) adaptation during recognition is displayed in
the second row of Tables 2 & 3. In the case of Hindi, a relative im-
provement of 3.34%Corr. with respect to baseline CDHMM is ob-
served. In the case of Marathi, a much larger relative improvement
of 9.73%Corr. with respect to the baseline is observed.

3.3. Hindi and Marathi monolingual SGMM systems
The training for the monolingual SGMM in this work is summarized
in [1]. For Hindi, the monolingual SGMM has I = 256 full covari-
ance Gaussians while the Marathi system consists of I = 400 Gaus-
sians. The Gaussians are obtained by training on speech-only seg-
ments from training corpora of the respective languages. Clustered
tri-phone states for each language are obtained from the CDHMM.
The basic setup is identical to that used for the CDHMM systems.
For the SGMM, an implementation is used that is an extension to
HTK with added libraries [3]. Training of the SGMM is carried out
using a joint posterior initialization as described in [3]. The SGMM
system performance in each language, with the number of mixtures I
used in each system, is presented in row 3 of Tables 2 & 3 for Hindi
and Marathi respectively. It is seen that the mono-lingual SGMM
systems provide a performance of 71%Corr. in the case of Hindi and
84.7%Corr. in the case of Marathi. In both cases a consistent net
performance gain is observed with respect to the CDHMM baseline.

3.4. Hindi-Marathi Multi-lingual SGMM system
SGMM training was carried out in a multi-lingual fashion, by using
the Marathi and Hindi data to train the “shared” parameters, while
maintaining distinct phone sets for the two languages. Maintaining
separate phone sets, as illustrated in Figure 1, allows for the use of
language specific states. It also allows for state specific parameters
to be trained using data from a single language. The multilingual
SGMM has a total of J = 637 states, with 161 states coming from
Hindi and 476 coming form the Marathi system. The system was
initialized using a UBM with I = 400 Gaussians trained on speech-
only segments from both corpora. The system was initialized with
a joint posterior initialization procedure similar to the monolingual
SGMM systems trained for this task.

To account for the acoustic mismatch across the two sets of data,
multilingual SGMM training was carried out after cross-speaker and
cross-corpus normalization. This acoustic normalization (AN) pro-
cedure is described in [12]. The results for the performance of multi-
lingual SGMM for Hindi and Marathi test data are reported in row
4 of Tables 2 & 3 respectively. Cross-corpus acoustic normalization
(AN)[12], was found to be critical for multi-lingual SGMM train-
ing. Acoustic normalization is denoted by +AN in Tables 2 & 3.
The final multi-lingual systems are seen to provide performance of
76.2%Corr. on the Hindi test set, and performance of 92%Corr. on
the Marathi test set. The multi-lingual system is thus seen to give the
best performance across both languages.

4. CROSS-LINGUAL CONTEXT SHARING

The experimental study in Section 3 demonstrated that the multi-
lingual SGMM is able to improve ASR performance by allowing a

Table 2. ASR WAc for Hindi. I represents number of SGMM mix-
tures and AN indicates acoustic normalization.

Hindi Language ASR Performance
System I % Corr. (%WAc)
CDHMM n/a 68.7 (65.8)
CDHMM+SAT n/a 71.0 (67.7)
Mono-lingual SGMM 256 71.0 (69.1)
Multi-lingual SGMM + AN 400 76.2 (74.4)

Table 3. ASR WAc for Marathi. I represents number of SGMM
mixtures and AN indicates acoustic normalization.

Marathi Language ASR Performance
System I % Corr. (%WAc)
CDHMM n/a 82.2 (74.3)
CDHMM+SAT n/a 90.2 (85.3)
Mono-lingual SGMM 400 84.7 (77.7)
Multi-lingual SGMM + AN 400 92.0 (87.5)

structured and shared parametrization for multiple languages. How-
ever, despite the improvements obtained from this cross-language
data-sharing, regularly occurring recognition errors still exist for
the target language. Examples of the acoustic confusions that cause
these errors are given in Section 4.1. To mitigate these errors an ex-
perimental study is presented that considers the effect of borrowing
“similar” context-dependent states from the more well-resourced
Marathi language. Section 4.3 details the procedure employed for
automatically selecting these “similar” states for each target lan-
guage (Hindi) state. The non-target language (Marathi) states are
then combined with the existing target language state using the
SGMM concept of a sub-state. The sub-state weights that control
the relative weighting of the target language and non-target language
states are then globally varied over a range of values. The effect of
varying these weights on the final system performance is presented
in Section 4.4.

4.1. Typical acoustic confusions during Hindi ASR

It was found that the recognizer consistently made errors of the kind
that are listed below:

• TARBOOJ = t a r b oo j, meaning watermelon in
Hindi, is mis-recognized 6 times out of 13 occurrences of this
term as musk-melon or KARBUJA = kh a r b uu j aa

• ANANNAS = a n a nn a s, meaning pineapple, is mis-
recognized 13 times out of 18 occurrences of this term as
pomegranate or ANAR = a n aa r

• BADSHAH = b aa d sh a h, a variety of potato, is
mis-recognized 4 times out of 8 occurrences of this term as
BAJRA = b aa j r aa or millet.

• SUKHI MIRCH, appearing as two separate words with the
composite lexical expansion s u kh ii m i r c mean-
ing dried red-chilli peppers, is mis-recognized 10 times out of
19 occurrences of this term as SUPERIOR=s u p i r i-
o r, a variety of cardamom.

Errors of the kind listed above seem reasonable since the hypoth-
esized word bears some likeness in pronunciation to the reference
string. However, the repetitive nature of the errors for each of the ex-
amples listed here makes it clear that certain tri-phone contexts that
are seen more often in training are favoured over more rarely occur-
ring tri-phone contexts during recognition. For example it appears
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that the context sil-kh+a is favoured over the context sil-t+a
in the first example, or the context aa-r+sil is favoured over
a-nn+a in the second example.

One possible approach for reducing these Hindi acoustic confu-
sions would be to borrow context dependent state-projection vectors
from the more well-trained Marathi states. These borrowed Marathi
state projection vectors could then be combined with the more poorly
trained Hindi state projection vectors. To do this, it is necessary to
first determine which Marathi states should be associated with Hindi
states. Then one must determine how the two state projection vectors
must be combined.

4.2. Impact of borrowing non-target language contexts

An anecdotal “cheating” experiment is presented here where the
states of the context-dependent phonetic unit of the Hindi lan-
guage directly use state-dependent parameters of “similar” context-
dependent phonetic units of the Marathi language. The goal of
this experiment is to determine the potential performance gains
that might be achieved by combining state-level SGMM parameters
across languages. The choice of which state-level parameters to
combine is made by exploiting the actual misrecognitions observed
on the test data. This is, of course, the cheating aspect of the ex-
periment. The method for combining the state-level parameters is
described below. The experiment provides a way to decouple the
issue of which acoustic contexts to combine from the choice of the
method used for combining them. In this experiment, the concept
of the sub-state in the SGMM is used to allow Hindi context-
dependent HMMs to use the state dependent parameters from
context-dependent HMMs of the Marathi language. This allows
well-trained “similar” phonetic context-dependent HMMs in the
well-resourced language to “augment” existing context-dependent
phones in the target language. The experiment proposed here al-
lows us to investigate the potential for sharing sub-state projection
vectors at the state-level between context-dependent models from
a non-target language and context-dependent models in the target
language.

This corpus offers a unique opportunity of this kind because a
large proportion of tri-phone contexts appearing in the confusable
Hindi words listed in the above example also appear in the Marathi
language as well. This degree of cross-language context sharing is
not at all typical. However, it provides a chance to observe the poten-
tial effects of cross-language parameter sharing when the determina-
tion of similar contexts is not an issue. After looking up the equiva-
lent context-dependent models in Marathi, the state projection vector
from each state from the Marathi model is “augmented” as a sub-
state in the corresponding state for the Hindi model. The sub-state
weights are set equally between the existing sub-state vector and the
newly introduced sub-state vector from the Marathi model. The state
dependent likelihoods for these “augmented” states are computed as
given by Equation 4. The multi-lingual SGMM model thus obtained
is referred to as the “augmented” model in Table 4. A similar proce-
dure was carried out to modify the target language silence model.

N-Best lists with N = 2 were generated for the occurrences
of misrecognized utterances listed in Section 4. This generated the
possible hypotheses as being either the correct term or the closest
incorrect term. The first row of Table 4 displays the percentage of
these utterances that the multi-lingual SGMM model recognizes cor-
rectly. These N-Best lists were then re-scored with the “augmented”
models. The proportion of utterances that were correctly recognized
after this re-scoring procedure appears in the second row of Table 4.

It can be seen from Table 4 that the so-called “augmented”
models provide a 20% absolute improvement over the multi-lingual

Table 4. Recognition accuracy for frequently mis-recognized utter-
ances

ML-Hindi SGMM 56%
“Augmented” ML-Hindi SGMM 76%

SGMM Hindi models in correctly recognizing the originally mis-
recognized test utterances. While this result must clearly be con-
sidered as anecdotal, it suggests that there may be considerable
potential for state-level cross-language parameter sharing in multi-
lingual SGMMs. The next section presents a procedure for automat-
ically associating the appropriate non-target language states with the
appropriate target language states.
4.3. Algorithm for selecting states from the non-target language
This section describes a method for selecting potential non-target
language context-dependent states that are “similar” to target lan-
guage states. The effectiveness of a cosine distance between state
projection vectors as a measure of similarity between states is illus-
trated in [12]. This simple cosine-distance s(h,m) between normal-
ized (refer Appendix K of [18]) state projection vectors vh

j and vm
j ,

s(h,m) =
vhj .v

m
j

‖ vhj ‖‖ vmj ‖
, (7)

is used here to identify similar cross-language states.
As a first step, for each target language (Hindi) state, a list of 10

similar non-target language (Marathi) states are picked based on the
cosine distance metric. The evaluation of the similarity is restricted
only to those non-target language states that appear in the same state
position in a left-to-right HMM topology. As a second refinement
step, a log-likelihood based re-ranking of this list of potential states
for each target language state is carried out. The re-ranking proce-
dure involves doing a forced alignment pass over the entire set of
Hindi training utterances. During alignment, for each speech frame,
when a certain target language state is encountered, a record of the
frame log-likelihood for each potential non-target language state is
maintained. This log-likelihood for the potential non-target state is
accumulated over all such occurrences. Finally, the average log-
likelihood for each potential non-target language state is calculated
over all such occurrences and the list of potential non-target states is
sorted. The top-ranking non-target language state is then selected as
the non-target language state of choice.

4.4. Experimental Results

Figure 2 summarizes the Hindi language ASR performance with
cross-lingual state sharing. To recall, with the use of sub-states, the
SGMM state-likelihood is calculated as mentioned in Equation 4. In
this experiment, with reference to Equation 4, Mj = 2 and m ∈
{1 = Hindi, 2 = Marathi}. Here we let cjH to denote the target-
language (Hindi) sub-state weight and cjM denote the non-target
language (Marathi) sub-state weight. The performance curve is dis-
played as the static target language sub-state weight cjH is varied
between 0 and 1. The “closest” non-target language states are auto-
matically determined using the procedure mentioned in Section 4.3.
On the extreme end when the target language sub-state weight is
set to 0.0, only the “closest” Marathi-language states are used to
evaluate ASR performance. This is not shown in the figure, but
as expected, the performance at 57.01%Corr. is well below the
baseline. As the weighting towards the Hindi language states in-
crease, the performance is seen to increase. The best performing
system at 77.77%Corr. is obtained when the Hindi language states
are weighted at 0.8. At this point, an improvement of 1.57%Corr.
absolute is seen with respect to the SGMM baseline of 76.2%Corr.
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The matched-pairs significance test described in [19] was run, and
the improvement in performance with respect to the SGMM baseline
was statistically significant at the chosen confidence level of 99.99%.

Fig. 2. ASR performance as a function of language weighting
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Regarding the estimation of the weights, a maximum-likelihood
estimation of the weights on the training data would lead to the de-
generate solution where the target language state is weighted as 1.0
and the non-target language state is weighted as 0.0. A valid method
to estimate these weights would be to use deleted-interpolation us-
ing N-fold cross-validation as mentioned in the work by Huang et al.
[20]. The appropriate estimation of these weights is currently under
study.

5. SEMI-TIED COVARIANCES FOR THE SGMM
Large-vocabulary continuous speech recognition (LVCSR) SGMM
systems are known to have fewer parameters compared to their
CDHMM system counterparts [2]. However, in small-vocabulary
systems this is generally not true. This is predominantly due to
the fact that the number of CDHMM states, J , is much smaller in
small vocabulary systems. For example, the mono-lingual Hindi
CDHMM system has 101752 parameters whereas the mono-lingual
Hindi SGMM system with I = 256 mixtures has 605319 parame-
ters. Furthermore, the parameter count is dominated in these small
vocabulary SGMM system by the number of shared parameters.

In an attempt to reduce the shared parameter count and to make
acoustic model training less sensitive to issues of insufficient train-
ing data, the effect of using semi-tied covariance (STC) matrices
instead of full-covariance matrices is studied. STCs have predomi-
nantly been used with CDHMM systems and are introduced in Sec-
tion 5.1. Section 5.2 describes the issues involved in using STCs
with the SGMM. Finally, Section 5.3 presents a performance com-
parison between the use of STC transformations and full-covariance
matrices in the multi-lingual SGMM system evaluated on the Hindi
test set.

5.1. Semi-tied Covariance Modelling
In semi-tied covariance modelling, a full-covariance matrix for a
mixture component i assigned to belong to one of r = 1 . . . R re-
gression classes is expressed as:

Σi = TrΣ
(diag)
i T T

r (8)

The matrices Tr for a regression class r are called the semi-tied
transforms. The model structure changes by allowing dedicated di-
agonal components for each covariance mixture component. It is
usually easier to work with the inverse of the semi-tied transform
Ar = T−1

r . The semi-tied covariance transforms are trained in

a maximum-likelihood sense given the current acoustic model pa-
rameters. The optimization procedure based on the formulation of
the Expectation Maximization (EM) algorithm for estimating STC
transformations in the CDHMM is presented in [15].

5.2. Integrating semi-tied covariances with the SGMM

This section mentions some of the practical issues involved in using
semi-tied covariance modelling with the SGMM.

5.2.1. SGMM initialization

In the conventional SGMM the shared full-covariance matrices are
initialized from a so-called universal background model(UBM). In a
similar manner, the SGMM component covariances Σ

(diag)
i and the

associated STC matrixAr is initialized from the estimates obtained
from a UBM with semi-tied covariance Gaussians (STC-UBM) as:

Σ
(diag)
i = Σ̄

(diag)
i (9)

Ar = Ār (10)

In the above equation Σ̄
(diag)
i and Ār denote the covariances and

STC transformations in the STC based UBM. While training the
STC-UBM, Gaussians can be clustered into regression classes r ∈
{1, . . . , R} by agglomerative clustering [21] of the diagonal co-
variance UBM Gaussians. Also, estimates of the initial posteriors
γj,i(t), where j is used to denote a context-dependent state, are ap-
proximated using the STC-UBM.

5.2.2. Likelihood calculation

In order to compute likelihoods efficiently it is useful to maintain a
version of the subspace matricesMi pre-multiplied with the associ-
ated regression matricesAr , given byBi = A

rMi. The quantities
for the Gaussian likelihood computation as given in [2] are computed
as follows,

xr(t) = Arx(t) (11)

nji = logwji −
1

2
(D log 2π + log |Σ(diag)

i |

+vTj B
T
i Σ

(diag)−1
i Bivj) (12)

ni(t) = log |Ar| − 0.5xT
r (t)Σ

(diag)−1
i xr(t)

zi(t) = BT
i Σ

(diag)−1
i xr(t) (13)

log p(x(t), i|j) = nji + ni(t) + zi(t).vj (14)

Equation (14) gives the expression for the log-likelihood for state
j, and Gaussian i. The process of evaluating the likelihoods over
all possible mixtures i ∈ {1, . . . , I}, for each state j is time-
consuming. Instead, an approximation over the top-N mixture
components for each observation x(t) is used. These top-N Gaus-
sians are picked by evaluating likelihoods against the UBM in a
process called Gaussian pre-selection[2, 3]. Here the Gaussian pre-
selection is carried out by evaluating likelihoods against the STC
based UBM.

5.2.3. SGMM statistics accumulation and model update
Following [2], care needs to be taken to compute the quantities that
depend on Σi correctly during the EM (and sub-state splitting) com-
putations. These are:

yj =
∑
t,i

γj,i(t)zi(t)

=
∑
t,i

γj,i(t)B
T
i Σ

(diag)−1
i xr(t) (15)

Hi = BT
i Σ

(diag)−1
i Bi (16)

The updates for the Σ
(diag)
i and Ar are carried out after all of the

SGMM model parameters have been updated. The same STC itera-
tive update algorithm as mentioned by Gales [15] is used to update
these quantities.
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5.3. Experimental results
Figure 3 compares the performance of the full-covariance SGMM
multi-lingual model to the STC-SGMM multi-lingual models with
a varying number of regression classes. All systems are configured
with I = 400 mixtures and the evaluation is run on the Hindi test set.
The following conclusions can be drawn from this experiment: (1)
There appears to be an optimum number of regression classes, R =
32, that are required to be created when using semi-tied covariances.
(2) The performance of the STC-SGMM at 75.8% with R = 32
regression classes is comparable with the performance of the full-
covariance SGMM at 76.2%. (3) The total number of STC-SGMM
covariance parameters when R = 32 is 64,272 which is far fewer
compared to the total number of full-covariance parameters which is
312,000. It is clear that the SGMM trained using STC is far more
compact than the full-covariance SGMM. However, it was surprising
to find that the ASR performance for the STC based model, trained
on the multi-lingual data set, is almost identical to the full-covariance
system.

Fig. 3. STC SGMM models vs Full-covariance SGMM models
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6. CONCLUSION
This paper has investigated approaches for state level cross-lingual
parameter sharing and shared Gaussian parameter tying in multi-
lingual SGMM based ASR. Experiments were performed using
Hindi speech data as the target language and Marathi speech data as
the foreign language, both obtained for an Indian agricultural com-
modities spoken dialog task. A relative decrease in the percentage of
words incorrectly decoded of 4.7% for the Hindi language was ob-
tained by combining similar Hindi language and Marathi language
SGMM sub-state projection vectors. Applying STC transformations
resulted in a reduction in the number of Gaussian parameters by a
factor of five relative to full-covariance Gaussians while maintaining
similar ASR accuracy.
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