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ABSTRACT

As speech recognition has become popular, the importance
of dysfluency detection increased considerably. Once a dys-
fluent event in spontaneous speech is identified, the speech
recognition performance could be enhanced by eliminating
its negative effect. Most existing techniques to detect such
dysfluent events are based on statistical models. Sparse reg-
ularity of dysfluent events and complexity to describe such
events in a speech recognition system makes its recognition
rigorous. These problems are addressed by our algorithm
inspired by image forensics. This paper suggests our algo-
rithm developed to extract novel features of complex dysflu-
encies. The common steps of classifier design were used to
statistically evaluate the proposed features of complex dys-
fluencies in spectral and cepstral domains. Support vector
machines perform objective assessment of MFCC features,
MFCC based derived features, PCA based derived features
and kernel PCA based derived features of complex dysfluen-
cies, where our derived features increased the performance by
46% opposite to MFCC.

Index Terms— Dysfluency detection, image forensics,
speech

1. INTRODUCTION

The communication disorder known as stuttering is character-
ized by dysfluencies, which are disruptions in smooth flow of
speech[1]. Speech Language Pathology (SLP) divides dysflu-
ent events into categories. Well-known dysfluency categories
include hesitations (e.g. pauses), prolongations (e.g. lllike)
and repetitions. Repetitions have specific categories: syllable
repetitions (e.g. re re research), word repetitions (e.g. my my
love) and phrase repetitions (e.g. I do my, I do my work).
From the other side, unlike read speech, spontaneous speech
contains high rates of disfluencies (e.g. hesitations, phrase
repetitions)[2]. Dysfluencies such as prolongations, repeti-
tions and hesitations add needless lexical information to talk-
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ers’ conversation. Information redundancy caused by com-
mon dysfluencies influence the Automatic Speech Recogni-
tion (ASR) system performance negatively. Therefore one of
many aspects of dysfluency detection in speech technology is
to augment the ASR system to decrease the recognition er-
rors.

Dysfluent speech recognition attracts considerable atten-
tion in Speech Language Pathology (SLP), where objective
evaluation of stuttered speech is still under development. Re-
searchers with technical background invest their effort to de-
velop a framework to resolve this problem for SLP. In [3],
a parameter for global evolution of dysfluent speech is de-
fined on the basis of spectral changes and with Bayesian de-
tector defines a parameter for globally evaluation of dysfluent
speech, to evaluate the efficiency of SLP therapy. Phoneme
repetitions were classified by Hidden Markov Models on the
basis of Mel-Frequency Cepstral Coefficients (MFCC) [4].
MFCC with Dynamic Time Warping (DTW) was used by
[5] to study syllable repetition detection accuracy compar-
ing various dimensional MFCC feature vectors (12, 13, 26
and 39 dimensional). In [6] the performance of Least Square
Support Vector Machine is examined with Sample Entropy
derived from Bark scale, Erb scale and Mel scale for distin-
guishing the prolongation and repetitions events in speech.
MFCC and Linear Predictive Cepstral Coefficients (LPCC)
feature extractions with k-Nearest Neighbor (kNN) and Lin-
ear Discriminant Analysis (LDA) classifiers were compared
to recognise repetitions and prolongations in stuttered speech.
In [7] hierarchical Artificial Neural Networks (ANN) were in-
troduced to support stuttered speech recognition process.

Another aspect for disfluent speech recognition in the field
of speech processing is to moderate its effect in ASR. In this
case researchers try to improve the accuracy in current ASR
by introducing information on the unknown phenomenon for
ASR. Disfluencies are observed in spontaneous speech with
non-clinical speakers generally; this type of events is tagged
with letter ’i’ in word disfluency (for people with stuttering,
letter ’y’ is used). Early detection of disfluencies studied in
[8] shows that the juncture phenomena which occur between
words in fluent speech are usually absent at the interruption
point in disfluent utterances. Text and prosody information
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Orginal image Forged image

Fig. 1. Specimen for copy-move forgery (prepared in accor-
dance with [11])

(duration, F0, energy and pause) were used in [9] with Condi-
tional Random Fields to locate interruption point (i.e. IP), the
point in time at which the speaker breaks off from the orig-
inal utterance. Feature extraction technique [9], but on the
basis of Weighted Finite State Transducers (WFST), was im-
plemented to detect filled pauses and reparandum region of
repeats and repairs [10].

The ’complex’ dysfluencies specified as a chaotic mixture
of dysfluent events (e.g. prolongation combined with vari-
ous types of repetition) are frequent in stutterers’ speech. In
dysfluent speech recognition, the common methodology is to
fix a window (e.g. 200 ms, 500 ms, 800 ms) and build a
dysfluency recognition system (e.g. kNN, ANN) which can
recognize the ’simple’ dysfluent events in a fixed interval of
speech. Annotations of dysfluent speech show that dysflu-
ent events frequently do not fit the fixed window, but are dy-
namically distributed throughout much longer 2-4 s intervals.
The above-mentioned problems are addressed by our follow-
ing approach, inspired by image forensics techniques. There
are several types of image tampering, but hiding with cloning
some objects from natural images is a common form of dig-
ital image tampering, known as copy-move forgery [12]. An
example of copy-move forgery is shown in Fig. 1, where the
original image shows three missiles and the forged image con-
tains four missiles. On the basis of SLP and our observation
during transcription of English and Slovak stutterers, the fol-
lowing two facts have been achieved. Prolongation is a recur-
sion of one atomic structure (e.g. phoneme) in a signal space.
Repetition is a recursion of many grouped atomic structures
(e.g. syllables, words) with random edits (e.g. pauses, filled
pauses) in a signal space. Analogously to copy-move forgery,
in Fig. 2, in signal space, interval A is repeated (’cloned’) in
interval B. Along with developing our algorithms, we borrow
the copy-move forgery detection techniques to find applica-
tion of this technique in dysfluent speech analysis.

2. METHODOLOGY

2.1. Database

The authors [13] used 12 selected audio recordings working
set from University College London Archive of Stuttered

Speech (UCLASS). We used a subset of this working set with
22.05 KHz sampling rate and the total of 19:32 min playing
time for our experiments. The subset of recordings was anno-
tated by English SLP; we made manual time alignment of lex-
ical content and inserted the appropriate SLP labels to the dys-
fluent events (additional information about data and presented
algorithm: sites.google.com/site/georgepalfy/).

2.2. Feature Extraction

Works dealing with dysfluency detection frequently use
Fourier transformation to analyze spectrum and to compute
derived homomorphic features, for example MFCC, LPCC,
PLP [14].

Principal Component Analysis (PCA) is a well estab-
lished technique for extracting structures from high-dimension
data sets. This is performed by extracting eigenvalues. PCA
is an orthogonal transformation used to describe our data.
The new coordinate values by which we represent our data
are called principal components. It is often the case that a
small number of principal components is sufficient to account
for most of the structure in the data [15].

Let a data set M consist of centered observations xk ∈
Rn, k = 1, . . . ,M and

∑M
k=1 xk = 0; the covariance matrix

corresponding to this data set is given by

C =
1

M

M∑
j=1

xjx
T
j . (1)

Diagonalizing C, we obtain the principal components, which
are the orthogonal projections onto the eigenvectors, obtained
by solving the eigenvalue equation

λv = Cv (2)

where λ ≥ 0 and v ∈ Rn \ {0}. As

Cv =
1

M

M∑
j=1

(xj · v)xj , (3)

all solutions for v must be a linear combination of x1, . . . , xM ,
which can be expressed as

v =

M∑
j=1

αjxj (4)

where αj , for j = 1, . . . ,M , are coefficients [16]. Kernel
PCA performs a non-linear transformation of the sample x in
input space, x ∈ RN , to the high-dimensional feature (dot
product) space F expressed by the map

Φ : RN → F (5)
x→ X. (6)
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Fig. 2. Syllable repetition combined with prolongation

PCA is then performed in this high-dimensional space. The
covariance matrix in feature space can be expressed as Equa-
tion (1) with the help of mapping Φ(xj) samples into the fea-
ture space.

C̄ =
1

M

M∑
j=1

Φ(xj)Φ(xj)
T (7)

The goal is to perform the eigendecomposition of V , that is,

λV = C̄V. (8)

By the definition of V , it can be shown that v lies in the span
of Φ(x1), . . . ,Φ(xM ). We can consider the equivalent equa-
tions

λ(Φ(xk) · V ) = (Φ(xk) · x̄k · C̄V ) (9)

V =

M∑
j=1

αjΦ(xj) (10)

Ki,j = k(xi, xj). (11)

Combining Equation (9), Equation (10) and defining M ×M
kernel matrix K = (Φ(xi) · · ·Φ(xj) leads to the formulation

MλKα = K2α (12)
Mλα = Kα (13)

where α is a column vector with the entries α1, . . . ,M . Equa-
tion (13) is solved by the eigenvectors αk. Requiring V k to be
normalized leads to the normalization condition λk(αk)αk =
1. Let x be a test point, with an image Φ(x) in F ; then

(V k · Φ(x)) =

M∑
i=1

αk
i (Φ(xi)Φ̇(x)) (14)

may be called its nonlinear principal component correspond-
ing to Φ [15], Schölkopf et al. in [17, 18, 16]. In this paper
for non-linear transformation the Gaussian kernel function

K(xi, xj) = e−
||xi−xj ||

2

2σ2 (15)

is applied. To calculate the speech features (MFCC), we
maintain the standard method used in Hidden Markov Model
Toolkit: Hamming window length (0.023 s), overlapping ad-
jacent frames (0.01 s) and number of bandpass filters (20).
Each frame was processed with attributes to conserve MFCC
vector with 13 coefficients.

Prior to PCA and kernel PCA transformation of speech,
the magnitude spectrum (with 256 elements) was calculated
over frames and windows identical to MFCC computation.
Every magnitude spectrum computed in this way was then
divided into sixteen equal intervals. These fixed intervals of
magnitude spectrum were then represented as square matrix
A (n× n elements).

A16,16 =


a1,1 a1,2 · · · a1,16
a2,1 a2,2 · · · a2,16

...
...

. . .
...

a16,1 a16,2 · · · a16,16

 (16)

Elements (an,n) of matrix A correspond to the elements of
magnitude spectrum (e.g. a1,1 is the 1st element of magni-
tude spectrum, a2,16 is the 32nd element of magnitude spec-
trum). Matrix A built from elements of magnitude, in next
step undergo PCA and kernel PCA transformation. In trans-
formation of A to feature vector x the 1st principal compo-
nent was used. After these transformations matrix A16,16 was
represented by feature vector x containing its 16 dominant
elements. Before further processing, feature vectors x were
collected tom×n dimensional feature matrixX , where rows
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(m) of X represent n-dimensional feature vectors x. MFCC
vectors also conserved this arrangement, but their dimension
was m. . . 13.

The matrix sorting and distance metrics are widely used
techniques in copy-move detection [19], [12]. We expect that
after sorting matrix X , in the new ordered matrix S the most
similar feature vectors become neighbors. This condition al-
lows to effectively reduce the total number of examined fea-
ture vector pairs in sorted matrix S. The search space from
the X is then reduced into subregions of S, where the search
is executed on i-th selected feature vector and its n neighbor-
ing vectors (subregion) in S.

The matrix S originated from X after sorting its rows in
increasing order. Di and De denote two different distance
metrics. Di is the minimal index distance (e.g. index offset)
between neighboring vectors andDe corresponds to the maxi-
mal Euclidean distance between feature vectors. Nn gives the
number of searched neighbors and Nr denotes the number of
rows in matrix X . The algorithm (redDet) output R contains

Algorithm 1 Redundancy detection (redDet)
1: Sort rows of X to obtain S.
2: for k ← 1, Nr −Nn do
3: Select k-th vector sk from matrix S.
4: Select Nn neighbors for vector sk.
5: Compute Di and De for sk and its neighbors.
6: Save vector pair positions, Di and De to Rk.
7: end for

redundant vector pair positions and their distance metrics. For
the purpose of detecting dysfluencies in continuous speech,R
is postprocessed to become R′′.

R′i,5 =


r′1,1 r′1,2 · · · r′1,5
r′2,1 r′2,2 · · · r′2,5

...
...

. . .
...

r′i,1 r′i,2 · · · r′i,5

 (17)

Postprocessing begins with arranging the vector positions be-
tween vector pairs in increasing order. After this step the first
column (r′i,1) ofR′ contains vector positions lower than those
in the second column (r′i,2) and r′i,1 < r′i,2 holds. This order-
ing of vector pairs position gives us the time order in the 1st
column (r′i,1). In the next postprocessing step, all the unique
vectors of R′ were found and their vector frequencies (R′ re-
duced to matrix R′′) were computed. For each unique vector
of R′′ a minimal Euclidean distance and maximal frequency
of every its occurrence were chosen. After the final step, after
ordering its columns the primeval R becomes R′. Posterior
R′ was then reduced to obtain R′′. R′′ holds vector pairs po-
sition (unique vectors in the 1st column r′′i,1 and its pairs posi-
tion in the 2nd column r′′i,2), Di, De and frequencies. Our al-
gorithm was evaluated by experimentally determined param-
eters Di > 100 ms, Nn = 60 and De < 8. According to

this setup, the algorithm output (Fig. 3) shows an example of
outcome on the interval, where dysfluent event appears (repe-
tition of phrases). Vectors denoted by A (r′′i,1) are repeated in
position B (r′′i,2).

The algorithm processed 5 s intervals with 2.5 s overlaps.
For every 5 s long speech interval the following three features
were computed between feature vectors: (1) index distance,
(2) Euclidean distance (euc.), and (3) frequency (freq.). The
last feature was calculated in the postprocessing step, where
for every unique vector in R′ its frequency was determined.
In R′′, repeated regions in the speech are then observed as
vectors with high occurrence.

2.3. Evaluation

To be able to compare the performance of studied features (al-
gorithm output Mfccrep, Pcarep and Kpcarep) to commonly
used MFCC coefficients, objective assessment was given by
using feature vectors as inputs for SVM. SVM and their vari-
ants and extensions, often called kernel methods, have been
studied extensively and applied to various pattern recognition
and function approximation issues [20]. According to [21], in
our experiment, we used sigmoid kernel function

k(x, y) = tanh
(
γxT y + r

)
. (18)

During the classifier design process, one of the intermediate
steps is the measurement of data class separability, which we
prove with correlation between two classes (fluent and dysflu-
ent speech). In the next stage we studied the data character-
istics for two classes with Mann-Whitney U-test. Nonpara-
metric Mann-Whitney U-tests examine the equality of class
medians of random variables X,Y . We use confusion ma-
trix to measure SVM models’ performance. In addition to
accuracy, we compute sensitivity and specificity of confusion
matrix [22].

3. RESULTS

Table 1 and Table 2 compare the features computed from
MFCC with Dynamic Time Warping (MFCC DTW) and the
features computed using our algorithms (Pcarep - PCA based
derived features, Kpcarep - Kernel PCA based derived fea-
tures and Mfccrep - MFCC based derived features). Low cor-
relation coefficients r in Table 1 refer to the fact that there is
a low linear dependence between features computed from flu-
ent and dysfluent intervals of speech. There is negative Spear-
man rank correlation between our proposed features Pcarep
freq., Kpcarep freq. and Mfccrep freq. which is related to ob-
servations that frequency of similar feature vectors in fluent
intervals is lower than that of similar feature vectors in dys-
fluent intervals of speech. In case of class separability it is
considered that p-values except MFCC DTW and Pcarep euc.
are below 5% significance level. According to significance
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Fig. 3. Algorithm output in case of dysfluent event (phrase repetition)

Table 1. Spearman rank correlations between fluent and
dysfluent events groups

Feature r p-value

MFCC DTW 0.0356 0.3654

Pcarep euc. 0.0366 0.0606
Pcarep freq. -0.5678 0.0

Kpcarep euc. 0.0627 0.0013
Kpcarep freq. -0.5689 0.0

Mfccrep euc. -0.0409 0.0362
Mfccrep freq. -0.5738 0.0

Table 2. Mann-Whitney U-test between fluent and dys-
fluent events groups

Feature h p-value

MFCC DTW 1 0.0

Pcarep euc. 0 0.0720
Pcarep freq. 1 0.0

Kpcarep euc. 0 0.5008
Kpcarep freq. 1 0.0

Mfccrep euc. 1 0.0
Mfccrep freq. 1 0.0

of Spearman correlation values, the features clearly separate
fluent and dysfluent events groups.

Data characteristics study results of the proposed features
are shown in Table 2. Nonparametric Mann-Whitney U-tests
in Table 2 are significant, when their p-values are below 5%
level. h values specify accepted hypotheses. We fail to reject
hypotheses h = 0, only for features Pcarep euc. and Kpcarep
euc. Rejected hypotheses h = 0 in other features describe
that features with h = 1 do not have equal medians. Accord-
ing to the test results, features with h = 1 are characterized

Feature Sensitivity Specificity Accuracy (%)

MFCC 0.508 0.496 50.2
MFCC DTW 0.739 1 85.4

Pcarep euc. 0.55 0.469 50.9
Pcarep freq. 1 0.897 94.8

Kpcarep euc. 0.679 0.328 50.1
Kpcarep freq. 1 0.904 95.1

Mfccrep euc. 0.623 0.338 47.8
Mfccrep freq. 1 0.926 96.2

Table 3. Support vector machines testing results

by unequal data distribution for fluent and dysfluent features
groups.

We divided the data into training (80 %) and testing (20
%) sets. In the next step, we trained eight individual SVMs
with sigmoid kernel function. In Table 3, the MFCC, MFCC
DTW, Pcarep, Kpcarep and Mfccrep features are evaluated.
For MFCC feature, we get 50.2 % accuracy. MFCC DTW
achieved 85.4 % accuracy. SVM model for Mfccrep freq.
sensitivity did not make any false negative prediction and pro-
duced only 8 % false positive predictions. According to the
represented classification results shown in Table 3, the Mfc-
crep freq. maintains the upper limit with 97.6 % accuracy.

4. CONCLUSION

Using data class separability power and examining the data
characteristics, we compared MFCC features to our derived
speech features computed from spectral and cepstral domain.

We developed the algorithm created specially for complex
repetition detection. Our paper shows that the technique used
in image forensics to detect copy-move forgeries offers an al-
ternative way of dysfluency detection.

New features of complex repetitions computed from our
algorithms outputs were statistically analyzed. Objective as-
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sessment of new features, DTW algorithm and MFCC were
compared by Support Vector Machines (SVM). SVM trained
by MFCC features to recognise repetitions show 50.2 % ac-
curacy. In case of our features based on MFCC, SVM accom-
plished 96.2 % accuracy on the equivalent speech data sets.

In the future, the algorithm may be further studied by op-
timizing its parameters (e.g. with evolutionary computation)
on larger stuttering database to obtain more robust and precise
performance.
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