
SEMANTIC ENTITY DETECTION FROM MULTIPLE ASR HYPOTHESES WITHIN THE
WFST FRAMEWORK

Jan Švec1, Pavel Ircing1, Luboš Šmı́dl1

1Department of Cybernetics, University of West Bohemia, Pilsen, Czech Republic
[honzas,ircing,smidl]@kky.zcu.cz

ABSTRACT

The paper presents a novel approach to named entity detection from
ASR lattices. Since the described method not only detects the named
entities but also assigns a detailed semantic interpretation to them,
we call our approach the semantic entity detection. All the algo-
rithms are designed to use automata operations defined within the
framework of weighted finite state transducers (WFST) – the ASR
lattices are nowadays frequently represented as weighted acceptors.
The expert knowledge about the semantics of the task at hand can
be first expressed in the form of a context free grammar and then
converted to the FST form. We use a WFST optimization to obtain
compact representation of the ASR lattice. The WFST framework
also allows to use the word confusion networks as another repre-
sentation of multiple ASR hypotheses. That way we can use the
full power of composition and optimization operations implemented
in the OpenFST toolkit for our semantic entity detection algorithm.
The devised method also employs the concept of a factor automaton;
this approach allows us to overcome the need for a filler model and
consequently makes the method more general. The paper includes
experimental evaluation of the proposed algorithm and compares the
performance obtained by using the one-best word hypothesis, opti-
mized lattices and word confusion networks.
Index Terms: spoken language understanding, named entity detec-
tion, spoken dialog systems

1. INTRODUCTION

The spoken language understanding (SLU) task can be viewed as a
problem of assigning a semantic information to a given acoustic ob-
servationO. Most often the observationO is processed in a standard
large vocabulary automatic speech recognizer to produce a word lat-
tice encoding word hypotheses and associated probability distribu-
tion P (W |O).

The meaning can be represented as attribute-values pairs or se-
mantic trees. In our previous research we used the Hierarchical Dis-
criminative Model (HDM) to generate abstract semantic trees which
represent the semantic structure of the user’s utterance [1]. To em-
ploy the HDM model in the dialog system, we need to assign con-
crete semantic information to the nodes of an abstract semantic tree
which is not in general aligned to the lexical realisation of the ut-
terance. Therefore we designed a new algorithm which is able to
extract the information about semantic entities in the utterance and
consequently link them with the abstract semantic tree to form the
full semantics of the utterance.

In this paper we focus only on the semantic entity detection al-
gorithm. This algorithm performs both the detection of presence of
some type of semantic entity and the extraction of the semantic en-
tity content. The main requirement on the algorithm was the ability

to assign the posterior probabilities to a given sequence of semantic
entities. Therefore we define the random variable E over a set of
sequences e = {e1, e2, . . .} where ei is i-th semantic entity. The
described algorithm then computes the semantic entity lattice which
represents the distribution P (E|O) based on P (W |O).

The semantic entity is an instance of common “data type” used
in speech – date, time, proper name, address, city name etc. The
semantic entity consists of entity type and interpretation representing
concrete entity. We join the type and interpretation using the colon,
e.g. time half past seven can have the following semantic entity:
time:30:m:past:07:h. Other examples could be dep airport:Prague
or person:John:Smith. The entity interpretation is used to construct
“a machine readable” representation of semantic entity and its syntax
depends on the semantic entity type.

The idea of tagging the semantic entities using weighted finite
state transducers (WFST) is generally not new. For example, Béchet
et al. [2] developed a method for named entity (NE) detection based
on WFST. Their system uses the NE tagger which preselects the re-
gions where NE can occur and then applies lattice parsing algorithm
to obtain the semantic entity. In contrast to WFST semantic interpre-
tation presented by Raymond et al. [3], our approach does not use
any kind of filler model. Only factors of input sequence matching
the semantic entity grammars are parsed to speedup the processing.

The proposed algorithm is similar to the lattice indexing method
described in [4]. Instead of using a large set of lattices and a simple
query, in this paper we use an input in the form of single lattice and
a complex query which is generated from a grammar. The complex
knowledge representation leads to a set of unambiguous semantic
entities and this paper proposes a disambiguation algorithm based
on integer linear programming.

There is also another work by Hakani-Tür et al. [5] in which
they use word confusions networks (WCNs) to detect semantic enti-
ties in ASR output. Their results show that the performance obtained
by using the WCNs and word lattices is the same but the WCNs al-
low higher processing speeds – 25x faster than the lattice-based ap-
proach. The WCNs are generally used to represent uncertain ASR
output because of their simple structure and small size in compari-
son with general ASR lattices. In this paper we propose to use the
lattices optimized using standard WFST algorithms as a better rep-
resentation of multiple ASR hypotheses. Since the WCN is virtually
also an acyclic WFST, the algorithm presented in this paper is eval-
uated using both the optimized word lattices and WCNs.

The Section 2 describes the raw and optimized lattices and word
confusion networks and states the hypothesis that WCNs are very
inaccurate in representing the posterior probabilities of word se-
quences longer than one word. The Section 3 describes the novelty
algorithm for semantic entity detection and an algorithm for con-
structing the semantic entity lattice. The Section 4 presents the ex-
perimental results and finally the Section 5 concludes the paper.

84978-1-4799-2756-2/13/$31.00 ©2013 IEEE ASRU 2013



2. WORD CONFUSION NETWORKS AND LATTICES

The common way to represent multiple ASR hypotheses are the
word lattices. These raw lattices are a by-product of the Viterbi de-
coding of the HMM representing the acoustic and language models.
In general, the raw lattices contain number of hypotheses and many
of them have a negligible probability. Therefore it is common to re-
duce the size of the lattice prior to further processing. In this paper
we used two different reduced structures – the optimized lattices and
word confusion networks. In both cases the result is a normalized
acyclic WFST in which the sum of probabilities of all hypotheses
is one. Such a WFST defines the probability distribution over word
hypotheses P (W |O).

We generate the optimized lattices from the raw lattices using
the following steps, which were inspired by the paper [4]:

1. Start with the lattice defined over the tropical semiring.
2. If the transition represents a non-speech event, change the la-

bel to ε.
3. Apply ε-removal algorithm.
4. Prune the lattices using threshold tp.
5. Change the semiring of the lattices to logarithmic semiring.
6. Apply weight-pushing algorithm which ensures that the sum

of all transition probabilities from a given state is one.
7. Determinize the lattice, the result of determinization is the

optimized lattice
To convert the raw lattice to a word confusion network, we used

an algorithm described in [5]. The algorithm first computes the pos-
terior probabilities for each transition in the lattice. Then the so
called pivot path is selected. In this paper we used the best path
through a lattice as a pivot. The pivot transitions are weighted us-
ing the corresponding posterior probabilities. In the next step, the
algorithm iterates over all transitions from the raw lattice. For each
transition t labelled with the word w, the two consequent states s0
and s1 on the pivot path are selected based on the maximum overlap
criterion. If there is already a transition t̄ between s0 and s1 which
is labelled with w, the posterior probability of t is added to t̄. If
there is no such transition, the new transition labelled with w and
weighted by the posterior probability of t is added between s0 and
s1. The word confusion networks (WCNs) have similar properties
as the optimized lattices. The total sum of all hypothesis probabili-
ties is also one. In addition the transition weights directly represent
the single word posterior probability. In general the WCNs keep the
oracle accuracy of the raw lattice while the optimized lattices have
lower oracle accuracy.

The WCNs are often used in spoken language understanding
[5, 6]. One of the drawbacks of using WCNs is that they exactly
represent just the posterior probability of single words. But in tasks
such as SLU the posterior probabilities of longer word sequences are
needed. In this case the posterior estimates given by WCNs are not
accurate because the consecutive words are modeled as being statis-
tically independent.

To describe the problem, we use the original raw lattice depicted
in Fig. 1. It contains three hypotheses ab (posterior probability 0.5),
cd (0.3) and ef (0.2). The WCN created from this lattices is depicted
in Fig. 2. The WCN has a well-known sausage-like structure with the
first segment containing three parallel words a, c and e and the sec-
ond segment containing b, d and f . The WCN contains nine different
hypothesis: ab (posterior probability 0.25), ad (0.15), af (0.1), cb
(0.15), cd (0.09), cf (0.06), eb (0.1), ed (0.06) and ef (0.04). Com-
paring posterior probability of hypothesis ab computed from the lat-
tice (0.5) and from the WCN (0.25) we can conclude that probability
distribution represented with WCN is very “blurred”. This is caused

0

11:a/0.5

2
2:c/0.3

2

3:e/0.2
4

4:b/1.0

5:d/1.0

6:f/1.0

Fig. 1: Lattice example.

0 1

1:a/0.5

2:c/0.3

3:e/0.2
2

4:b/0.5

5:d/0.3

6:f/0.2

Fig. 2: Word confusion network example.

by the fact that in this case the first word a fully determines the sec-
ond word b and P (ab) = P (b|a)P (a) 6= P (a)P (b).

The presented comparison of lattices and WCNs is a motivation
for a novel algorithm for semantic entity detection. The algorithm
presented in the next section is able to represent accurately the pos-
terior probability of multi-word substrings of ASR hypotheses. Be-
cause the input for an algorithm is a generic acyclic WFST, it can
process both the word lattices and WCNs.

3. SEMANTIC ENTITY DETECTION

Preprocessing of input sentences with respect to lexical classes is a
widely used approach in SLU systems. For example in the Semantic
Tuple Classifier model [7], the lexical classes are replaced with class
labels prior to training and decoding. The knowledge describing lex-
ical classes is most often expressed as a list of lexical units pertaining
to a given class. Such lists can be generated by hand or from domain
databases. But the use of simple lists is limiting as there are many
types of semantic entities which have more complicated structure
(for example time or date entities). In this case only parts of the
semantic entity are usually replaced with the corresponding lexical
class, e.g. individual numbers but not the whole time entity. Such
an approach is easy to implement and widely used. Due to its sim-
plicity, it is limited to processing one-best ASR hypothesis or list of
n-best hypotheses. This paper presents a new approach which allows
to detect semantic entities described using a grammar (or finite state
transducer) in a generic acyclic WFST (optimized lattice, WCN).

In current commercial dialog systems, it is common to repre-
sent the expert knowledge with probabilistic context free grammars
(PCFGs) which are used both for speech recognition and understand-
ing. The PCFG framework is also relatively simple to use – the
developer of such grammar does not need to be a dialog system sci-
entist to write a grammar with good coverage of target semantic en-
tities. On the other hand, the probabilistic nature of PCFG is very
rarely used because the expansion probabilities are very hard to de-
termine using knowledge only – a large portion of recognition and
understanding grammars are thus virtually deterministic context free
grammars (CFG).

In this paper, we will use a set of CFGs to represent an expert
knowledge about specific semantic entities. The use of expert knowl-
edge is not limiting since the CFG for a given semantic entity can be
transferred and shared between many dialog systems designed for
different domains. In fact, the use of CFGs supports rapid devel-

85



$number = ($d | ten{10} | twenty{20}[$d]);
$d = (one {1} | two {2} | three {3});
$time = ten {10} past {p} three {3};
$year = last {2012} year;

Fig. 3: Example of SRGS grammars Gz for the following entities
z: number, time, year. $d is an auxiliary rule. Grammar tags are in
curly braces.

opment of a SLU module for a new dialog domain. The use of a
knowledge-based CFGs does not imply that the method is not prob-
abilistic – it allows to assign posterior probabilities to every semantic
entity detected by CFGs.

Since it is common to represent the multiple ASR hypotheses
as a WFST ũ, we first compile the knowledge base expressed as set
of CFGs into a transducer which accepts a string of symbols repre-
senting exactly one semantic entity and transduces this string onto a
sequence of semantic tags ei. It is supposed that the first symbol in
ei indicates the type of semantic entity and the remaining symbols
are its interpretation.

Each type of semantic entity z has a corresponding CFG Gz .
Generally, the CFG is parsed using the pushdown automaton with
unlimited stack depth. In the case where CFG is not recursive,
the stack depth is limited and such an automaton can be converted
into a FST where the input symbols correspond to CFG terminal
symbols and output symbols are the so called tags assigned by the
CFG. In this work, we use the standardized W3C speech recogni-
tion grammar specification (SRGS) [8] notation which allows to use
tags inside the grammar specification (Fig. 3). The grammar Gz is
converted to the unweighted finite state transducer Tz . The output
symbols of Tz directly form the entity type and interpretation and
allow the construction of “machine readable” objects (database en-
tries, time objects) in a dialog manager. To represent the grammars
Gz as a single transducer, we construct the union Z =

⊕
z Tz . The

transducer Z can be subsequently optimized using generic WFST
algorithms such as ε-removal, determinization and minimization.

The naive approach of generating the lattice ẽ from transducer
composition ũ ◦ Z is infeasible because words not belonging to any
semantic entity are not modelled by Z. The solution is to generate
a factor automaton F (ũ) from the input lattice ũ [9]. The factor
automaton accepts all subpaths of the original lattice ũ. Then the
composition R = F (ũ) ◦ Z generates the transducer where each
path encodes a mapping from lattice subpath to a semantic entity.

The problem with such composition is that R contains many
paths representing only partial matches of CFG – for example the
utterance “twenty three” and grammar from Fig. 3 can lead to three
different semantic entities of type number: number:20, number:3,
number:20:3. It is easy to decide that only the last entity is mean-
ingful in the context of the utterance.

Therefore we adopt the following heuristics of maximum unam-
biguous coverage – from the set of all possible semantic entities, we
use the subset where (1) each transition in the lattice has assigned
at most one semantic entity and (2) the number of transitions with
assigned semantic entities is maximal.

Using the automaton R, it is possible to construct the set of all
ambiguous semantic entities F . Then the mentioned heuristics is
applied to obtain the subset F∗ containing only unambiguously as-
signed entities (Sec. 3.1).

In Sec. 3.2, we present an algorithm which takes F∗ and time
alignment of semantic entities to produce the WFST (lattice) ẽwhere
each path encodes one sequence e consisting of semantic entities.
The weights of ẽ correspond to posterior probability distribution
P (E = e|W = ũ).

Fig. 4: Example of the transducer ũT , numbers assigned to states
denote the state times, transitions labels correspond to the scheme:
input sym.:output sym./weight.

i ui yi wR ti0 ti1

1 3, 6 year:2012 0.14 2 5
2 5, 7 number:20:3 0.06 2 5
3 5 number:20 0.06 2 4
4 2 number:10 0.80 1 2
5 7 number:3 0.86 4 5
6 2, 4, 7 time:10:p:3 0.80 1 5

Table 1: Example of the set F generated from ũT with overlapping
pairs (u2, u3), (u2, u5), (u4, u6) and (u5, u6). Highlighted seman-
tic entities are members of F∗.

3.1. Maximum unambiguous coverage

In order to keep the references to original states and corresponding
time information stored in ũ during the whole processing, the ac-
ceptor ũ is mapped to a transducer ũT by replacing input labels on
each transition with globally unique identifier. We suppose that the
acceptor ũ is defined over probabilistic semiring. Then the factor
transducer F (ũT ) is created and used in composition with the gram-
mar transducer:

R = F (ũT ) ◦ Z (1)

For each path πi ∈ R, i = 1, 2, . . . n with input symbols i[πi] = ui

and output symbols o[πi] = yi, the tuple f i = (ui, yi, wR[ui, yi])
is constructed. The weight wR[ui, yi] corresponds to a posterior
probability of input sequence symbols ui occurring in the lattice ũT .

Then the sequence F = {f i}ni=1 can be constructed. Each ele-
ment of F represents one (partial) match of one of the grammarsGz

and the lattice ũ and each yi is a semantic entity generated by Gz .
The corresponding sequence ui references the original transitions
in ũ which are matched. Since the hypotheses about the semantic
entities contained in F are not necessary unambiguous, the integer
linear programming (ILP) is used to obtain only the semantic entities
matching the heuristics of maximum unambiguous coverage.

The ILP solver searches for the maximum of a criterion function
c>x given a vector of n binary variables x = [xi]

n
i=1, xi ∈ {0, 1}

with respect to a set of constraints of the form xi + xj ≤ 1, i 6= j.
The constraints correspond to the first part (unambiguous) and the
criterion to the second part (maximum coverage) of the heuristics.
After the optimization is performed, the variable xi is set to 1 if the
path πi ∈ R matches the heuristics (yi is a meaningful semantic
entity).

The set of constraints contains the inequality xi +xj ≤ 1, i 6= j
if and only if ui and uj is an overlapping pair. We say that string ui

overlaps uj if (1) ui is a substring of uj or (2) there is a nonempty
string u and strings a and b such that ui = au and uj = ub. We use
symmetrized relation – if ui overlaps uj or uj overlaps ui then ui

and uj is an overlapping pair.
The optimization criterion is given by a vector c with compo-

nents ci:
ci = |ui|2 · wR[ui, yi] (2)

where |ui| denotes the number of symbols in ui. This form of cri-
terion ensures that the longer factors with higher posterior probabil-

86



ities are prioritized over the shorter and less probable ones. After
solving the ILP optimization, the optimal subsequence F∗ of se-
quence F is generated:

F∗ = {f i ∈ F : xi = 1} (3)

3.2. Construction of semantic entity lattice

To obtain the probability distribution P (E|W ), we need to generate
the semantic entity lattice ẽ where each path corresponds to a se-
quence of semantic entities e and the associated weight to the prob-
ability P (E = e|W = ũ).

Apart from the sequence F∗, the construction of ẽ requires state
times ti0 and ti1 associated with starting and ending time of factor ui

in the original lattice ũT .
To describe the reconstruction algorithm, we need to define the

forward (α[q]) and backward (β[q]) probabilities in transducer T for
a given state q [10]. The forward probability of an initial state and
the backward probability of a final state is 1̄1. The forward and back-
ward probabilities for the remaining states can be computed using:

α[q] =
⊕

t∈E:n[t]=q

α[p[t]]⊗ w[t] (4)

β[q] =
⊕

t∈E:p[t]=q

w[t]⊗ β[n[t]] (5)

where E is a set of all transitions in T . For a given transition t ∈ E,
p[t] is an origin state, n[t] is a destination state and w[t] as a weight
assigned to t [11]. This notation can be extended from transitions to
paths. The path π is defined as a sequence of transitions t1t2 . . . tk,
therefore p[π] = p[t1], n[π] = n[tk], w[π] = ⊗k

i=1w[ti].
The posterior probability of the factor ui of the transducer ũT

can be expressed as:

P (ui ∈ ũT ) = α[p[ui]]⊗ w[ui]⊗ β[p[ui]] (6)

Since the grammars Gz are deterministic, the transducer Z is un-
weighted and this probability distribution is not changed by the com-
position F (ũT ) ◦ Z; that is, we can express it as:

P (ui ∈ ũT ) = wR[ui, yi] (7)

The goal is to construct the lattice ẽ containing the semantic entity
yi with posterior probability wR[ui, yi]. In the reconstruction algo-
rithm, we treat the sequence yi as a single symbol, e.g. time:13:h.

The algorithm starts with an empty transducer ẽ. In the first step,
the set of isolated transitions ti, i = 1, 2, . . . |F∗| with correspond-
ing symbols yi is created. By the term isolated transition we mean
that there is only one transition ti leaving p[ti] and no transition
leaving n[ti].

Then the set of so called parallel states is created. The state p[ti]
has assigned a parallel state ri with time t[ri] = ti0 and n[ti] a par-
allel state bi with time t[bi] = ti1. The parallel states are connected
with the origin and destination of transition ti using ε-transitions
from ri to p[ti] and from n[ti] to bi.

The parallel states are sorted according to assigned parallel state
times. The result is the sequence S = {s1, s2, . . . s2n∗} where
t[si] ≤ t[sj ] iff i ≤ j. If two or more consecutive states have the
same time, the b-states precede the r-states. The states s1 and s2n∗

are marked as initial state and final state of ẽ, respectively. Finally,
the ε-transitions from si to si+1 are added.

1We assume that the final weights of the used automata are equal to 1̄.

The last step is an assignment of weights so that P (yi ∈ ẽ) =
wR[ui, yi]. All transition weights are set to 1̄ except the transi-
tions leaving r-states. The weights are determined using the for-
ward probabilities α[q]. The forward probabilities of states p[ti], i =
1, 2, . . . n∗ are fixed to:

α
[
p[ti]

]
= wR[ui, yi] (8)

Then the forward probabilities are computed recursively for each
state in ẽ starting from s1. If the recursion reaches the state ri, the
weight of transition gi from ri to p[ti] is determined using

w[gi] =
α
[
p[ti]

]
α[ri]

(9)

and the weight of transition hi from ri to the next state in the se-
quence S is equal to

w[hi] = 1− w[gi] (10)

The weight assignment assures that the⊕-sum of weights of all paths
in ẽ is 1̄ and also that the backward probability of each state is 1̄.
Therefore the posterior probability of factor yi occurring in ẽ is equal
to

P (yi ∈ ẽ) = α
[
p[ti]

]
⊗ w[ti]⊗ β

[
n[ti]

]
= α

[
p[ti]

]
= wR[ui, yi] = P (ui ∈ ũT ) (11)

The acceptor ẽ represents the probability distribution P (E =
e|W = ũ) over all possible paths e ∈ ẽ. Since all transitions of ẽ
except ti are labeled with ε symbols, the ε-removal and determiniza-
tion algorithms can be applied to obtain the optimized acceptor ẽ.
The optimization also sums overlapping semantic entity probabili-
ties while preserving the probability distribution.

3.3. Processing time optimization

In this section we will shortly discuss the computational require-
ments of the proposed algorithm. The processing delay of the se-
mantic entity detection is very important if such an algorithm is used
in spoken dialog systems. There are two computationally demand-
ing steps of the algorithm – the construction of the set F using the
factor automaton and the selection of maximum unambiguous subset
F∗ using ILP.

The time required to construct F is mainly influenced by the
size of the factor automaton R. To limit the size of F , it is possible
to prune the low-probability paths from R. In our experiments, we

Fig. 5: Reconstruction of ẽ from the set F∗, the bold transitions are
isolated transitions which are created first. The values in parenthesis
are forward probabilities α[q], three of them are fixed according to
Eq. 8. Transition weights are computed using Eq. 9 and 10.

87



raw P-3 P-5 WCN

1-best Acc [%] 74.79 75.01 74.92 74.78
Oracle Acc [%] 91.26 84.62 87.60 90.24

# of states 68.15 7.68 12.37 8.40
# of transitions 555.05 9.84 24.03 34.40
Out-degree of states 8.14 1.28 1.94 4.10
WFST gen. time [ms] – 1.05 1.25 17.72

Table 2: Comparison of various lattice representations. The values
in last four rows are averages over the 1439 test sentences used in
experiments. Note: the WCN generation is not optimized for speed.

type z |A| |B| states transitions O

station 7516 3005 34405 5564 417
time 437 221 13375 2898 791
train type 16 10 24 11 140

Table 3: Characteristics of semantic entity grammars compiled into
optimized transducer Tz . |A| and |B| denote the size of an input
alphabet and output alphabet, respectively, and O the number of oc-
currences of the particular semantic entity type in the used data set.

pruned the factor automaton R using the threshold e−5 = 0.0067
which ensures that there is no semantic entity hypothesis in F with
posterior probability lower than this threshold.

After pruning the factor automaton, the set F can contain many
hundreds of variables. The proposed algorithm uses the ILP solver
to select the subset F∗. Since solving the ILP is an NP-hard prob-
lem selecting the subset F∗ has generally exponential complexity.
On the opposite side we have found that only a small number of
members of F has a higher posterior probability. Therefore we can
limit the set F to N -best hypotheses prior to solving the ILP. In our
experiments we used N = 60. In the experimental part we will
shortly discuss the influence of this threshold on the semantic entity
detection performance.

4. EXPERIMENTS

The experiments were performed on the Human-Human Train
Timetable (HHTT) corpus [12]. The corpus contains inquiries and
answers about train connections. The test set of HHTT corpus con-
tains 1439 sentences of total length 45 minutes. The ASR recogni-
tion vocabulary contains 13,886 words and the accuracy of ASR on
the test set is 74.8% with OOV rate 7.5%. We used the following
representations of ASR hypothesis: the best hypothesis (1-best), the
raw unoptimized lattice (raw), the optimized lattice generated using
threshold tp = 3 (P-3) and tp = 5 (P-5) and word confusion net-
work (WCN). To obtain the raw lattices, we used our in-house ASR
decoder [13] which is able to compute directly the transition proba-
bilities. In other words, the raw lattices are normalized, the probabil-
ities of all hypotheses sums to one. For the characteristics of WFSTs
see Tab. 2. It is obvious that the oracle accuracy of WCNs is simi-
lar to the original raw lattices and higher than the oracle accuracy of
both variants of optimized lattices.

The grammars used in our experiments were described in [14].
We used three semantic entities: station, time, train type. The in-
terpretation of the entity station differentiates between departure,
arrival and transit stations, entity time also contains date informa-
tions. The characteristics of corresponding transducers Tz (after

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
FPR [1/utterance]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
R

1-best (AUC=74.2%)
P-3 (AUC=82.4%)
P-5 (AUC=83.5%)
WCN (AUC=80.6%)

Fig. 6: ROC curves for different structures of ASR hypotheses.

semantic entity types 1-best P-3 P-5 WCN

station 72.8 82.7 83.5 80.1
time 78.9 84.8 85.8 84.0
train type 89.0 91.9 94.1 94.8

Table 4: AUC measures in percents for different semantic entities.
Comparison of 1-best, optimized lattices and WCNs.

ε-removal, determinization and minimization) are shown in Tab. 3.
In our experiments, we did not evaluate the number of seman-

tic entities covered by the expert-defined grammars. Instead we fixed
the set of grammars and evaluated the influence of the ASR hypothe-
ses representation on the detection performance. Since the HHTT
corpus does not contain the manually tagged semantic entities, we
first ran the algorithm on the manually annotated transcription to ob-
tain the reference semantic entities.

Then the results of semantic entity detection from ASR hypothe-
ses are evaluated against this reference. For each hypothesis, the
posterior probability P (yi ∈ ẽ) is used as a score. We used the ROC
curve to plot the dependency of detection rate (DR) on the false pos-
itive rate (FPR) which is normalized to express the number of false
alarms per one utterance. The performance is measured using the
computed area under the curve – AUC. The AUC measure represents
the mean detection rate on the interval from 0 to 1 false alarm per
utterance.

First, we evaluated the presented algorithm using the 1-best
word string, optimized lattices P-3 and P-5 and WCNs as an in-
put. The results are depicted in Fig. 6. It is obvious that the use
of multiple hypotheses increases the mean detection rate measured
by AUC from 74.2% for 1-best to 80.6% for WCNs and 83.5% for
optimized lattices P-5. Table 4 compares the AUC measures for a
given entity types. The only type for which the WCNs outperforms
optimized lattices is train type. This is caused by the fact that the
train types are defined as a list of single words (such as passenger,
express, etc.) and the WCNs correctly represent just the unigram
posterior probability (see Sec. 2). The remaining semantic entities
are sequences containing more than one word – stations are preceded
by prepositions, times contain minutes and hours, etc. For these en-
tities the optimized lattices approach outperforms the WCNs. To
validate this hypothesis we split the reference data into two sets –
one containing just semantic entities of one word length (len=1) and
the rest containing longer entities (len>1). The ROC curves for

88



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
FPR [1/utterance]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
D
R

P-5 (len=1) (AUC=91.4%)
P-5 (len>1) (AUC=84.6%)
WCN (len=1) (AUC=91.3%)
WCN (len>1) (AUC=71.2%)
1-best (len=1) (AUC=84.3%)
1-best (len>1) (AUC=74.3%)

Fig. 7: ROC curves for semantic entities composed of a single word
(len=1) and multi-word entities (len>1).

these experiments are shown in Fig. 7. For single-word semantic
entities the curves for P-5 and WCN are almost overlapping. But
for multi-word semantic entities the performance of WCN-based ap-
proach is poor (AUC=71.2%). The semantic entity detection which
uses optimized lattices fully benefits from the use of factor automa-
ton (AUC=84.6%). The factor automaton is able to exactly represent
posterior probabilities of all factors regardless of the factor length.

5. CONCLUSIONS

We presented a fast algorithm for semantic entity detection. In the
experiments, we limited the set of hypothesised semantic entities F
to 60 best hypotheses. Using this threshold we are able to achieve
AUC=83.5% by using the optimized lattices with pruning threshold
tp = 5 (P-5) and average processing time per one utterance 4.59 ms.
By decreasing the threshold to tp = 3 (P-3) the mean detection
rate decreases to AUC=82.4% and processing time per one utterance
decreases to 3.30 ms. Both these results are better than semantic
entity detection from the 1-best hypothesis (AUC=74.2%) and than
the approach based on word confusion networks (AUC=80.6%). By
increasing the threshold toN = 80, the performance of WCN-based
method changes only insignificantly to AUC=80.8% but the average
processing time rises to 205 ms per utterance. For the optimized
lattices the increase ofN does not lead to any change in performance
and the average processing increased to 5.22 ms.

We have also confirmed the theoretical problem (described in
Sec. 2) that the WCNs are not able to model posterior probabilities
of word strings longer than one word. The presented approach based
on the use of factor automaton solves this issue. At the same time
the computational requirements are in order of milliseconds which
allows to use this method in real-time applications. The presented
method based on expert defined CFGs allows rapid prototyping of
a new dialog systems. The method allows to assign posterior prob-
abilities to certain semantic entities. The algorithm can be used as
a knowledge-based SLU itself or in combination with a statistical-
based model such as [1].

6. ACKNOWLEDGEMENTS

This research was supported by the Technology Agency of the Czech
Republic, project No. TE01020197.

7. REFERENCES

[1] Jan Švec, Luboš Šmı́dl, and Pavel Ircing, “Hierarchical Dis-
criminative Model for Spoken Language Understanding,” in
IEEE International Conference on Acoustics Speech and Sig-
nal Processing, Vancouver, Canada, 2013, IEEE.

[2] Frédéric Béchet, Allen L Gorin, Jeremy H Wright, and Dilek
Hakkani Tür, “Detecting and extracting named entities from
spontaneous speech in a mixed-initiative spoken dialogue con-
text: How May I Help You?,” Speech Communication, vol. 42,
no. 2, pp. 207–225, Feb. 2004.

[3] Christian Raymond, Frédéric Béchet, Renato De Mori, and
Géraldine Damnati, “On the use of finite state transducers for
semantic interpretation,” Speech Communication, vol. 48, no.
3-4, pp. 288–304, Mar. 2006.

[4] Dogan Can and Murat Saraclar, “Lattice Indexing for Spoken
Term Detection,” IEEE Transactions on Audio, Speech and
Language Processing, vol. 19, no. 8, pp. 2338–2347, 2011.

[5] Dilek Hakkani-Tür, Frédéric Béchet, Giuseppe Riccardi, and
Gokhan Tur, “Beyond ASR 1-best: Using word confusion net-
works in spoken language understanding,” Computer Speech
& Language, vol. 20, no. 4, pp. 495–514, Oct. 2006.

[6] Natthew Henderson, Milica Gašić, Blaise Thomson, Pirros
Tsiakoulis, Kai Yu, and Steve Young, “Discriminative Spoken
Language Understanding Using Word Confusion Networks,”
in Spoken Language Technology Workshop (SLT), 2012 IEEE,
2012, pp. 176–181.

[7] François Mairesse, Milica Gašić, Filip Jurčı́ček, Simon Keizer,
Blaise Thomson, Kai Yu, and Steve Young, “Spoken lan-
guage understanding from unaligned data using discriminative
classification models,” in IEEE International Conference on
Acoustics, Speech and Signal Processing, 2009. ICASSP 2009.,
Taipei, 2009, pp. 4749–4752, IEEE.

[8] A. Hunt and S. McGlashan, “Speech recognition grammar
specification version 1.0,” W3C Recommendation, Mar. 2004.

[9] Mehryar Mohri, Pedro Moreno, and Eugene Weinstein, “Fac-
tor automata of automata and applications,” Implementation
and Application of Automata, vol. 4783, pp. 168–179, 2007.

[10] Mehryar Mohri, “Semiring frameworks and algorithms for
shortest-distance problems,” Journal of Automata, Languages
and Combinatorics, vol. 7, pp. 321–350, 2002.

[11] Cyril Allauzen, Michael Riley, and Johan Schalkwyk, “Open-
Fst: A general and efficient weighted finite-state transducer
library,” Implementation and Application of Automata, vol.
4783, pp. 11–23, 2007.

[12] Filip Jurčı́ček, Jiřı́ Zahradil, and Libor Jelı́nek, “A human-
human train timetable dialogue corpus,” Proceedings of EU-
ROSPEECH, Lisboa, pp. 1525–1528, 2005.

[13] Aleš Pražák, Josef V. Psutka, Jan Hoidekr, Jakub Kanis, Luděk
Müller, and Josef Psutka, “Automatic online subtitling of the
Czech parliament meetings,” Text, Speech and Dialogue, vol.
4188, no. 1, pp. 501–508, 2006.

[14] Tomáš Valenta, Jan Švec, and Luboš Šmı́dl, “Spoken Dialogue
System Design in 3 Weeks,” Text, Speech and Dialogue, vol.
7499, pp. 624–631, 2012.

89


