
EFFICIENT NEARLY ERROR-LESS LVCSR DECODING BASED ON
INCREMENTAL FORWARD AND BACKWARD PASSES

David Nolden, Ralf Schlüter, Hermann Ney

Human Language Technology and Pattern Recognition Group
RWTH Aachen University, Aachen, Germany
{nolden, schlueter, ney}@cs.rwth-aachen.de

ABSTRACT

We show that most search errors can be identified by
aligning the results of a symmetric forward and backward
decoding pass. Based on this knowledge, we introduce an ef-
ficient high-level decoding architecture which yields virtually
no search errors, and requires virtually no manual tuning. We
perform an initial forward- and backward decoding with tight
initial beams, then we identify search errors, and then we re-
cursively increment the beam sizes and perform new forward
and backward decodings for erroneous intervals until no more
search errors are detected. Consequently, each utterance and
even each single word is decoded with the smallest beam
size required to decode it correctly. On all tested systems we
achieve an error rate equal or very close to classical decod-
ing with ideally tuned beam size, but unsupervisedly without
specific tuning, and at around 2 times faster runtime. An
additional speedup by factor 2 can be achieved by decoding
the forward and backward pass in separate threads.

Index Terms— search, error detection, error-less, decod-
ing, LVCSR, pruning

1. INTRODUCTION
Search space pruning is essential [1, 2] for efficient large vo-
cabulary continuous speech recognition (LVCSR). The most
important pruning method is the global beam pruning, which
limits the hypothesis space based on a specified beam size.
The beam size is typically chosen manually to achieve a spe-
cific tradeoff between accuracy and efficiency.

While it is simple to run several recognitions with differ-
ent beam sizes on a development corpus and choose a beam
size with the desired tradeoff, it is never clear how the same
beam would perform on unseen data, because the optimal
beam size not only depends on the models, but also on the
mismatch between the models and the data which is being
recognized.

Experience has shown that there usually is a specific beam
size at which the precision reaches a limit, but that exact beam
size tends to vary widely on different speech recognition sys-
tems and corpora. The precision and efficiency of speech
recognition systems is very sensitive regarding the beam size,
and even a slight mis-tuning of the beam size can either lead
to an enormous waste of resources, or a significant loss in
precision.

In research, where precision usually is the main factor
measured, it is common practice to choose an exaggerated
beam size to be on the safe side when dealing with unknown
input data, which results in suboptimal efficiency.

In this work we introduce an algorithm which unsuper-
visedly recognizes each utterance and even each word with
(nearly) exactly the beam size required to recognize it cor-
rectly, without manual tuning, and without a transcription of
the recognized text to tune with. We achieve this by incre-
mentally detecting search errors through symmetric forward-
and backward decoding passes, and then re-recognizing the
erroneous portions of the signal with incremented beam sizes,
until no more errors are detected.

Previous uses of forward / backward decoding in LVCSR
can be split into two general categories: Firstly as a speedup
technique, where the results of the forward decoding pass
are used to guide the backward decoding pass [3, 4], basi-
cally creating a very advanced look-ahead similar to [5], but
with much more complex involved models, and with a much
longer look-ahead range. Secondly as a technique to gen-
erally improve the modelling precision by building separate
forward- and backward models and combining the results us-
ing ROVER or similar techniques [6, 7, 8]. In this work, we
build a backward pass which is exactly equivalent to the for-
ward pass regarding the involved models like the authors of
[4], but we combine the passes in the opposite way: Instead
of making one pass depend on the other pass, we rather make
both passes as independent as possible regarding the search
space, in order to detect the occurred search errors based on
the independent forward and backward decoding results.

While the primary goal of this work is to deterministically
and unsupervisedly achieve the best possible precision at rea-
sonable runtime efficiency, we will also show that our incre-
mental decoding is considerably faster than classical decod-
ing with a static beam size tuned to achieve the same accuracy,
because for most utterances a much smaller beam suffices to
find the correct word sequence.

2. SEARCH ERROR DETECTION
Viterbi search tries to find the best scoring path through
the HMM search network. Beam pruning restricts how far
the decoder considers hypotheses which temporarily have a
bad score relative to the best one. As a simple abstraction,
the search space can be considered a 3-dimensional surface,
where the x and y axis represent a combination of an HMM
state and a timeframe index, and the z axis is the local score
(emission and language model score combined). The goal
of the decoder then is to find a valid path over the surface
which minimizes the accumulated scores. A search error
occurs whenever the globally best path crosses a valley of
bad scores, but there is an alternative path which seems more
promising at the given time, and the global beam is too tight
to let the decoder hypotheses cross the valley. Figure 1 illus-

66978-1-4799-2756-2/13/$31.00 ©2013 IEEE ASRU 2013

trates such a search error based on a decoder which can only
recognize two alternative single-words. The actual search
space in LVCSR is cyclic and contains tens of thousands of
words, however the same principles apply. In the illustration,
the decoder follows the path of lowest resistance based on its
tight beam, which leads through the wrong upper word, while
the globally best path leads through the correct lower word,
thus a search error occurs.

0 10 20 30 40 Time / State

S
ta

te Correct Path

Forward Path

Forward Beam

a)

b)

Good Score

Bad Score

Wrong Word

Correct Word

Fig. 1. Forward search with tight beam finds the wrong word.

Figure 2 illustrates a backward search based on the same
models, which detects the correct lower path. If forward and
backward search yield different paths then we know that at
least one is wrong.

0 10 20 30 40 Time / State

S
ta

te

Backward Path

Backward Beam

a)

b)

Good Score

Bad Score

Wrong Word

Correct Word

Correct Path

Fig. 2. The backward search (coincidentally) finds the correct
word even with a tight beam.

In this example, if we widen the beam size for the forward
search which produced the worse scoring path, then the for-
ward search finds the correct lower path leading throught the
correct word too (see Figure 3).

Since the global optimum of the forward and backward
pass are the same, it is clear that a mismatch in the forward
and backward pass proves the occurence of a search error.
However, does an equality of the forward and backward pass
result also prove the absence of a search error? The answer is
clearly no: Consider Figure 4. If the correct path is isolated
by a score valley on both sides, and the path of lowest resis-
tance for both the forward and backward search lead through
the same word, then the same search error occurs in both the
forward and the backward pass.

However, in LVCSR it is very unlikely that forward and
backward search yield exactly the same search error, for the
following reasons:

0 10 20 30 40 Time / State

S
ta

te

Forward Path

Forward Beam

a)

b)

Good Score

Bad Score

Wrong Word

Correct Word

Correct Path

Fig. 3. With a wider beam, the forward search finds the cor-
rect word too.

0 10 20 30 40 Time / State

S
ta

te

Correct Path

Forward /

Backward Path

Forward /

Backward Beam

a)

b)

Good Score

Bad Score

Wrong Word

Correct Word

Fig. 4. Problem: Forward and backward search both find the
wrong word based on a tight beam.

1. When the globally best path leads through a valley of
bad scores, then that valley must be followed by much
better scores, otherwise the path would not be the glob-
ally best path. Therefore, if the globally best word
starts with bad scores, it is very likely that it ends with
good scores, and thus, the more likely it is that the
forward search yields a specific search error, the less
likely it is that the backward search yields the same
error, and vice versa. An obvious problem here are
long words, because long words can start and end with
bad scores, but have plently of time in between to out-
weight the mismatched start and end with good scores
(like in Figure 4). However, in LVCSR, the vocabu-
lary consists of thousands up to millions of different
words, all based on the same underlying acoustic mod-
els. Most probably, the phoneme sequence which forms
the well-scoring central part of the correct word in Fig-
ure 4 would also be covered by combinations of other
smaller words, and the forward and backward search
would recognize different sequences of those words,
rather than a common long unlikely alternative word.

2. In general, as long as the models are asymmetric (eg. at
least a bigram language model), each search direction
does its local pruning decisions purely based on knowl-
edge which is yet completely hidden to the other direc-
tion (eg. forward decoder based purely on past, back-
ward decoder based purely on future). Thus decoder er-
rors of both directions can be considered independent,
and therefore the a priori likelihood of both directions

67

doing the same search error is 1/N where N is the size
of the vocabulary (ignoring the reasoning mentioned in
1.). The caveat here are some components of the mod-
els which are inherently symmetric (see Section 4).

The following experiments will show that we indeed can
detect the majority of all search errors by aligning the result
of a symmetric forward and backward decoding pass.

3. BACKWARD DECODING
In order to detect search errors as described in Section 2
we must be able to perform exactly symmetric decoding for
the forward and backward pass, eg. the globally best path
and its score (and thus also the best word sequence) must
be exactly the same for the forward and backward search.
We perform our experiments based on a dynamic network
decoder following the word conditioned tree search approach
with a minimized search network, full-order sparse language
model (LM) look-ahead, and acoustic look-ahead, as de-
scribed in [9]. Reversing the search network of such a de-
coder is relatively straightforward: During construction of the
single-word search network, we simply reverse the phoneme
sequences of words and their context-dependency. Addition-
ally an exactly reversed n-gram LM is required, which we
reverse using the mechanism described in [4] using a script
which was kindly published by the authors. Furthermore, as
our decoder allows no skip transitions from the previous-to-
last HMM state of a word into the first HMM state of the
successor word, we need to forbid skip transitions starting at
virtual root states, because those are the equivalent transitions
in the reversed search network.

4. DEGENERATED SEARCH
There are certain situations in which the independence be-
tween forward and backward decoding as described in Sec-
tion 2 is not given.

Firstly, the LM is in parts symmetric: Both the forward
and the backward LM have a shared unigram back-off level
in which words are biased the same way from both directions.
This is specifically problematic when the LM training data is
limited, because then the unigram component plays a larger
role regarding the overall scores.

Secondly, the non-word noise models (silence etc.) usu-
ally are not modelled by the LM and thus have an LM score of
zero. If the beams are much too tight, then the search hypothe-
ses of both the forward and the backward pass may focus only
on the noise models, and thus produce the same search error
in forward and backward search.

To somewhat prevent such degenerated decoding, we en-
force a specific minimum search space size. However the size
of the search space is very system-specific and also depends
on the confidence of a specific segment, thus we keep these
limits very low, and rather rely on automatic beam adaptation
to steer the beam into reasonable areas (the search error rate
should stay below 50%, see Section 7).

5. REPETITIVE DECODING
Based on the forward / backward search error detection in-
troduced in the previous sections, we can perform virtually
error-less decoding by applying Algorithm 1 to each utter-
ance.

However this algorithm wastes resources if the utterances
are large, because the whole utterance is re-recognized with a

Loop:
Perform forward and backward decoding, align
results.
If an error (eg. mismatch) was detected:

Increment the beam size, go back to Loop.
If no error was detected:

We’re ready, the utterance was (probably)
recognized without search errors.

Algorithm 1: Repetitive forward-backward search.

larger beam even if only a small portion of the utterance was
recognized wrongly.

6. INCREMENTAL DECODING
The effect of search errors is local. We know from the word
pair approximation [10] that the start time of one word mainly
depends on the predecessor word, but that the effect of ear-
lier words regarding the acoustic alignment fades out very
quickly. Thus, if we want to correct a detected search er-
ror, it may be sufficient regarding the acoustic alignment to
re-recognize the erroneous portion plus one correctly recog-
nized context word. The boundary time between the correct
context word and the wrongly recognized words would proba-
bly change, but the boundary time between the correct context
word and the its outer context is static following the word pair
approximation, and thus would be left untouched.

Based on this idea, we can only updates those portions
of the utterance which were recognized erroneously, plus one
surrounding correctly recognized context word on each side,
following Algorithm 2.

Start: Refine(0, T , ()).

Refine(S, T , C):
Perform forward and backward decoding on
timeframes S ... T , with decoder context C.
Align forward and backward results:

Align overlapping words with equal identity.
Select closed ranges of aligned words.
For each range, discard boundary words until
their inner boundary time matches.
Discard ranges which are shorter than n− 1.

For each interval S′ ... T ′ not covered by the
aligned ranges:

Extend the interval by one aligned context
word, and build the new decoder context C ′

based on the surrounding words and the
acoustic word boundaries.
Refine(S′, T ′, C ′).

Combine refined results with results that were
already recognized correctly.

Algorithm 2: Incremental forward-backward search.

Figure 5 illustrates the recursive search algorithm based
on a simple made up english example. Overall, when accu-
mulating the runtime of all passes, the recursive algorithm is
still faster (with a real time factor of 2 · 2.4 = 4.8) than when
recognizing the whole sequence with the beam size which
would be required to recognize all words correctly in the first
forward-pass alone (eg. 5.4).

68

Initial decode: I head that the cat ate the dog

I heard at a cat ate the dog

Align:

Select ranges:

Decode 2: I heard that the cat

 I heard that a cat

Align:

Select ranges:

that the cat

that the cat

Decode 3:

(RTF = 2 x 0.7)

(RTF = 2 x 1.5)

(RTF = 2 x 5.2)

Combine:
(total RTF = 4.8)

 I heard that the cat ate the dog

Align:

Fig. 5. Illustration of incremental forward-backward search.

Special care has to be taken regarding the n-gram LM, be-
cause it depends on n − 1 predecessor words. We can only
update multiple erroneous sub-ranges if there are at least n−1
correctly recognized words between them, because otherwise
the updated ranges are not independent. Therefore we merge
all update ranges which are not divided by at least n− 1 cor-
rectly recognized words.

Furthermore, our error detection algorithm is not 100%
reliable, and the word pair approximation is just an approxi-
mation which may not hold in all cases, thus it may happen
that words which were earlier marked as correctly recognized
change when they are re-recognized as context words with a
larger beam. If this happens, then we go back one step up-
wards, mark the corresponding word as mismatch, thereby
extending the corresponding update range (or merging it with
other ranges), and then we re-recognize the grown update
range(s). Fortunately this happens so rarely that it has a minor
effect on the overall efficiency.

It may happen, either due to numerical instabilities, or be-
cause finding the correct path is simply not feasible under re-
alistic pruning constraints (eg. histogram pruning), that we
fail to ever find the same word sequence in forward and back-
ward decoding, and thus might end in an endless loop of ever
growing beam sizes. For this case, we have integrated two
abortion points: If the histogram pruning is fully saturated for
at least 50% of all frames, or if the beam pruning has crossed
a specific absolute value (eg. typically 50 times the LM scal-
ing factor), then we give up. Fortunately, this also happens
rarely, typically in less than 0.3% of all utterances. Addition-
ally we define a tolerance parameter l: If the difference be-
tween the score found in the forward pass and the backward
pass is lower than or equal to this value, then we count it as a
match, no matter how the alignment looks. This parameter is
specifically important in cases where the models can produce
different paths with exactly the same scores.

In order to correctly update subranges of an utterance
with across-word acoustic modelling and an n-gram LM, we
need to correctly re-initialize the decoder to start with the
corresponding left LM context and with the corresponding
left acoustic context, and to choose the final state with the
correct corresponding right acoustic context and considering
the right LM context in the final language model score. We
achieve this by encoding the search network state used to
cross the word boundaries in the lattice, and while updating
we enforce those corresponding boundary states from the
previous decoding pass to be used. Correctly initializing and
finalizing the LM context is trivial in a dynamic network

decoder.
Computing emission scores usually takes a significant

portion of the total runtime, thus we share computed emis-
sion scores between the forward- and backward pass, and
between initial and later passes.

7. INITIAL BEAM ADAPTATION
The beam size used for the initial decoding is important, be-
cause we may miss search errors if the initial decoding is de-
generated. On the other hand, if the initial beam size is too
large, then we may lose the efficiency advantage which we
get from the incremental decoding. Therefore we start with
an exaggerated initial beam size, but then we adapt the initial
beam size on-the-fly to match a specific initial search error.

We compute the initial search error rate for an utterance
as follows:

R =
(F +B − 2 · C)

F +B
(1)

Where F is the number of tokens produced by the forward
search, B is the number of tokens produced by the backward
search, and C is the number of tokens that were recognized
correctly. After each processed utterance, we permanently
tighten the initial beam size used for the next utterances if the
initial search error rate was below our target error rate, oth-
erwise we widen the beam. Our target search error rate used
for the following experiments is 20%, which corresponds to a
degradation of 20% absolute in precision.

Since we always randomize the order in which utterances
are processed by the decoder, we can be sure that we don’t
over-adapt the beam size regarding a specific speaker or con-
dition. Otherwise special care would have to be taken to
prevent the initial beam from becoming problematically tight
(see Section 4).

8. STRICTNESS
But what exactly do we consider a search error? In the most
strict interpretation, a search error occurs whenever both
passes don’t produce exactly the same token sequence (in-
cluding silence and noise tokens) with equal boundary times
and equal scores. However, such a strict interpretation may
be exaggerated, as all we usually really care about is finding
the correct word sequence. Since we use the outcome of the
initial decoding to adapt the beam size, we use a more strict
interpretation during the initial decoding and the later incre-
mental decodings, to prevent mis-tuning of the initial beam.
During initial decoding, we enforce equal boundary times and
equal scores for all tokens (including noise tokens). During
the incremental decodings, we only compare the identities of
word tokens, but ignore noise tokens, boundary times, and
scores.

9. EXPERIMENTAL RESULTS
The primary advantage of our proposed framework is the ro-
bustness and convenience: No specific tuning is required, and
we hope the system to blindly achieve a very good precision
at reasonable runtime, independently of the data which is be-
ing recognized. To validate this robustness, we test the system
on a variety of different languages.

We perform experiments on our Cantonese, Vietnamese,
Turkish, Pashto, and Tagalog systems which we trained for
the IARPA Babel program as part of the LORELEI consor-
tium [11] under the BabelLR condition (eg. only resources
supplied by the program were used for training). All those

69

systems were constructed with a very similar anatomy: Deep
hierarchical bottleneck MLP features [12] are concatenated
with MFCC or Gammatone features, a voicedness feature,
and a tone feature. Based on those featuers, 2-pass acoustic
models with a tied covariance matrix comprising around 4500
Gaussian mixtures based on a triphone CART with across-
word acoustic modelling, and overall around 75 Gaussian
densities per mixture, are trained. Confidence-weighted CM-
LLR adaptation and MPE training is used for the second pass.
A 4-gram Kneser-Ney LM is trained on the transcription of
the acoustic training data (except for Vietnamese where only
a 2-gram LM is used). We perform all experiments on the
second pass only. The vocabulary is supplied by the Babel
program and typically contains around 20k to 40k pronun-
ciations. The training data typically comprises around 70
hours of real speech (not counting silence) with 1 to 2 million
running words. The test corpus used for our experiments
consists of around 7 hours of real speech. The used seg-
mentation is supplied by IBM, and typical utterances have
a length of 3 to 7 seconds. Most of the data are challeng-
ing low quality recordings of telephone conversations. The
performance of the models is competitive both within the
LORELEI consortium and across, as confirmed during the
2013 Babel evaluation campaign.

Where not stated otherwise, real time factors (RTF) were
measured directly on our computing cluster consisting pri-
marily of 16-core AMD Opteron machines with around
2.6Ghz, under full load. Each run was split up into 120
sub-jobs which were scheduled separately, to reach a good
randomized distribution among the different cluster nodes.
The runtime on a dedicated Intel Core2 Duo 2.8Ghz desktop
machine is typically 2 to 3 times faster than the reported
numbers. We have verified that the reported numbers are
representative based on a large number of experiments.

For all experiments, the word end pruning beam is kept in
a linear relationship to the primary global beam, typically by
the factor 0.5. The histogram pruning is configured to cap the
size of the search space at 200k state hypotheses.

Figure 6 shows the results achieved on the Babel Turkish
task. The best achievable WER with a statically tuned beam
is 49.6% at an RTF of 9.5, and 49.7% is achieved at RTF 4.75.
We achieve a WER of 49.7% using incremental decoding at
an overall accumulated RTF of 1.72, which is nearly three
times faster than the statically tuned beam for the same WER.
By performing the forward and backward search in separate
threads, we can achieve an additional speedup nearly by fac-
tor 2.

 49.6
 49.8

 50
 50.2
 50.4
 50.6
 50.8

 51
 51.2

 0 1 2 3 4 5 6 7 8 9 10

W
E

R

RTF

Static Beam
Incremental

+ Multithread

Fig. 6. Babel Turkish.

Figure 7 shows the results achieved on Cantonese (the
character error rate is used for evaluation rather than the word
error rate). The achieved CER is again 0.1% above the best
error rate achieved using a statically tuned beam, but at an
RTF which is more than 2 times faster than the static beam at
equal precision.

 41

 41.5

 42

 42.5

 43

 43.5

 44

 0 1 2 3 4 5 6 7 8 9 10

C
E

R

RTF

Static Beam
Incremental

Fig. 7. Babel Cantonese.

Figure 8 shows the results achieved on Vietnamese (the
evaluated value is the token error rate here, because the sys-
tem uses morphemes rather than full words). The incremental
decoding achieves the best possible TER at an RTF which is
more than 3 times faster than the statically tuned beam.

 53

 53.5

 54

 54.5

 55

 0 1 2 3 4 5 6 7 8 9

T
E

R

RTF

Static Beam
Incremental

Fig. 8. Babel Vietnamese.

Figure 9 shows the results achieved on Pashto. The
achieved WER is 0.1% above the optimum, however at a con-
siderably faster RTF than the static beam at equal precision.

 52

 52.5

 53

 53.5

 54

 0 1 2 3 4 5 6 7 8 9

W
E

R

RTF

Static Beam
Incremental

Fig. 9. Babel Pashto.

Figure 10 shows the results achieved on Tagalog. The

70

achieved WER is 0.1% above the optimum, however at an
RTF which is 2 to 3 times faster than the static beam at equal
precision.

 50

 50.5

 51

 51.5

 52

 52.5

 53

 0 1 2 3 4 5 6 7 8

W
E

R

RTF

Static Beam
Incremental

Fig. 10. Babel Tagalog.

We see that we can deterministically achieve a precision
very close to the optimum, without knowing the reference,
and at an RTF which faster than the static beam tuned for the
same precision. This may be surprising, because we decode
everything at least twice, once forward and once backward.
However, two fast decodings with a tight beam can be faster
than one slow decoding with a large beam, and since most
speech is already recognized correctly with a relatively tight
beam, we can save a lot of effort by only applying a large
beam to those portions of speech which really need it.

10. CONCLUSIONS
• We have shown that most search errors can be detected

by aligning a symmetric forward and backward decod-
ing pass. There are plenty of applications for unsuper-
vised search error detection, for example for unsuper-
vised tuning of decoder beam sizes without using a spe-
cific development corpus.

• We have introduced a decoding architecture which ex-
ploits automatic search error detection to efficiently
achieve a precision very close to the global optimum,
but without requiring a development corpus for tuning,
without any human intervention, and at an RTF around
two times faster than when trying to achieve the same
precision using statically tuned beam sizes (four times
faster when using separate threads for the forward and
backward search). Each segment, and even each indi-
vidual word, is recognized with just the right beam size
required for correct recognition.

• Such an architecture is especially useful when rapidly
developing new ASR systems, when time constraints
do not allow exhaustive tuning of decoder parameters,
when no development corpus is available, if a signifi-
cant mismatch between the development and the eval-
uation corpus can be expected which would lead to a
mis-tuning of the decoder parameters, or simply if the
person operating the decoder is not able or not willing
to properly tune it.

• On a higher level we have shown that search with
virtually no search errors is possible under common
time and memory constraints, even when following
the classical decoding approach with fixed beams. On
most systems the incremental decoding could success-
fully eliminate all detectable search errors on more

than 99.7% of all segments under the given histogram
pruning constraints.

11. ACKNOWLEDGEMENTS
This work was partly realized under the Quaero Programme,
funded by OSEO, French State agency for innovation.

Supported by the Intelligence Advanced Research Projects
Activity (IARPA) via Department of Defense U.S. Army Re-
search Laboratory (DoD / ARL) contract number W911NF-
12-C-0012.1

12. REFERENCES

[1] D. Nolden, R. Schlüter, and H. Ney, “Extended Search Space
Pruning in LVCSR,” 2012, ICASSP.

[2] D. Nolden, R. Schlüter, and H. Ney, “Search Space Pruning
Based on Anticipated Path Recombination in LVCSR,” in In-
terspeech, Portland, OR, USA, September 2012.

[3] L. Nguyen, R. Schwartz, and P. Placeway, “Search algorithms
for software-only real-time recognition with very large vocab-
ularies,” in Proceedings of the Workshop on Human Language
Technology, 1993, pp. 91–95.

[4] M. Hannemann, D. Povey, and G. Zweig, “Combining for-
ward and backward search in decoding,” in ICASSP, Vancou-
ver, Canada, May 2013, pp. 6739–6743.

[5] D. Nolden, R. Schlüter, and H. Ney, “Acoustic Look-Ahead for
More Efficient Decoding in LVCSR,” in Interspeech, Florence,
Italy, August 2011.

[6] Wafi Abo-Gannemhy, Itshak Lapidot, and H. Guterman,
“Speech recognition using combined forward and backward
Viterbi search,” in IEEE Convention of the Electrical and Elec-
tronic Engineers in Israel, 2010.

[7] M. Tang and P. Di Cristo, “Backward viterbi beam search
for utilizing dynamic task complexity information,” in Inter-
speech, Brisbane, Australia, September 2008.

[8] Ta Li, Changchun Bao, Weiqun Xu, Jielin Pan, and Yonghong
Yan, “Improving voice search using forward-backward lvcsr
system combination,” in The Sixth International Symposium
on Neural Networks (ISNN 2009), vol. 56 of Advances in Intel-
ligent and Soft Computing, pp. 769–777. Springer Berlin Hei-
delberg, 2009.

[9] D. Nolden, D. Rybach, R. Schlüter, and H. Ney, “Joining Ad-
vantages of Word-Conditioned and Token-Passing Decoding,”
2012, ICASSP.

[10] S. Ortmanns, H. Ney, and X. Aubert, “A Word Graph Algo-
rithm for Large Vocabulary Continuous Speech Recognition,”
January 1997, vol. 11, pp. 43 – 72, Computer, Speech and Lan-
guage.

[11] B. Kingsbury, J. Cui, X. Cui, M. Gales, K. Knill, J. Mamou,
L. Mangu, D. Nolden, M. Picheny, B. Ramabhadran,
R. Schlüter, A. Sethy, and P. Woodland, “A high-performance
cantonese keyword search system,” in ICASSP, Vancouver,
Canada, May 2013, pp. 8277–8281.

[12] Zoltán Tüske, Ralf Schlüter, and Hermann Ney, “Deep hierar-
chical bottleneck MRASTA features for LVCSR,” in ICASSP,
Vancouver, Canada, May 2013, pp. 6970–6974.

1The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright annota-
tion thereon. Disclaimer: The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of IARPA,
DoD/ARL, or the U.S. Government.

71

