
Speaker Adaptation of Neural Network Acoustic
Models Using I-Vectors

George Saon, Hagen Soltau, David Nahamoo and Michael Picheny

IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598

Abstract—We propose to adapt deep neural network (DNN)
acoustic models to a target speaker by supplying speaker identity
vectors (i-vectors) as input features to the network in parallel with
the regular acoustic features for ASR. For both training and test,
the i-vector for a given speaker is concatenated to every frame
belonging to that speaker and changes across different speakers.
Experimental results on a Switchboard 300 hours corpus show
that DNNs trained on speaker independent features and i-
vectors achieve a 10% relative improvement in word error rate
(WER) over networks trained on speaker independent features
only. These networks are comparable in performance to DNNs
trained on speaker-adapted features (with VTLN and FMLLR)
with the advantage that only one decoding pass is needed.
Furthermore, networks trained on speaker-adapted features and
i-vectors achieve a 5-6% relative improvement in WER after
hessian-free sequence training over networks trained on speaker-
adapted features only.

I. INTRODUCTION

Given the recent popularity of deep neural networks for
acoustic modeling, speaker adaptation of DNNs is an active
area of research [1], [2], [3], [4], [5]. However, the portability
of transform-based approaches like MLLR that work well
for Gaussian mixture models to DNNs is not straightforward.
Unlike Gaussian means or variances which can be transformed
together if they belong to the same acoustic class (phones,
HMM states or clustered versions thereof), it is hard to
find structure in the weights of a neural network . Rather,
researchers have looked at approaches analogous to MAP for
GMMs where the weights of the network are updated directly
using the adaptation data of a given speaker. The problem
with this approach is that the number of parameters that are
updated far exceeds the amount of adaptation data available
which can lead to overfitting and some form of regularization
is necessary [5]. Alternatively, [2] have looked at adapting
only the biases. Another approach suggested in [1] is to add
a linear layer between the frames and the input layer that can
be trained similar to FMLLR (although with a cross-entropy
criterion instead of ML).

Yet another approach that is getting some traction in the
literature is to sidestep the network adaptation problem alto-
gether and train networks on speaker-adapted features instead.
Such features can be extracted using the speaker normalization
machinery readily available for GMM-HMMs such as vocal
tract length normalization and feature-space MLLR. This
approach works well despite the fact that the VTLN and
FMLLR transforms are estimated assuming a GMM-HMM
acoustic model and are now being used in conjunction with a
DNN-HMM.

A better way might be to provide the network with untrans-
formed features and let it figure out the speaker normalization
during training. In order to do that, the network has to be
informed which features belong to which speaker. This can
be accomplished by creating two sets of time-synchronous
inputs: one set of acoustic features for phonetic discrimination
and another set of features that characterize the speaker which
provided the audio for the first set of features. This idea is
similar to [3] with one important difference: in our proposed
work, the features which characterize a speaker are the same
for all the data of that speaker. Another work relevant to
ours is [4], where the authors propose to learn speaker codes
which are fed to a speaker adaptation network. The network
produces speaker-adapted features which form the input to
a regular DNN. The main difference in our proposed work
(besides using i-vectors instead of speaker codes) is that we
train a single network that does speaker adaptation and phone
classification simultaneously instead of two separate networks.
Lastly, noise-aware DNNs proposed in [6], which use as input
uncompensated features and time-dependent estimates of the
noise, are also relevant to our work.

Why speaker recognition features should be helpful can
be shown through a simple thought experiment. Imagine that
there are two types of speakers, say A and B, which differ in
the way they pronounce the phone /AA/. Speaker type A uses
the canonical pronunciaton /AA/ whereas speaker type B sys-
tematically pronounces it as /AE/. A DNN without speaker fea-
tures will tend to classify B’s /AA/ as /AE/ because statistically
there will be more /AE/’s with canonical pronunciations in the
training data. A DNN with speaker identity features however,
will learn to significantly increase the output score for /AA/
when presented with /AE/ acoustics for speakers of type B (but
not for speakers of type A). In other words, the network can
learn speaker-dependent transforms for the acoustic features in
order to create a canonical phone classification space in which
inter-speaker variability is significantly reduced.

I-vectors [7] are a popular technique for speaker verifi-
cation and speaker recognition because they encapsulate all
the relevant information about a speaker’s identity in a low-
dimensional fixed-length representation [8]. This makes them
an attractive tool for speaker adaptation techniques for ASR.
A concatenation of i-vectors and ASR features is used in [9]
for discriminative speaker adaptation with region dependent
linear transforms. I-vectors are also employed in [10], [11]
for clustering speakers or utterances on mobile devices for
more efficient adaptation. The attractiveness of i-vectors and

55978-1-4799-2756-2/13/$31.00 ©2013 IEEE ASRU 2013

these previous works (notably [9]) motivated us to look at their
applicability to speaker adaptation of DNNs for ASR.

The paper is organized as follows: in section II we review
the i-vector extraction method, in section III we provide some
experimental results for DNNs trained with and without i-
vectors on the Switchboard English conversational telephone
task, and in section IV we summarize our findings.

II. I-VECTOR TECHNIQUE

Here we describe the main ideas behind the i-vector tech-
nique. Allthough an exhaustive treatment of i-vectors can be
found in many works (see, for example, [8] and the references
therein), we outline the main points here in order for the paper
to be self-contained.

Borrowing some notations from [10], the acoustic feature
vectors xt ∈ IRD are seen as samples generated from a
universal background model (or UBM) represented as a GMM
with K diagonal covariance Gaussians

xt ∼
K

∑

k=1

ckN (·; µk(0),Σk) (1)

with mixture coefficients ck, means µk(0) and diagonal co-
variances Σk. Moreover, data xt(s) belonging to speaker s

are drawn from the distribution

xt(s) ∼
K

∑

k=1

ckN (·; µk(s),Σk) (2)

where µk(s) are the means of the GMM adapted to speaker
s. The essence of the i-vector algorithm is to assume a linear
dependence between the speaker-adapted means µk(s) and the
speaker-independent means µk(0) of the form

µk(s) = µk(0) + Tkw(s), k = 1 . . .K (3)

Tk, of size D × M , is called the factor loading submatrix
corresponding to component k and w(s) is the speaker identity
vector (”i-vector”) corresponding to s. Each Tk contains M

bases which span the subspace with important variability in the
component mean vector space. The two questions that need to
be answered are: (i) given Tk and speaker data {xt(s)} how
do we estimate w(s)? and (ii) given training data {xt} how
do we estimate the matrices Tk?

A. I-vector estimation

From a bayesian perspective, w is treated as a latent variable
with a 0-mean, identity covariance Gaussian prior distribution
and we estimate the posterior distribution of w given speaker
data {xt(s)}, i.e. p(w|{xt(s)}). Under the assumption of a
fixed (soft) alignment of frames to mixture components, it
can be shown that this posterior distribution is Gaussian [12]

p(w|{xt(s)}) = N (w;L−1(s)
K

∑

k=1

T
T
k Σ

−1

k θk(s),L−1(s))

(4)

with precision matrix L(s) of size M × M expressed as

L(s) = I +

K
∑

k=1

γk(s)TT
k Σ

−1

k Tk (5)

The quantities that appear in (4) and (5) are the zero-order
and centered first-order statistics and are defined as

γk(s) =
∑

t

γtk(s), (6)

θk(s) =
∑

t

γtk(s)(xt(s) − µk(0)) (7)

with γtk(s) being the posterior probability of mixture com-
ponent k given xt(s). The i-vector that we are looking for is
simply the MAP point-estimate of the variable w which is the
mean of the posterior distribution from (4), i.e.

w(s) = L
−1(s)

K
∑

k=1

T
T
k Σ

−1

k θk(s) (8)

B. Factor loading matrix estimation

Model hyperparameters {T1, . . . ,TK} are estimated using
the EM algorithm to maximize the ML objective function [13]

Q(T1, . . . ,TK) = −
1

2

∑

s,t,k

γtk(s)
[

log |L(s)|

+ (xt(s) − µk(s))T
Σ

−1

k (xt(s) − µk(s))
]

(9)

which can be written equivalently as

Q(T1, . . . ,TK) = −
1

2

∑

s,k

[

γk(s) log |L(s)|

+ γk(s)Tr{Σ−1

k Tkw(s)w(s)T
T

T
k }

− 2Tr{Σ−1

k Tkw(s)θk(s)T }
]

+ C (10)

The term log |L(s)| comes from the logarithm of the posterior
p(w|{xt(s)}) evaluated in w(s). Taking the derivative of (10)
with respect to Tk and setting it to 0 leads to collecting the
sufficient statistics [8]

Ck =
∑

s

θk(s)wT (s), (11)

Ak =
∑

s

γk(s)(L−1(s) + w(s)wT (s)) (12)

where L
−1(s) and w(s) are given respectively by (5) and (8)

for speaker s. The factor loading submatrices are updated as
follows

Tk = CkA
−1

k , k = 1 . . .K (13)

56

In summary, the i-vector extraction transforms are estimated
iteratively by alternating between the E-step (11),(12) and the
M-step (13).

C. Integration with a DNN

As shown in Figure 1, the procedure for using i-vectors
with a neural network is as follows. First, the speaker data
{xt(s)} is aligned with the GMM to estimate the zero-order
and first-order statistics from (6) and (7). These quantities are
then used to estimate the i-vector w(s) via (5) and (8). Next,
w(s) is concatenated to every frame xt(s) to form the input
for neural network training or decoding.

x (s)

(s)w

xT(s)

(s)w

1

. . .

. . .

I−
ve

ct
or

 e
xt

ra
ct

io
n

Fig. 1. I-vector extraction and input features for a neural network.

III. EXPERIMENTS AND RESULTS

Following [1], we conducted our experiments on a 300 hour
subset of the Switchboard English conversational telephone
speech task. We report results on the testsets that were used
during the Hub5 2000 and Rich Transcription 2003 Darpa
evaluations which will be referred to as the Hub5’00 and
RT’03 evaluation sets. These testsets contain 2.1 hours of
audio, 21.4K words and 7.2 hours of audio, 76K words,
respectively.

A. Frontend processing

Speech is coded into 25 ms frames, with a frame-shift
of 10 ms. Each frame is represented by a feature vector
of 13 perceptual linear prediction (PLP) cepstral coefficients
which are mean and variance normalized per conversation side.
Every 9 consecutive cepstral frames are spliced together and
projected down to 40 dimensions using LDA. The range of this
transformation is further diagonalized by means of a global

semi-tied covariance transform. Additionally, for the speaker-
adapted features, the cepstra are warped with vocal tract length
normalization (VTLN) prior to splicing and projection. Then,
one feature-space MLLR (FMLLR) transform per conversation
side is computed on top of the LDA features at both training
and test time using a GMM-HMM system.

B. I-vector extraction

We use the maximum likelihood criteria to train two
2048 40-dimensional diagonal covariance GMMs: one for the
speaker-independent and one for the speaker-adapted feature
sets. These GMMs were used to precompute the zero and
first-order statistics via (6) and (7) for all the training and
test speakers. The i-vector extraction matrices T1, . . . ,T2048

were initialized with values drawn randomly from the uniform
distribution in [−1, 1] and were estimated with 10 iterations of
EM by alternating the sufficient statistics collection (11),(12)
and the factor subloading matrix update (13). Once the matri-
ces were trained, we extracted M -dimensional i-vectors for all
the training and test speakers. This procedure was repeated for
3 different values of M : 40, 100 and 200. Lastly, the i-vectors
were scaled so that they have approximately unit variance on
the training data for neural network training.

C. DNN training

Several networks were trained which differ in the type of
input features: speaker-independent (SI) and speaker-adapted
(SA) and in whether they have i-vector input or not. All
networks share the following characteristics. The input fea-
tures use a temporal context of 11 frames as suggested in [1]
meaning that the input layer has either 40 × 11 + M (for
M ∈ {40, 100, 200}) or 40 × 11 neurons for nets with and
without i-vector inputs. The training data is divided randomly
at the speaker level into a 295 hours training set and a 5 hours
held-out set.

All nets have 6 hidden layers with sigmoid activation
functions: the first 5 with 2048 units and the last one with
256 units for parameter reduction and faster training time [14].
The output layer has 9300 softmax units that correspond to
the context-dependent HMM states obtained by growing a
phonetic decision tree with pentaphone crossword context.

Following the recipe outlined in [1], the training data is
fully randomized at the frame level within a window of 25
hours and we trained the nets with stochastic gradient descent
on minibatches of 250 frames and a cross-entropy criterion.
Prior to the cross-entropy training of the full network, we used
layerwise discriminative pretraining by running one cross-
entropy sweep over the training data for the intermediate
networks obtained by adding one hidden layer at a time.
Additionally, we applied hessian-free sequence training for
some of the networks using a state-based minimum Bayes risk
objective function as described in [15].

D. Hybrid DNN-HMM decoding

The trained DNNs are used directly in a hybrid decoding
scenario by subtracting the logarithm of the HMM state priors

57

 46

 48

 50

 52

 54

 56

 58

 0 2 4 6 8 10 12 14 16 18 20

P
ho

ne
 fr

am
e

er
ro

r
ra

te
 (

%
)

Epoch

DNN-SI
DNN-SI+ivecs

DNN-SA
DNN-SA+ivecs

Fig. 2. Phone frame error rates on heldout data for various DNNs.

from the log of the DNN output scores. The vocabulary
used has 30.5K words and 32.8K pronunciation variants. The
decoding language model is a 4-gram LM with 4M n-grams.

E. Experimental results

In Figure 2, we compare the phone frame error rates
obtained on the held-out set during the cross-entropy fine-
tuning (i.e. after pretraining) of 4 networks: a DNN on SI
features only, a DNN on SI features and i-vectors of dimension
100, a DNN on SA features only and a DNN on SA features
and i-vectors of dimension 100. We observe that DNNs with
i-vector inputs are substantially better than the ones trained on
ASR features only. Interestingly, the curve for DNNs trained
on SI features and i-vectors is almost indistinguishable from
the one obtained by DNNs trained on SA features only which
suggests that the i-vector input has the same effect as adding
VTLN and FMLLR.

Model Training Hub5’00 RT’03
SWB FSH SWB

DNN-SI x-entropy 16.1% 18.9% 29.0%
DNN-SI sequence 14.1% 16.9% 26.5%
DNN-SI+ivecs x-entropy 13.9% 16.7% 25.8%
DNN-SI+ivecs sequence 12.4% 15.0% 24.0%
DNN-SA x-entropy 14.1% 16.6% 25.2%
DNN-SA sequence 12.5% 15.1% 23.7%
DNN-SA+ivecs x-entropy 13.2% 15.5% 23.7%
DNN-SA+ivecs sequence 11.9% 14.1% 22.3%

TABLE I
COMPARISON OF WORD ERROR RATES FOR VARIOUS DNNS ON HUB5’00
AND RT’03 WITHOUT AND WITH HESSIAN-FREE SEQUENCE TRAINING.

This is also mirrored in the word error rates shown in
Table I where the DNN-SI+ivecs and DNN-SA models exhibit
very similar recognition performance (10% relative WER
improvement over DNN-SI). Additionally, we observe that
DNN-SA with i-vectors results in a 5-6% relative improvement
over DNN-SA both before and after sequence training. The
additive gains can be explained by observing that the i-vectors

for DNN-SA were extracted using a GMM trained on speaker-
adapted features as opposed to using a UBM trained on
speaker independent features for DNN-SI. This allows the i-
vectors to encode additional salient speaker information after
the VTLN and FMLLR speaker normalization steps.

i-vector Training Hub5’00 RT’03
dimension SWB FSH SWB

40 x-entropy 13.7% 16.0% 24.6%
100 x-entropy 13.2% 15.5% 23.7%
200 x-entropy 13.4% 15.6% 23.6%

TABLE II
COMPARISON OF WORD ERROR RATES FOR DNNS TRAINED ON
SPEAKER-ADAPTED FEATURES AND I-VECTORS OF DIFFERENT

DIMENSIONS ON HUB5’00 AND RT’03 WITH CROSS-ENTROPY TRAINING.

Lastly, we discuss the effect of having different i-vector
dimensions in Table II for DNNs trained on speaker-adapted
features with cross-entropy only (no sequence training). It can
be seen that having a sufficiently large dimension for the i-
vectors matters; there is a significant drop in WER from 40
to 100 dimensions. The performance is flat for 100 and 200
dimensions which suggests that having an i-vector dimension
of 100 is a reasonable choice for this task. Of course, more
training data from a larger number of speakers might result in
a different operating point.

IV. CONCLUSION

We have presented a simple yet effective way to perform
speaker adaptation for neural network acoustic models. The
method consists in providing speaker identity vectors along-
side regular ASR features as inputs to the neural net. The
training and test data are augmented with these i-vectors which
are constant for a given speaker and change across different
speakers. Unlike other speaker adaptation techniques, i-vector
extraction does not require a first pass decoding step yet pro-
vides similar gains as VTLN and FMLLR which do require an
additional decoding pass. Moreover, i-vectors extracted from
speaker-adapted features are complementary to the feature
normalization methods applied and provide additional gains
when used in conjunction with speaker normalized features as
input to the neural networks. Future work will address refining
the i-vector inputs along the lines of the speaker code idea
proposed in [4]. Also, we plan to interleave neural network
training with speaker identity feature estimation analogous to
speaker-adaptive training in feature-space for GMM-HMMs.

ACKNOWLEDGMENT

The authors wish to thank Jason Pelecanos from IBM and
Ondrej Glembek from Brno University of Technology for
helpful discussions about i-vectors.

58

REFERENCES

[1] F. Seide, G. Li, X. Chien, and D. Yu, “Feature engineering in context-
dependent deep neural networks for conversational speech transcription,”
in Proc. ASRU, 2011.

[2] K. Yao, D. Yu, F. Seide, H. Su, L. Deng, and Y. Gong, “Adaptation of
context-dependent deep neural networks for automatic speech recogni-
tion,” in Proc. SLT, 2012.

[3] M. Ferras and H. Bourlard, “MLP-based factor analysis for tandem
speech recognition,” in Proc. of ICASSP, 2013.

[4] O. Abdel-Hamid and H. Jiang, “Fast speaker adaptation of hybrid
NN/HMM model for speech recognition based on discriminative learn-
ing of speaker code,” in Proc. of ICASSP, 2013.

[5] D. Yu, K. Yao, H. Su, G. Li, and F. Seide, “KL-divergence regularized
deep neural network adaptation for improved large vocabulary speech
recognition,” in Proc. of ICASSP, 2013.

[6] M. Seltzer, D. Yu, and Y. Wang, “An investigation of deep neural
networks for noise robust speech recognition,” in Proc. of ICASSP, 2013.

[7] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-
end factor analysis for speaker verification,” IEEE Trans. Audio, Speech
and Language Processing, vol. 19, no. 4, May 2011.

[8] O. Glembek, L. Burget, P. Matejka, M. Karafiat, and P. Kenny, “Sim-
plification and optimization of i-vector extraction,” in Proc. ICASSP,
2011.

[9] M. Karafiat, L. Burget, P. Matejka, O. Glembek, and J. Cernozky,
“iVector-based discriminative adaptation for automatic speech recog-
nition,” in Proc. ASRU, 2011.

[10] K. Yao, Y. Gong, and C. Liu, “A feature space transformation method
for personalization using generalized i-vector clustering,” in Proc. In-
terspeech, 2012.

[11] M. Bacchiani, “Rapid adaptation for mobile speech applications,” in
Proc. of ICASSP, 2013.

[12] P. Kenny, “Joint factor analysis of speaker and session variability: theory
and algorithms,” CRIM Technical Report, Tech. Rep., 2006.

[13] N. Brummer, “The EM algorithm and minimum divergence,” Agnitio
Labs Technical Report, Tech. Rep., 2009.

[14] T. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran,
“Low-rank matrix factorization for deep neural network training with
high-dimensional output targets,” in Proc. of ICASSP, 2013.

[15] B. Kingsbury, T. Sainath, and H. Soltau, “Scalable minimum Bayes
risk training of deep neural network acoustic models using distributed
Hessian-free optimization,” in Proc. Interspeech, 2012.

59

