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ABSTRACT

In this paper, we propose a new acoustic modeling technique called
the Phone-Cluster Adaptive Training. In this approach, the param-
eters of context-dependent states are obtained by the linear interpo-
lation of several monophone cluster models, which are themselves
obtained by adaptation using linear transformation of a canonical
Gaussian Mixture Model (GMM). This approach is inspired from
the Cluster Adaptive Training (CAT) for speaker adaptation and the
Subspace Gaussian Mixture Model (SGMM). The parameters of the
model are updated in an adaptive training framework. The interpola-
tion vectors implicitly capture the phonetic context information. The
proposed approach shows substantial improvement over the Contin-
uous Density Hidden Markov Model (CDHMM) and a similar per-
formance to that of the SGMM, while using significantly fewer pa-
rameters than both the CDHMM and the SGMM.

Index Terms— Acoustic Modeling, Subspace Gaussian Mix-
ture Models, Phone-Cluster Adaptive Training

1. INTRODUCTION

Many GMM-based techniques widely used in speaker recognition
and adaptation have proved to be successful when adopted for acous-
tic modeling in speech recognition. For example, [1] adapts a Uni-
versal Background Model (UBM) through a maximum a posteriori
(MAP) scheme to each context-dependent phone in a way analo-
gous to the MAP adaptation of UBM to each speaker during speaker
recognition[2]. The Subspace Gaussian Mixture Model (SGMM) [3]
tries to estimate basis vectors for the phonetic and speaker spaces.
This approach is similar to the Joint Factor Analysis (JFA) [4], which
tries to identify basis vectors for channel and speaker spaces. Re-
cently, eigentriphones [5] was proposed, which develops an eigen-
basis over context-dependent phones (triphones) and identifies each
triphone as a point in the space spanned by that basis. This idea is
adopted from the eigenvoices [6] approach for speaker adaptation.

We propose a new acoustic modeling technique, the transform-
based Phone-Cluster Adaptive Training, hereafter referred to as
phone-CAT. This method is inspired from the Cluster Adaptive
Training (CAT), a speaker adaptation technique. In CAT, a speaker
adapted model is formed by linear combination of several speaker
cluster models that are adapted from a single speaker independent
(SI) model. Similarly in phone-CAT, the context-dependent state
models are obtained as a linear combination of monophone clus-
ter models that are adapted from a canonical GMM through linear
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transformations. So, each tied context-dependent state is character-
ized by a linear interpolation vector, whose elements are weights
assigned to the monophone cluster models.

Our technique, like the SGMM, models the HMM state param-
eters as vectors in a subspace of the total parameter space. But, in-
stead of learning the subspace directly as in the case of SGMM, the
structure of the subspace is defined in the form of linear transfor-
mations of a canonical model. This greatly reduces the number of
free parameters to be estimated, which is advantageous for building
robust acoustic model when less training data is available.

Our work also falls under the broad category of Canonical State
Models (CSM)[7]. The MLLR-based CSM also adapts a canonical
state through a linear transformation to a context-dependent state.
But, rather than modeling the context-dependent state distribution
as a linear combination of the GMMs of the transformed canonical
states, we model the context-dependent state distribution parame-
ters as linear combinations of the parameters of the GMMs of the
transformed canonical states.

In this paper, we developed an adaptive training framework for
the estimation of parameters of the canonical GMM, the linear trans-
forms for monophone clusters and the linear interpolation vectors
for context-dependent states. This type of adaptive training seems to
preserve the phonetic context information in the interpolation vec-
tor, the plots of which are shown in the latter sections. We present
the results on Aurora 4 [8] and Resource Management (RM) [9]
databases. The model is shown to have a performance superior to
that of CDHMM and on par with that of the SGMM.

The rest of the paper is organized as follows. Sections 2 and
3 give model description and training procedure of the phone-CAT
model. Section 4 gives details of the experimental setup and results,
followed by conclusions and future work in Section 5.

2. TRANSFORM-BASED PHONE-CAT MODEL

The block schematic diagram of phone-CAT model is shown in Fig.
1. The phone-CAT model consists of a set of P clusters correspond-
ing to the P monophone models. Each cluster p has a cluster-specific
mean µ

(p)
i for each Gaussian component 1 ≤ i ≤ I . The means

of each context-dependent HMM state j are expressed as a linear
combination of the P cluster means with interpolation weight vec-

tor vj =
[
v
(1)
j v

(2)
j . . . v

(P )
j

]T
. Thus the mean of the ith

Gaussian of the jth context-dependent state is modeled as follows:

µji =
[

µ
(1)
i µ

(2)
i . . . µ

(P )
i

]
vj , (1)
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Fig. 1: Block diagram of phone-CAT

The phone cluster means µ
(p)
i are not specified directly, but as

linear transformations of the means of a canonical GMM. In the ba-
sic model, there is an MLLR transform, Wp, associated with each
cluster p. The cluster-specific mean µ

(p)
i for ith Gaussian compo-

nent is specified as:

µ
(p)
i = Wpξi = Wp

[
µi 1

]T
, (2)

where ξi is the extended canonical model mean
[
µi 1

]T with
µi being the canonical mean of the ith Gaussian. Using this, (1) can
be rewritten as:

µji =
[

µ
(1)
i . . . µ

(P )
i

]
v
(1)
j

...
v
(P )
j

 , (3)

=

P∑
p=1

µ
(p)
i v

(p)
j ,

=

(
P∑
p=1

v
(p)
j Wp

)
ξi, (4)

where vj =
[
v
(1)
j . . . v

(P )
j

]T
is the linear interpolation vec-

tor, also called as the state vector.
The phone-CAT model has 3 distinct model sets. At the lowest

level, there is a compact canonical model representing the average
variability of all the speech data. At the intermediate level, there
is a set of P clusters representing the speech subspace. The clus-
ter means µ(1)

i , µ
(2)
i , . . . , µ

(P )
i form the basis vectors of this sub-

space. These P models are linear transformations, represented by
(2), of the canonical model. At the highest level, there is a set of J
tied context-dependent states, whose models are obtained as linear
interpolation of the P cluster models.

2.1. Model Description

The model can be expressed with the following equations:

p (x|j) =

I∑
i=1

wjiN
(
x;µji,Σi

)
, (5)

µji =

(
P∑
p=1

v
(p)
j Wp

)
ξi, (6)

wji =
exp

(
wT
i vj

)
I∑

i′=1

exp
(
wT
i′vj

) , (7)

where x ∈ RD is the feature vector of dimension D, 1 ≤ j ≤ J
is the state index of the context-dependent state, vj ∈ RP is the
linear interpolation vector with P being the number of clusters and
v
(p)
j being the pth element of it, Wp is an MLLR Transform matrix

corresponding to the pth cluster, wi ∈ RP is the weight projection
vector, ξi =

[
µi 1

]T is the extended mean of the ith Gaussian
component of the canonical model.

As given by (5), each context-dependent state is a GMM with
I Gaussians with means µji, covariances Σi and weights wji. As
seen in (7), the idea of modeling Gaussian priors using a softmax
function borrowed from SGMM [3] works well in phone-CAT model
also. The model is similar to the SGMM, with covariances Σi be-
ing shared across all context-dependent states, and also the means
µji and the weights wji being derived from the linear interpolation
vector vj and hence spanning a smaller P dimensional subspace of
the total parameter space. But in this model, the subspace spanned
by the means is not specified directly, but as linear transformations
of a canonical model. Thus, a canonical model, which consists of
I Gaussians with means µi and covariances Σi, is adapted through
linear transformations to clusters of monophones. Hence, the model
is termed as “Transform-based Phone-Cluster Adaptive Training”
model.

A simple extension to the model can be to use piece-wise linear
transformation. The Gaussian components of the canonical model
are partitioned intoQ disjoint transform classes,M (1)

t toM (Q)
t . The

mean µji is now calculated as:

µji =

(
P∑
p=1

v
(p)
j Wpq

)
ξi, (8)

where Wpq is the MLLR matrix for transform class q of cluster p,
and q is the transform class of the ith Gaussian.

2.2. Parameter count: Phone-CAT Model vs SGMM

Table 1 compares the total number of parameters of a typical phone-
CAT model against a typical SGMM for Aurora 4. Both the models
have 3957 tied states and a full covariance UBM-GMM of 400 Gaus-
sians. The phone-CAT model considered here has 4 MLLR trans-
forms per cluster. When the subspace dimension (40) in SGMM is
close to the number of clusters (42) in the phone-CAT model, the
only significant difference in the parameter count is due to the defin-
ing of the subspace using 4 MLLR transforms for each of the 42
phone-clusters instead of the 39 × 40 dimensional matrices Mi for
each of the 400 Gaussians in SGMM. From Table 1, it can be ob-
served that the phone-CAT model consumes fewer parameters than
the SGMM. Hence, the phone-CAT model can be used effectively
even when the amount of training data available is less.
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Table 1: Comparison of parameter count
Phone-CAT: 42 - Number of clusters, 39×40 - Size of MLLR matrix Wpq (with bias), 4 - Number of transform classes
SGMM: 40 - Subspace dimension, 39×40 - Size of Mi, 39 - Dimension of feature vector

Parameters Phone-CAT SGMM
Count Count

State-specific vj 3957× 42 166,194 vj 3957× 40 158,280

Global

µi 400× 39 15,600
Mi 400×39×40 624,000Wpq 42× 4×39× 40 262,080

Σi 400× 39× 40/2 312,000 Σi 400× 39× 40/2 312,000
wi 400× 42 16,800 wi 400× 40 16,000

Total 772,674 1,110,280

3. TRAINING OF THE MODEL

3.1. Training procedure

The model training starts with a conventional HMM-GMM system
(CDHMM system), which provides the phonetic context infor-
mation for parameter tying of context-dependent states, a set of
Gaussian components to build a UBM as the canonical model and
the Viterbi state alignments for the initial training iterations. The
model is initialized and trained for a few iterations using the align-
ments obtained from the HMM-GMM system. In the subsequent
iterations, the alignments are obtained from the phone-CAT sys-
tem itself. There are three distinct parameter sets as in the case of
the transform-based CAT. The linear interpolation vector parame-
ters Λ = {vj} , 1 ≤ j ≤ J , canonical model parameters M ={{

µ1 . . . µI
}
,
{

Σ1 . . . ΣI

}}
and the subspace pa-

rameters S =
{{

w1 . . . wI

}
,
{

W11 . . . WPQ

}}
.

The training scheme followed is analogous to the case of the
transform-based CAT
1. Re-estimate the linear interpolation vector parameters Λ using
{M,S} and the pre-update value of Λ.

2. Re-estimate the subspace parameters S given {Λ,M} and the
pre-update value of S.

3. Re-estimate the canonical model parameters M given {S,Λ}
and the pre-update value of M by first updating the canonical
means and then the covariances.

Practically, the different sets of parameters can be updated simulta-
neously to get a good estimate of the model in few iterations. The
pre-update values of Λ, S and M are used to calculate the Gaus-
sian posteriors. These values are used to accumulate the statistics
required for updating parameters.

3.2. Model Initialization

The initialization of the phone-CAT model begins with the build-
ing of a Universal Background Model (UBM). The UBM is initial-
ized using a bottom-up-clustering algorithm as in the case of SGMM
([10]) by repeatedly merging the Gaussians in all the states of the
HMM-GMM system to get a diagonal GMM and then training a
Full covariance GMM using all the training data. This UBM serves
as the initial canonical model.

The phone-CAT model “is initialized such that the Gaussians in
each state is identical to the Gaussians in the UBM.” The MLLR
transforms are all set to identity matrices with 0 bias so that all
the cluster-specific means are initially identical to the UBM means.
When using multiple transform classes, the Gaussians in the canon-
ical model are clustered using the same bottom-up clustering algo-
rithm into the required number of classes. The linear interpolation

vectors vj is assigned a vector giving a weight 1 to only one clus-
ter depending on a mapping function C and 0 to every other cluster.
In the simplest case, the mapping function can be defined such that
C (j) = p, where p is the index of the central phone of the context-
dependent state j. Therefore the initialization is:

Wpq =
[

ID×D 0D×1

]
, 1 ≤ p ≤ P, 1 ≤ q ≤ Q (9)

µi =µ
(UBM)
i , 1 ≤ i ≤ I (10)

Σi = Σ
(UBM)
i , 1 ≤ i ≤ I (11)

vj = ek ∈ RP , 1 ≤ j ≤ J, k = C (j) (12)

wi = 0 ∈ RP , 1 ≤ i ≤ I (13)

where ID×D is a D × D identity matrix with D being the di-
mension of the feature vector, 0D×1 is a vector of D zeros,
µ

(UBM)
i , Σ

(UBM)
i are the mean and the covariance matrix of

the ith Gaussian component of the UBM, ek is a P dimensional
unit vector with the kth dimension as 1 and every other dimension
0, C : {1, . . . , J} → {1, . . . , P} is a mapping from the state j to
cluster p and all the other parameters are as defined in Section 2.1.

The model allows more complex mappings for C. For example,
when we have position and stress dependent phones, all those phones
that are position and stress variants of the same ‘real’ phone can be
assigned to one particular cluster.

3.3. Re-estimation of model parameters

The model parameters are re-estimated using the Expectation-
Maximization algorithm, by maximizing the auxiliary function:

Q =
∑
j,i,t

γji (t)

[
log (wji)

− 1

2
|Σi| −

1

2

(
x (t)− µji

)T
Σ−1
i

(
x (t)− µji

)]
, (14)

where γji (t) = p (j, i|t) is the posterior probability of the jth state,
ith Gaussian component at time t, x (t) is the feature vector at time
t and wji and µji are expressed according to (4) and (7). The rest
of the symbols are as defined in Section 2.1. The update equations
for each of the parameters vj ,Wp,wi,µi,Σi are obtained by opti-
mizingQ with respect to that particular parameter keeping the other
parameters fixed.

When the parameters Wp and µi are fixed, the means µji as
represented in (3) can be expressed as:

µji = Mivj , (15)

51



where vj =
[
v
(1)
j v

(2)
j

. . . v
(P )
j

]T
is the linear interpola-

tion vector, and Mi =
[

µ
(1)
i µ

(2)
i

. . . µ
(P )
i

]
is the matrix

obtained by stacking the ith mean of all the P phone clusters, where
µ

(p)
i is given as (2). Thus µji takes the same form as in SGMM.

Hence, we re-estimate the parameters vj and wi using the same up-
date equations as in SGMM [10].

3.3.1. Re-estimation of canonical model parameters

The re-estimation of the parameters µi and Σi follows a procedure
analogous to the re-estimation of the canonical model parameters in
transform-based CAT[11]. The update equations are:

µi =

[
P∑
p=1

P∑
q=1

g(i)pq AT
p ΣiAq

]−1

[
P∑
p=1

AT
p Σ−1

i

(
k(i)T
p −

P∑
q=1

g(i)pq bq

)]
, (16)

Σi =
1∑

j

γji

[
L(i) −

P∑
p=1

k(i)
p M

(p)T
i

−
P∑
p=1

M
(p)
i k(i)T

p +

P∑
p=1

P∑
q=1

g(i)pq M
(p)
i M

(q)T
i

]
, (17)

where Ap is the matrix consisting of the firstD columns of Wp, bp

is the (D + 1)th column of Wp, M
(p)
i = Wpξi, k

(i)
p is the pth

row of the statistics K(i), g(i)pq is the (p, q)th element of statistics
G(i), and G(i), K(i) and L(i) are statistics defined by

G(i) =
[
g(i)pq

]
1≤p,q≤P

=
∑
j,t

γji (t) vjv
T
j , (18)

K(i) =
[
k
(i)
pk

]
1≤p≤P, 1≤k≤D

=
∑
j,t

γji (t) vjx (t)T , (19)

L(i) =
∑
j,t

γji (t) x (t) x (t)T . (20)

3.3.2. Re-estimation of Cluster Transforms Wpq with Full Covari-
ance model

If the covariance used in the model is diagonal, we can use an up-
date procedure analogous to that in the transform-based CAT. But
the performance of the model with diagonal covariance is not same
as that of a full covariance SGMM. If full covariance model is used
in phone-CAT, the standard update procedure becomes complex and
computationally very expensive. So we have implemented a second-
order gradient descent approach by extending the technique intro-
duced in [12] to adaptive training. This technique is an iterative
approach.

In each iteration, the gradient of the auxiliary function (14) w.r.t.
Wpq is computed:

Lpq =
∂Q

∂Wpq

=
∑

j,i∈M(q)
t ,t

γji (t) Σ−1
i

(
x (t)

−

(∑
p

Wpqv
(p)
j

)
ξi

)
ξTi v

(p)
j (21)

Algorithm 1 Estimation of cluster transform parameters
1. For each cluster 1 ≤ p ≤ P

(a) For each transform class 1 ≤ q ≤ Q
i. Initialize learning rate α = 1.

ii. For n iterations, where n < D is typically around 5-10
A. Compute the first-order gradient Lpq and the

second-order gradients G(k)
pq for all dimensions

1 ≤ k ≤ D.
B. Re-estimate the kth row of Wpq using (23) for all

dimensions 1 ≤ k ≤ D.
C. Compute the change in auxiliary function using

(24) before and after the step 1(a)iiB.
D. If the auxiliary function has increased, commit the

updated Wpq and use it for the subsequent itera-
tions. Go to step 1(a)ii.

E. If the auxiliary function has decreased, choose
α = α/2. If α > αmin, go to step 1(a)iiB.

The second-order gradient G(k)
pq is also computed for the all dimen-

sions 1 ≤ k ≤ D. Here, we assume that the second-order gradient
remains the same as that for diagonal covariance. It is obtained as:

G(k)
pq =

∂2Q
∂W(k)2

pq

=
∑

j,i∈M(q)
t ,t

γji (t)
v
(p)2
j

σ
(i)2
kk

ξiξ
T
i ,

=
∑

i∈M(q)
t

g
(i)
pp

σ
(i)2
kk

ξiξ
T
i (22)

where g(i)pp is the pth diagonal element of (18) and σ(i)2
kk is the vari-

ance of the ith Gaussian. Using (22), the entire kth row of Wpq can
be estimated:

Ŵ(k)

pq = W(k)
pq + α

[
∂2Q

∂W(k)2
pq

]−1 [
∂Q

∂Wpq

](k)T
,

= W(k)
pq + αG(k)−1

pq L(k)T

pq , (23)

where W(k)
pq is the kth row of Wpq , L(k)

pq is the kth row of Lpq and
α is some learning rate. The re-estimation of all the rows of Wpq

can be done in parallel using (23).
The change in the auxiliary function (14) after the update of all

rows is computed using:

∆Q = ∆
∑

j,i∈M(q)
t ,t

(
γji (t) x (t)T Σ−1µji

− 0.5γji (t)µTjiΣ
−1µji

)
. (24)

The procedure for sequential update of cluster transforms Wpq

is explained in Algorithm 1.

4. EXPERIMENTAL SETUP AND RESULTS

4.1. Experimental Setup

Word recognition accuracy obtained using the phone-CAT model
is compared against that of the CDHMM and the SGMM for the
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Aurora 4 and the RM continuous speech databases. The details of
the experimental setup used for building all the three models for the
aforementioned databases is below. All these models are trained and
tested on clean data, and are built using Kaldi speech recognition
toolkit [13]. For building the CDHMM and the SGMM for the RM
database, the standard recipe from the Kaldi toolkit was used.
• Feature extraction: Mel frequency cepstral coefficients (MFCC)

are used for parametrizing the speech data. 13 dimensional
MFCCs are extracted using the standard signal processing steps.
Delta and acceleration coefficients are appended to make com-
posite 39 dimensional MFCC vector. Cepstral mean normalized
MFCCs are used as feature vectors for acoustic modeling.

• Details of the databases: Aurora 4, which is sampled at 8kHz, has
7138 train utterances and 330 test utterances in the clean set. A
5000 vocabulary bigram language model is used for testing. RM
database, sampled at 16kHz, has a train set of 3990 utterances
and 1460 test utterances split into six different test sets – Feb’89,
Feb’91, Oct’89, Mar’87, Sept’92 and Oct’87.

• Acoustic Modeling: A total of 3957 and 1560 tied states are used
to model the entire data in Aurora 4 and RM respectively. The
following are the other specifications of the acoustic models.
– CDHMM: A three state HMM is used to model crossword tri-

phones and five state HMM for silence. A total of 24,000 Gaus-
sians are used to model the entire data of Aurora 4 as compared
to 9,000 Gaussians for the RM task.

– SGMM: A full covariance UBM consisting of 400 Gaussians
is built (from CDHMM) for each database. A subspace di-
mension of 40 is chosen. Although the usage of substates and
speaker space gives better performance than the basic SGMM,
the same extensions can also be applied to the phone-CAT and
hence we compare the results of the proposed method (which is
devoid of all such extensions) with the basic version of SGMM.

– Phone-CAT: The number of full covariance UBM mixtures is
kept same as in SGMM for comparison purposes. As Aurora 4
uses dictionary comprising of 42 monophones, the number of
phone-clusters is taken as 42. Similarly, the number of phone-
clusters for RM database is taken as 48.

4.2. Results

Tables 2 and 3 compare the performances of the phone-CAT model,
the SGMM and the CDHMM for Aurora 4 and RM databases re-
spectively in terms of word recognition accuracy. It can be seen that
the phone-CAT consistently performs better than the CDHMM and
is on par with the SGMM. An absolute improvement of 1.94% and
2.2% over CDHMM is attained by the SGMM and the phone-CAT
model (with 4 transforms per cluster) respectively in the case of Au-
rora 4. Similar results can be seen for the case of RM, where an
absolute improvement of 0.69% and 0.66% over CDHMM is ob-
tained for the SGMM and the phone-CAT model (with 4 transforms
per cluster) respectively. We notice that the phone-CAT model and
the SGMM have comparable performances, although the former has
≈ 300k less parameters compared to the latter.

4.3. Discussion

4.3.1. Analysis of interpolation vector vj

Figures 2a and 2c depict the interpolation vectors vj for the first
state of triphone /s/-/p/+/iy/ and the second state of the triphone /ax/-
/m/+/iy/ in phone-CAT model. Both these triphones are however
tied with several other similar triphones, which have the same center
phone. In Figure 2a, the monophone cluster /p/, which is the center

Table 2: Aurora 4 (clean test case) results (in % Word Recognition
Accuracy)

Model No. of % Acc Parameters
Transform

Classes
State Global

CDHMM - 87.60 1800k 0
SGMM - 89.54 158k 952k

Phone-CAT

1 89.24 166k 410k
2 89.73 166k 475k
3 89.5 166k 541k
4 89.80 166k 606k
5 89.67 166k 672k

phone of the corresponding triphone /s/-/p/+/iy/, receives the high-
est weight in the corresponding interpolation vector. Similarly, in
Figure 2c, the monophone cluster /m/, which is the center phone of
the corresponding triphone /ax/-/m/+/iy/, receives the highest weight
in the corresponding interpolation vector. This follows the intuition
that a triphone state is a linear combination of monophone clusters
with a large contribution from its center phone. This characteristic
is observed across all the triphone state interpolation vectors.

For the case of SGMM, plots of the state vectors, vj , for same
context-dependent states – the first state of triphone /s/-/p/+/iy/ and
the second state of triphone /ax/-/m/+/iy/ – are shown in Figures 2b
and 2d. Unlike the previous case, the SGMM does not give a similar
intuition for the distribution of elements of vector vj .

5. CONCLUSIONS AND FUTURE WORK

A new acoustic model named phone-CAT is proposed, in which each
context-dependent state model is formed by a linear combination of
monophone models. The proposed model is shown to have substan-
tial improvement over the CDHMM. It also gave a performance sim-
ilar to that of the SGMM. It has an added advantage of having fewer
parameters to be estimated as compared to the CDHMM and the
SGMM.

In future, we intend to extend this work to multiple interpola-
tion vectors for single triphone state. Extensions like substates and
speaker space, as in the case of SGMM, can be attempted in phone-
CAT also. We would like to apply this technique for building acous-
tic models for low resource languages.
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Table 3: RM results (in % Word Accuracy)

Model No. of All Feb’89 Feb’91 Oct’89 Mar’87 Sep’92 Oct’87 Parameters
Transform Classes State Global

CDHMM - 96.83 711k 0
SGMM - 97.52 97.77 98.35 97.17 99.76 95.9 98.37 64k 952k

Phone-CAT

1 97.29 97.70 97.46 97.24 99.16 95.74 98.3 76k 422k
2 97.42 97.81 97.50 97.28 99.52 95.90 98.51 76k 497k
3 97.33 97.77 97.42 97.21 99.64 95.90 98.01 76k 571k
4 97.49 97.97 97.67 97.62 99.64 96.01 98.44 76k 646k
5 97.18 97.81 97.38 97.06 99.52 95.66 98.37 76k 721k
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Fig. 2: Comparison of vj for transform based phone-CAT and
SGMM: Sub-Figures 2a, 2b for the first state of the triphone /s/-
/p/+/iy/ and Sub-Figures 2c, 2d for the second state of triphone /ax/-
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