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ABSTRACT

A compact acoustic model for speech recognition is proposed
based on nonlinear manifold modeling of the acoustic fea-
ture space. Acoustic features of the speech signal is assumed
to form a low-dimensional manifold, which is modeled by a
mixture of factor analyzers. Each factor analyzer describes
a local area of the manifold using a low-dimensional linear
model. For an HMM-based speech recognition system, ob-
servations of a particular state are constrained to be located
on part of the manifold, which may cover several factor an-
alyzers. For each tied-state, a sparse weight vector is ob-
tained through an iteration shrinkage algorithm, in which the
sparseness is determined automatically by the training data.
For each nonzero component of the weight vector, a low-
dimensional factor is estimated for the corresponding factor
model according to the maximum a posteriori (MAP) crite-
rion, resulting in a compact state model. Experimental results
show that compared with the conventional HMM-GMM sys-
tem and the SGMM system, the new method not only contains
fewer parameters, but also yields better recognition results.

Index Terms— Acoustic model, nonlinear manifold,
mixture of factor analyzers, subspace Gaussian mixture
model.

1. INTRODUCTION

Acoustic modeling is of great importance for speech recog-
nition. Conventional continuous speech recognition systems
are based on hidden Markov models (HMM) that represent
monophone or triphone units. The state level probabilities
are estimated using the Gaussian mixture models (GMMs).
To deal with data sparsity, state tying method [1] is usually
adopted to reduce the model size and enhance recognition
speed. Recently, various basis approaches, where the model
parameters are derived from sets of basis vectors or func-
tions, are emerging to further reduce the model parameters for
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robust estimation. For example, in semi-continuous hidden
Markov models (SC-HMMs) [2], the basis is constructed by a
set of continuous Gaussian distributions. The Gaussian means
and variances are shared among all the tied states and only the
weights differ. In subspace Gaussian mixture model (SGMM)
[3], all the states share a common structure but the means and
mixture weights are allowed to vary in a subspace of the full
parameter space, controlled by a global mapping from a vec-
tor space to the space of GMM parameters. Both SC-HMMs
and SGMM can be derived from the canonical state model
(CSM) [4] framework, where every context-dependent state is
obtained by transformations of a finite set of canonical states.

In this paper, a new compact acoustic modeling method
is proposed based on an manifold-based compressive sensing
method. All acoustic features are assumed to belong to a non-
linear manifold, which is modeled by a mixture of factor an-
alyzers (MFA) [5, 6]. The MFA can approximate a nonlinear
manifold by a set of low-dimensional factor models. For each
low-dimensional factor model, the mean vector corresponds
to a point sampled from the manifold and the columns of the
factor loading matrix roughly span the local tangent space at
that sample point. For each observation, the unobserved local
factor is its coordinate in the local tangent space correspond-
ing to that factor model. In this paper, the acoustic features
belonging to each tied state of the HMM-based speech recog-
nition system is assumed to locate in a local part of the man-
ifold, which may be across several factor models. So each
tied state can be modeled by selecting a few factor models
from the mixture components of the MFA and estimating the
weight and local factor for each factor model.

This method can also be derived from the CSM frame-
work, where a mixture of factor analyzers is used as the
canonical state and each tied state model is compressive
sensed on that nonlinear manifold. It is different from the
SGMM in that for each state the local factors corresponding
to different mixtures are estimated independently and the
weight vector is subjected to a sparse constraint instead of a
subspace constraint.

All the model parameters of the new method can be
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trained in a iterative way according to the maximum like-
lihood criterion. For weight vector, an iterative shrinkage
method is proposed to obtain a sparse solution, where the
degree of sparsity is determined automatically by the training
data. Because the MFA can be viewed as a degraded Gaus-
sian mixture model, the new method falls into the standard
HMM-GMM framework and all the standard techniques can
also be applied.

In the next section, modeling of the acoustic manifold us-
ing a mixture of factor analyzers is presented. In Section 3,
Bayesian estimation of the state model is described, and com-
parisons with previous basis methods are given. The training
method for various model parameters are summarized in Sec-
tion 4. In Section 5, we present experiments on the acoustic
modeling of a continuous speech recognition system using the
DARPA Resource Management Continuous Speech Corpus
(RM). Finally, conclusions are given in Section 6

2. ACOUSTIC MANIFOLD MODELING USING A
MIXTURE OF FACTOR ANALYZERS

Many researchers have shown that speech sounds may ex-
ist on a low-dimensional manifold nonlinearly embedded in
high dimensional space [7, 8]. The mixture of factor analyz-
ers (MFA) can approximate such a nonlinear manifold using
many low-dimensional linear factor models [6]. Each low-
dimensional linear factor model describes the distribution of
the data in a local area of the manifold.

Let ot denotes an acoustic feature vector at time t, the
MFA model is a probabilistic generative model which obeys
the following mixture distribution: p

(
ot | {yi}Ii=1

)
=

I∑
i=1

wiN (ot |M iyi + µi,Σi)(1a)

p (yi) = N (yi | 0, I) , i = 1, 2, · · · , I (1b)

where N (· | µ,Σ) denotes a Gaussian distribution with
mean µ and covariance matrix Σ. I is the number of mix-
tures. Each mixture is a factor analyzer with a weighting
factor of wi (wi > 0 and

∑
i wi = 1). For the ith fac-

tor analyzer, µi is the mean vector, M i denotes the factor
loading matrix, and yi is the latent factor which is Gaussian
distributed with zero mean and unit diagonal covariance ma-
trix (Equation (1b)), Σi is the conditional covariance matrix
given yi, which is a diagonal matrix in the standard MFA
model [5].

Let D denotes the dimension of the observation data, Di

denotes the dimension of ith factor yi, Di < D. Each factor
analyzer is a low-dimensional signal model with the factor yi

as the latent variable. If we marginalize over the latent vari-
able, each factor analyzer obeys a Gaussian distribution with
mean µi and covariance matrix M iM

T
i + Σi. So an MFA

model is in its intrinsic a degraded Gaussian mixture model,

Fig. 1. Approximation of a nonlinear manifold using many
local low-dimensional linear models

which can concurrently performs clustering and, within each
cluster, local dimensionality reduction.

It is well-known that locally, a nonlinear manifold can
be well approximated by its tangent plane, with the quality
of this approximation depending on the local curvature of
the manifold. Therefore, from a geometrical point of view,
an MFA model as in (1) may be considered a candidate for
manifold-modeled data, where the mean vectors µi corre-
spond to points sampled from the manifold, the columns of
M i roughly span the Di-dimensional local tangent spaces,
the covariance matrix Σi describes the manifold curvature,
and the weight wi reflect the probability of observation data
fall into this local area. The above geometrical interpretation
can be illustrated by Figure1. In Figure1, the black bold curve
denotes a nonlinear manifold, which cannot be modeled di-
rectly by any linear models. But when we look at a tiny area
on the manifold, it can be approximated by a tangent plane of
any sample point on it. The distribution of the data on that
tangent plane can be modeled by a low-dimensional Gaussian
model, which is denoted by the tiny ellipse in Figure1. The
center of each ellipse (denoted by the solid black point) is the
mean of the Gaussian distribution, which corresponds to the
sample point of each local area. The direction of the major
axes forms a set of basis vectors for the tangent space and the
size of the ellipse is proportional to the manifold curvature at
that sample point.

In this paper, we use MFA to model the nonlinear mani-
fold of the acoustic feature space. This can be trained using
the Expectation Maximization (EM) algorithm [5] in an un-
supervised manner. At the beginning of the EM algorithm,
we must choose the underlining local dimensions Di for each
factor analyzer and obtain an initial model. In our imple-
mentation, we start with a traditional HMM-GMM system
and obtain a big GMM by clustering the Gaussians in it to
a predefined number of clusters I . The clustering procedure
is similar to that of the training of the universal background
model (UBM) in [3]. Then we do principal component
analysis (PCA) on the covariance matrix of each Gaussian
component i and sort the eigenvalues in a descent order as
λi1, λi2 , · · · , λiD. We select Di as the number of top eigen-
values which contribute to 90% cumulative contribution rate
of all eigenvalues. We initialize Σi and M i with that of a
probabilistic principal component analyzer (PPCA) using a
closed solution proposed by [9]. wi and µi are set to the cor-
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responding mixture weight and mean vector of the Gaussian
component i in the UBM respectively. Then we run a few
iterations of the EM algorithm on the whole training data set
in an unsupervised manner to obtain the MFA for the acoustic
feature space.

3. STATE MODELING BASED ON THE ACOUSTIC
MANIFOLD

3.1. Bayesian State Modeling based on MFA

Once we get the nonlinear manifold of the acoustic space, the
state-dependent model can be constrained on that manifold.
In the HMM-based system, each state model describes the
feature distribution of part of particular phone, so it should
cover a local part of the manifold, which could be in itself
across several factor models. This can be illustrated intu-
itively by Figure 1, where the red arc corresponds to a state,
which covers three local factor models.

For state j, the mathematical formulation of the state
model is given as following:

p (o(t) | j) =
I∑

i=1

wjiN
(
o(t) | µji,Σi

)
(2a)

µji = M iyji + µi (2b)

p
(
yji

)
= N

(
yji | 0, I

)
, i = 1, 2, · · · , I (2c)

where yji is the state-dependent unobserved factor for factor
model i specific to state j, which follows a standard Gaus-
sian distribution (Equation (2c)). Geometrically, yji can be
viewed as the local coordinate of the state-dependent mean
vector µji in the subspace spanned by columns of M i and
centered at µi.

wji is the state-specific weight which gives the probabil-
ity of the observations of state j falling into the local area
corresponding to factor model i. Defining a weight vector
wj = [wj1, wj2, · · · , wjI ]

T , from the above description, wj

should be a sparse vector with most elements being zero.
Each nonzero element of wj corresponds to a local area
which state j covers.

In Equation (2), the covariance matrix Σi is shared among
all states and can be re-estimated as a full covariance matrix
after yji and wji are obtained. The state-dependent factor
yji can be estimated using the maximum a posteriori crite-
rion. The weight vector wj could be estimated in a maximum
likelihood manner subject to the sparse constraint. Training
procedure of various model parameters will be presented in
Section 4.

3.2. Comparison with previous methods

The state model of Equation (2) is simple and have close
relationships with previous methods, such as SC-HMM and
SGMM.

First of all, it falls into the general framework of CSM
( [4]). Here the canonical state plays the role of prior distri-
bution of the acoustic features in the acoustic space, which
is modeled by a nonlinear manifold. For each context depen-
dent state, the mean and weight are re-estimated subject to the
local subspace and sparse constraints respectively.

As in SC-HMM, a Gaussian pool is obtained using all
the training data in MFA-based method. However, in the
MFA-based method, each Gaussian is degenerated to a low-
dimensional factor-analyzed model, which coincides with the
low-dimensional manifold assumption. This underlining low-
dimension assumption not only simplifies the model, but also
brings some robustness of the estimated model. Another dif-
ference lies in that besides the weight vectors, the component
means are also adapted for each context-dependent state.

The formulation of Equation (2) looks very similar to that
of SGMM, where for state j the probabilistic distribution can
be written as

p (ot | j) =
I∑

i=1

wjiN
(
ot | µji,Σi

)
(3a)

µji = M ivj (3b)

wji =
exp(wT

i vj)∑I
i′=1 exp(w

T
i′vj)

(3c)

Comparing Equation (2) and (3), we can conclude that the
differences of MFA-based state model and the SGMM lie in
the following three aspects:

• SGMM assumes a global linear subspace of the model
parameters, while the MFA-based method assumes a
nonlinear manifold of the acoustic space which is mod-
eled by multiple locally linear models. In MFA-based
state model, for state j there are Nj (Nj = ||wj ||0 <<
I) mixtures, each contains a latent vector yji. How-
ever, in SGMM there are I mixture components for
each state and all components share the same phone
vector vj . To increase the model capacity, sub-states
are usually used in SGMM. For an SGMM which con-
tains Mj sub-states in state j, there are Mj phone vec-
tors and Mj × I mixture components, which makes it
computationally very expensive in recognition time. To
accelerate the recognition speed, a per-frame Gaussian
selection process is need for each observation ot before
the likelihood is computed [3]. The MFA-based state
model is much more simpler, no sub-state splitting and
Gaussian pre-selection process is needed.

• In standard SGMM, the coordinate vector vj is esti-
mated freely, that is, no prior information is applied.
However, in our new method, each local factor model
is centered at different sample location, and the coor-
dinate vector yji has a natural normal prior distribu-
tion, from which we can derive a MAP-based estima-
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tion, which is usually more robust than an ML-based
estimation method.

• In SGMM, the subspace of the logarithmic weight vec-
tor and that of the Gaussian means are sharing the same
coordinate vector vj , which is a mathematical trick,
making the estimation of the vj very complicated.
Some mathematic approximation must be applied to
obtain a closed form updating formula [3]. However,
in the MFA-based state model, no subspace is assumed
for the weight vector wj , only a sparse constraint is
applied, which makes it is much easier for both the
estimation of the local coordinate vector yji and that
of the weight vector wj .

4. ESTIMATION OF THE MODEL PARAMETERS

The parameters of the proposed MFA-based acoustic model
can be categorized into two sets: one set Λ1 contains param-
eters that are shared among all context-dependent tied state,
that is {µi,M i,Σi}Ii=1, which is the mean vector, factor
loading matrix and conditional covariance matrix for each
factor model; the other set Λ2 contains parameters that are
state-specific, that is

{
wj , {yji}i∈Ij

}J

j=1
, where J is the

number of different tied states in the system and Ij is the set
of indices of nonzero components in wj . The whole training
procedure can be summarized as following:

Algorithm 1 Training procedure of the MFA-based acoustic
model

1: Train the background MFA. Perform force alignment of
the training data using a baseline HMM-GMM system.

2: Set Ij = {1, 2, · · · , I}, wji =
1
I , yji = 0 for i ∈ Ij and

j = 1, 2, · · · , J .
3: for k = 0 to K do
4: Update the state-dependent factors {yji}i∈Ij for each

state j.
5: Update the state-independent factor loading matrices

M i for each factor i.
6: Update the state-independent means and covariance

matrices {µi,Σi}Ii=1.
7: Update the state-dependent weight vector wj for each

state j.
8: If |Ij | > minC, shrink wj automatically and update

Ij for each state j.
9: end for

In Algorithm 1, K is a predefined number of iterations
(i.e. K = 20). In Step 1, the MFA describing the acoustic
manifold is trained using the method presented in Section 2.
In Step 2, we initialize each state-dependent model using a
flat start method. From Step 3 to Step 9, we update each set
of parameters in sequence for a predefined number (K) of EM
iterations.

For each iteration, in Step 4 and 5, the state-dependent
factors yji and state-independent factor loading matrices M i

are updated in sequence using the MAP and ML criteria re-
spectively. The updating formulas are similar to that of the
state vectors and model projection matrices in SGMM [3]. A
more simpler formula can be derived for yji as a consequence
of decoupling of the weight vector from sharing the same co-
ordinate vector under a weight subspace constraint. In Step 6,
we update the state-independent means and covariance matri-
ces using almost the same formula as in SGMM [3].

In Step 7, we update wji for each nonzero weight index
i ∈ Ij of state j using a simple EM algorithm. Then, in Step
8, for each state j, if the number of nonzero components |Ij |
is above a predefined threshold minC, we shrink the weight
vector wj automatically according to the sparse constraint.
We use a heuristic weight shrinkage strategy as Algorithm 2.

Algorithm 2 A heuristic weight shrinkage strategy for wj

1: Sort wj1, wj2, · · · , wjI in a descent order as w′
j1, w′

j2,
· · · , w′

jI .
2: Calculate the cumulative contribution rate of each com-

ponent i as si =
∑i

k=1 w
′
jk.

3: Find n = argmink{k : sk ≥ 0.9}, and set τj = w′
jn.

4: Shrink the weight vector wj according to wji ←
[wji − τj ]+.

In Algorithm 2, [wji − τj ]+ = max{wji − τj , 0}. Here
we prune the weight wji according to a threshold τj deter-
mined by the 90% cumulative contribution rate. When we
plug Algorithm 2 to Step 8 of Algorithm 1, we obtain a it-
eration shrinkage process for updating of the weight vector
according to the sparse constraint. Note that the degree of
sparseness is determined automatically by the training data,
only a lower bound (determined by minC) is applied to pre-
vent over-fitting.

Using the Maximum Mutual Information (MMI) criterion
[10, 11], discriminative training of all model parameters can
also be derived. In our experiments, after the maximum like-
lihood model is obtained, we ran three iterations of Step 4
to Step 7 of Algorithm 1 using the discriminative training
method. Weight shrinkage was not performed during the dis-
criminative training procedure. The standard MMI-based dis-
criminative training method was applied. The derivation of
the updating formulas are not presented here for brevity.

5. EXPERIMENTS

5.1. System Description

All experiments were based on the DARPA Resource Man-
agement Continuous Speech Corpus (RM) [12] and the Kaldi
speech recognition toolkit [13]. The experimental settings
were following Kaldi’s RM “s5” recipe, where we train on
the speaker independent training and development set (about
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4000 utterances) and test on the six DARPA development set
runs Mar and Oct’87, Feb and Oct’89, Feb’91 and Sep’92
(about 1500 utterances total).

For the acoustic frontend, we extract 13 Mel-frequency
cepstral coefficients (MFCCs), apply cepstral mean and vari-
ance normalization, splice 7 frames (3 on each side of the cur-
rent frame) and uses LDA to project down to 40 dimensions,
together with MLLT. First of all, a conventional HMM-GMM
system was trained with speaker adaptive training (with fM-
LLR). Then starting from the HMM-GMM baseline system,
an SGMM system was trained using 400 Gaussian compo-
nents in the universal background model (UBM), 41-D pho-
netic subspace and 40-D speaker subspace. State splitting was
applied to increase the number of sub-states for large model
capacity. The final number of sub-states is 7495. MMI-based
discriminatively training methods were applied on the both
the HMM-GMM and the SGMM systems to obtain better
recognition results.

For the training of our MFA-based system, we start from
the UBM used to initialize the SGMM system, and train the
background MFA using the method described in Section 2.
Then we run Algorithm 1 with K = 50, together with the
weight shrinkage Algorithm 2. Finally, three iterations of
the MMI-based discriminatively training method were per-
formed to obtain a discriminatively trained system. The num-
ber of different tied states was 2036, which is the same as the
SGMM system. Different from SGMM, there is no “speaker
subspace” in the MFA-based system.

Note that as in Kaldi’s “s5” recipe, the speaker-dependent
transformation matrices from the SAT-based HMM-GMM
system were applied to transform the acoustic features for
both the training and testing of the SGMM system and the
MFA-based system.

5.2. Distribution of local dimensions

One of the major differences of our MFA-based system com-
pared with the SGMM system lies in that the parameter sub-
spaces are distinct for different Gaussian components in the
MFA-based system. Using the training procedure described
in Section 2, the intrinsic dimensions (Di) of the local factor
analyzer (each corresponds to a Gaussian component) are dif-
ferent according to the 90% cumulative contribution rate cri-
terion. Figure2 shows the histogram of the local dimensions
of all factor analyzers.

In our SGMM system, the dimension of the phonetic sub-
space is fixed to 40. From Figure2, it can be observed that
most of the local dimensions are around 26 in the MFA-based
system, showing a more compact acoustic subspace.

5.3. Effect of weight shrinkage

Another difference of our MFA-based system compared with
the SGMM system is that the weight vectors are subject to
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a sparse constraint other than a subspace constraint. Using
the iterative shrinkage algorithm of Algorithm 2 (plugged
into Step 8 of Algorithm 1), the weight vectors were getting
sparser and sparser during the iterations. In our experiments,
for each state, we set the minimal number of nonzero weight
components (minC) to 10 and run 50 iterations of the weight
shrinkage algorithm. After each iteration, we calculate the
average number (I) of nonzero weight components among all
states. Figure3 shows I changing with the iteration number.

From Figure3, it can be observed that our weight shrink-
age algorithm is effective, I seems to converge around 20 af-
ter 30 iterations. After 50 iterations, I = 18. Figure4 gives
the histogram of the numbers of nonzero components for all
states. The average number of nonzero components is 18.
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Table 1. Results of all testing systems (% WER)
WER

HMM-GMM + SAT 1.88
HMM-GMM + SAT + MMI 1.70

SGMM 1.64
SGMM + MMI 1.54

MFA-based 1.51
MFA-based + MMI 1.36

In the baseline SGMM system, there are 7495 sub-
states, each contains 400 nonzero components. Gaussian
pre-selection is required to prune the Gaussians for each
frame prior to the likelihood calculation. For the MFA-based
system, the Gaussian components are pruned at the training
time, so a more compact model is obtained and the decoder
can be simplified.

5.4. Comparison of WERs

The recognition results were measured in average Word Error
Rate (WER). Table 1 summarizes the recognition results of
all testing systems. From Table 1, it can be observed that the
MFA-based system outperforms both the HMM-GMM and
the SGMM system in WERs, even when the two baseline
systems were discriminatively trained. With MMI-based dis-
criminative training, the MFA-based system obtained an aver-
age WER of 1.36, which is one of the best results on the RM
corpus as far as we know. Statistical significance tests using
the standard NIST SCTK toolkit show that compared with the
SGMM+MMI system, the improvement of the MFA-based
system is not significant, but that of the MFA+MMI system is
significant according to the standard MP, SI and WI tests at a
5% level of significance.

6. CONCLUSION

In this paper, a new compact acoustic modeling method based
on compressive sensing on the nonlinear acoustic manifold is
proposed. The acoustic space of human speech is assumed to
be a nonlinear manifold, which can be modeled by an mix-
ture of factor analyzers (MFA). The states of an HMM-based
speech recognition system are constrained to be located on
the manifold, each covers several local factor models. For
each state model, a sparse weight vector is estimated using
an iterative shrinkage algorithm, and for each nonzero com-
ponent, a local factor is estimated for the corresponding local
factor model in a maximum a posteriori manner. Experi-
mental results on the RM corpus show that the new method
obtains better performance in WER than the conventional
HMM-GMM system and the SGMM system with a much
more compact acoustic model. Because the free parameters
in the new method is very limited and the MFA can be shared
among different languages, the new method is very suitable

for low-resource and multilingual speech recognition. We
will look at these for our future directions.
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