MIXTURE OF MIXTURE N-GRAM LANGUAGE MODELS

Hasim Sak, Cyril Allauzen, Kaisuke Nakajima, Francoise Beaufays

Google

{hasim, allauzen, kaisuke, fsb}@google .com

ABSTRACT

This paper presents a language model adaptation technique
to build a single static language model from a set of lan-
guage models each trained on a separate text corpus while
aiming to maximize the likelihood of an adaptation data set
given as a development set of sentences. The proposed model
can be considered as a mixture of mixture language models.
The mixture model at the top level is a sentence-level mixture
model where each sentence is assumed to be drawn from one
of a discrete set of topic or task clusters. After selecting a
cluster, each n-gram is assumed to be drawn from one of the
given n-gram language models. We estimate cluster mixture
weights and n-gram language model mixture weights for each
cluster using the expectation-maximization (EM) algorithm to
seek the parameter estimates maximizing the likelihood of the
development sentences. This mixture of mixture models can
be represented efficiently as a static n-gram language model
using the previously proposed Bayesian language model in-
terpolation technique. We show a significant improvement
with this technique (both perplexity and WER) compared to
the standard one level interpolation scheme.

Index Terms— language model, adaptation, interpola-
tion, mixture models, bayesian, speech recognition

1. INTRODUCTION

Speech-enabled interfaces on mobile devices allow users to
accomplish many different tasks thanks to automatic speech
recognition (ASR) systems. Voice search, e-mail and SMS
dictation, voice input into any text field, location/business
name search, voice actions (“set alarm to 8 a.m.”) are some
example tasks. The variety of tasks and domains presents
some challenges for language modeling in ASR systems. To
achieve the best speech recognition accuracy, we need to
train and build separate language models each optimized or
adapted for a specific task or domain. However, having many
language models in the production system and employing the
best one for an input utterance given its context is not trivial.

One approach as proposed in [1] is on-demand language
model interpolation. In this method, a set of interpolation
weights for a number of n-gram language models is deter-
mined for each contextual information (such as application

978-1-4799-2756-2/13/$31.00 ©2013 IEEE

id) using a set of development sentences from each context.
Since there may be a large number of contexts, the language
models are interpolated on-demand, either in a first-pass
recognition or second-pass of rescoring lattices. For this pur-
pose, the component n-gram language models are compactly
represented as a finite-state transducer, and the transition
weights are dynamically computed using the optimized inter-
polation weights for a given context.

Using a dynamically-interpolated LM in the first-pass
recognition demands significantly more computation than
using a statically-interpolated LM due to the overhead
of accessing a larger set of weights and combining them
on-demand per utterance. Other alternative of using a
dynamically-interpolated LM in the second-pass of rescoring
lattices recognized with a task-independent LM in the first-
pass is quite fast thanks to much reduced lattice search space.
However, if a task-independent LM - which is a statically-
interpolated LM whose mixture weights are determined to
minimize the perplexity of development set from all the tasks
- is used in the first-pass and a dynamically-interpolated LM
is used in the second-pass, the recognition accuracy improves
only 5.1%. In comparison, the dynamically-interpolated LM
when used in the first-pass gives 11.2% improvement over
the task-independent LM.

Another method - Bayesian language model interpolation
has been proposed to replace this two-pass strategy which in-
curs significant additional search errors with a one-pass sys-
tem using a static task-independent LM that is built to be as
close as possible to the dynamically-interpolated LM [2]. It
has been shown that using the statically-interpolated LM ob-
tained with the Bayesian LM interpolation method achieves
about half of the recognition accuracy improvements that is
possible with the dynamically-interpolated LM in the first-
pass.

With the advent of one-box interfaces where the user may
input information from multiple sources or domains, the dis-
tinction of context for an utterance disappeared. For instance,
Google Now application on Android and iOS mobile devices
allows user to speak queries, ask questions, give commands
and trigger actions and dictate e-mail and SMS messages.
Therefore, a single system needs to handle all these different
tasks.

This paper provides a recipe for building single static tar-

ASRU 2013



get n-gram LM by interpolating set of source LMs pretrained
on different training corpora/topics. The resulting interpo-
lated model is optimized for the perplexity on a representative
development set. The development set is assumed to be a col-
lection of sentences each independently drawn from a set of
latent topics (i.e. no topic definition or topic labeling is avail-
able for the development and test data; the amount of data
for different topics can be very unbalanced). We show that a
two level interpolation scheme is appropriate for this scenario
combining n-gram level interpolation and sentence level in-
terpolation. N-gram level interpolation, where n-gram proba-
bilities from different source LMs are linearly interpolated, is
suitable for synthesizing LMs for the latent topics. Each topic
LMs is used to evaluate probability of a test sentence. The
resulting probabilities are further linearly interpolated. The
resulting interpolation scheme can be seen as mixture of mix-
ture n-gram language models. The resulting interpolated LM,
which is derived on development data, can be represented as
standard n-gram LM using the Bayesian language model in-
terpolation technique [2], which is fixed for testing.

2. RELATED WORK

There are a large number of studies on statistical language
model adaptation as reviewed in [3]. Mixture language mod-
els as a common adaptation technique linearly interpolate a
set of nm-gram language models each trained on a separate
topic or task domain using a set of mixture weights (inter-
polation weights) estimated to maximize the likelihood of the
adaptation data (development set) [4, 5]. The interpolation
can be performed at the n-gram level [4] or sentence level [5].
Other adaptation techniques have been proposed for dialog
systems, which use the dialog state to adapt the language
models instead of pre-defined topics [6, 7, 8].

This study differs from the related work in the literature in
various ways. First, the source corpora for the language mod-
els is mostly a collection of sentences or text queries where
there is no document structure to model with topic models.
Second, there are a large number of tasks in the development
set as determined by the applications, where the task domains
are very diverse. Third, we use the probabilities assigned to
each sentence by a set of language models to cluster the de-
velopment set into a given number of topic or task clusters
rather than clustering the training data. Then, a set of n-gram
mixture weights for each cluster are estimated to maximize
the likelihood of the sentences in that cluster. The proposed
model can be considered as a sentence level mixture model of
n-gram level mixture models.

3. MIXTURE OF MIXTURE N-GRAM LANGUAGE
MODELS

We assume that we are given a set of language models each
trained on a separate corpus possibly from different sources or

32

domains, and a collection of sentences as a development set.
The goal is to estimate and build a statically-interpolated lan-
guage model maximizing the likelihood of the development
sentences.

Let G4, ..., G be the set of M given n-gram language
models and p,,(w|h) = p(w|h,m) be the probability that
word w follows history h as estimated by model G,,. A
simple n-gram level linear interpolation of LMs gives us a
statically-interpolated language model. This mixture model is
simply mixtures of n-gram probabilities from the component
LMs and the mixture weights A1, ..., Ajs can be optimized us-
ing the EM algorithm to maximize likelihood of development
sentences:

M
p(wlh) = Z AmPm (w|h)

In this paper, we show that we can estimate and build
a better statically-interpolated LM by using sentence-level
cluster mixture models of n-gram level mixture models. In
this mixture of mixture models, the probability of a sentence
(word sequence) w is defined as follows:

C
Z chc(w)
cgl
> e [ ] pelwilha)
c=1 %
C M
Z Ve H Z Ac,m,pm (wv |h2)
c=1

i m=1

where C' is the number of clusters, 1, ..., y¢ is the sentence-
level cluster mixture weights, p.(.|.) is a probability distri-
bution of n-gram level mixtures for the ¢t cluster. Ae,m for
m = 1..M, ¢ = 1...C'is the n-gram level mixture weigth for
the m*" n-gram language model G,,,. As formulated, this in-
terpolated model is a mixture of mixture models with model
parameters 6 = {v., Aemn : 1 <c < C, 1 <m < M}

Given a set of sentences W, we can find the maximum
likelihood estimate of these unknown mixture parameters us-
ing the EM algorithm. We assume that each sentence is drawn
from an unobserved latent cluster and each n-gram is drawn
from a latent n-gram language model. The EM algorithm is
an iterative approach to find the unknown parameters 6 that
maximizes the likelihood of the observed data W':

p(w)

arg max L(0; W) arg max p(W|0)
0 0

arg max w|0
g1 1;[19( 9)

3.1. Estimation of Mixture Parameters

In the proposed model, we assume there is a latent unobserved
cluster variable corresponding to each sentence. We can con-
sider this as a clustering problem where each sentence in the



development set is assigned to one of C clusters. In the for-
mulation of this clustering problem, we can apply two types
of EM algorithm. In the (soft-)EM type algorithm, we esti-
mate the probability of each cluster assignment for each sen-
tence and use the probabilities associated with a particular
cluster assignment to compute a weighted estimation of n-
gram mixture parameters for each cluster. In the hard-EM
type algorithm (which is an approximation to EM algorithm),
we make a hard choice for the cluster assignments of the
sentences where each sentence is assigned to a single clus-
ter given the current model parameters, and use the current
assignments to estimate n-gram mixture parameters for each
cluster.

In the hard-EM algorithm, we first randomly select C' sen-
tences from the development set W and estimate the mixture
coefficients for each sentence that locally maximizes the like-
lihood of that sentence using the EM algorithm. For each of
the C sentences, we create a corresponding cluster whose ini-
tial mixture weights are those estimated for the sentence. We
then iterate between two steps:

e Assign each sentence w in W to the cluster whose mix-
ture weights maximizes the likelihood of the sentence.
This gives a clustering as a set of sentences S, for each
cluster c:

Se ={w : pe(w) > pi(w),¥1<i<C}

e Calculate the new mixture weights for each cluster to
be the mixture weights optimizing the likelihood of the
sentences in each cluster using the EM algorithm. The
mixture weights for n-gram language models for each
cluster can be found using the following iterative pa-
rameter update EM solution:

|w]

Ao = p(mlw;, hi, e
om ||S||w§ 2., plmfwi by
_ ! ('mpm w1‘h)
weS i=1 —1 Ae,jpj(wilhi)

where [[S;|| = >, cg, |w] is the number of all words
in the cluster c.

We can stop this iterative process after a fixed number of
iterations or when the total likelihood of the development sen-
tences given the current parameters does not improve. Finally,
the mixture weights for each cluster is calculated as 7. = |5 |

In the (soft-)EM algorithm, we initialize the cluster mix-
ture weights . and n-gram mixture model weights A. ,, for
each cluster randomly. We then iteratively update the model
parameters as follows:

33

|w]

/ 1
Aem = sz(dw) Zp(m\wi,hi,c)
¢ w i=1

|w
1 )\cm m zhz
¢ w

M
2 j=1 Ac,iPj(wilhi)

>

=1

, 1
Yo = == plclw)
(W <

where N, and p(c|w) is defined as follows:

Ne=3 plclw)uwl
wew
) = —JePe(w)
p( | ) 210:1 %pi(w)
Jw]| lw| M
= Hpc(wi|hi) = H Z Ac,mpm(wi|hi)
i=1 i=1m=1

Note that the EM algorithm does not guarantee that the
iterative updating of parameters converges to a global maxi-
mum likelihood estimation of the parameters. The EM algo-
rithm may converge to a local maximum of likelihood func-
tion depending on the initial parameters.

3.2. Bayesian Language Model Interpolation

A language model interpolation technique - Bayesian LM
interpolation - has been proposed to build a static task-
independent LM to approximate a task-dependent dynamically-
interpolated LM using the task priors and the estimated mix-
ture weights for each task [2]. This technique is used to build
a statically-interpolated n-gram LM with standard finite-state
representation for our mixture of mixture language models.
The only difference in the Bayesian LM interpolation formu-
lation (see [2]) is that the task prior probabilities are replaced
with the cluster mixture weights as follows:

M
H Z Qo h; Pm (wi |hz)

i m=1

where state-dependent mixture weights c, 5, is defined as:

C
Qm, h; = Zp(dhl))\cm
c=1

p(hz|c)70
ziilp(hﬂc) Ye

=] Z Ae.mPm (w;|hy)

j=1m=1

plelhi) =

i

p(hilc) = H (wj|hy, c)

=1



using the cluster mixture weights v, and n-gram mixture
model weights A. ,,, for each cluster estimated with the EM
algorithm.

4. SYSTEMS & DATA

For the language model interpolation experiments, we trained
10 5-gram language models individually with Katz-backoff
from 10 separate data sources. Each language model is
pruned to 23 million n-grams using Stolcke pruning [10].
The data sources used vary in size, from a few million to a
few billion sentences. They consist of web documents, typed
queries, SMS messages, voice actions, queries from various
applications, dictated messages and speech recognition tran-
scripts of utterances filtered with a threshold on recognition
confidence scores. The transcripts are supposed to provide
domain adaptation with self-supervision. All the user data
used in the language models is anonymized. They are in the
written-domain and the language models are trained in the
written-domain without converting the sources to the verbal
domain [11]. The language models are statically-interpolated
and the final model is pruned again to 23 million n-grams.
The vocabulary size of the final interpolated LM is 2.8 mil-
lion.

We use a combined development set from 5 separate
sources supposed to be representative of the expected traffic
as the language model adaptation data in the interpolation
experiments. The combined development set contains 92K
sentences. Each source is obtained by hand-transcribing
randomly selected anonymized utterances from the speech
recognition logs. They consist of voice actions, voice search
queries, queries from specific applications, and dictated mes-
sages.

Our acoustic models used in the speech recognition ex-
periments are standard 3-state context dependent (triphone)
HMM models which use a deep neural network (DNN) to
estimate HMM-state posteriors [9]. The DNN model is a
standard feed-forward neural network with 8 hidden layers
of 2560 nodes. The input layer is the concatenation of 26
consecutive frames of 40-dimensional log filterbank energies
calculated on 25ms windows of speech every 10ms. The 7969
softmax outputs estimate the posterior of each state.

5. EXPERIMENTAL RESULTS

We experimented with both soft and hard-clustering of devel-
opment sentences to estimate and build the mixture of mix-
ture n-gram language models. We saw that soft-clustering
performs slightly better. Therefore, we choose to report only
the perplexity results using the soft-clustering in this section.

Figure 1 shows the convergence of development set per-
plexity with increasing number of iterations in the (soft-)EM
algorithm. We also vary the number of classes used in the

34

— 1lclass
160
— 2class
— 4class
— 8class
150 = 12 class
>
=
b
< 140
—_
9]
a
130
120
0 2 4 6 8 10

Number of iterations

Fig. 1. The development set perplexity versus number of iter-
ations in the (soft-)EM algorithm for various number of clus-
ters.

clustering to see how it affects the development set perplex-
ity. We see that the perplexity starts to converge around 12
clusters and 10 iterations of the EM algorithm. The interpo-
lated language model with the 1-class corresponds to standard
linear interpolation with interpolation weights optimized on
all the development sentences. The development set perplex-
ity with the 12-class model improves significantly by 17.5%
over the 1-class model.

Figure 2 shows the test set perplexity for three test sets
used in the speech recognition experiments with various num-
ber of classes obtained after 10 iterations. The first test set
— Maps has 64K words and consists of utterances from the
Google maps application. The second one — Search has 98K
words and consists of voice search utterances. The final one
— Unified has 136K words and is a unified set of voice search
and dictation utterances. The perplexity improvements for the
12-class model versus the 1-class model are 31%, 6.5% and
18% on Maps, Search and Unified test sets, relatively. The
relatively large improvement on the Maps system is expected
since the portion of maps like queries in the development set
is relatively small and the development set distribution is bi-
ased towards voice search queries.

We evaluate the speech recognition accuracy of the inter-
polated language models on three test sets which are obtained
by hand-transcribing anonymized and randomly selected ut-
terances from our speech recognition system logs. All test
sets are transcribed in the written domain (e.g. “set alarm for
12:30” rather than “set alarm for twelve thirty””) and we mea-
sure the speech recognition accuracy in the written domain.

Table 1 compares the word error rates (WERs) of mix-
ture of mixture language models (statically interpolated with
Bayesian LM interpolation technique) with various number
of clusters and a Bayesian interpolated language model using



100

03
220
91
210 o5
90
> 200 > >
£ = =
x x
@ 190 3% 2 9
2 [ a
T 180 o 88 5}
o o o
170) 87, gs|
160 86|
150 1 6 8 10 12 85— 4 6 8 10 12 80— 7 6 8 10 12
Number of classes Number of classes Number of classes

(a) Maps test set

(b) Search test set

(¢) Unified test set

Fig. 2. Perplexity for test sets.

Class ‘ 1 ‘ 4 8 ‘ 12 ‘ Bayesian
Search | 13.8 | 13.7 | 13.5 | 13.5 13.6
Maps | 134 | 125 | 125 | 124 12.8
Unified | 11.4 | 11.1 | 11.1 | 11.1 11.0

Table 1. Comparison of word error rates on three test sets
using mixture of mixture language models and a Bayesian
interpolated model.

task information on three test sets. Although the Bayesian
model uses the contextual information (e.g. application id)
in the development set to estimate the task priors and task
specific mixture weights, mixture of mixture models gener-
ally performs better by estimating cluster and n-gram mixture
weights using only the development sentences.

6. CONCLUSION

We presented mixture of mixture n-gram language models.
This model is a statically-interpolated language model from
a set of language models and aims to maximize the likeli-
hood of a development set of sentences by clustering these
sentences using the probabilities assigned by the component
language models. The cluster and n-gram mixture weights
are estimated with the EM algorithm. Using the estimated
model parameters, we build a statically-interpolated n-gram
language model using the Bayesian language model interpo-
lation technique. We show that mixture of mixture language
models results in better speech recognition accuracy when we
need to build a single speech recognition system that needs to
handle various types of recognition tasks.

7. REFERENCES

[1] Brandon Ballinger, Cyril Allauzen, Alexander Gruen-
stein, and Johan Schalkwyk, “On-demand language

35

(2]

[4]

(6]

(7]

(8]

[10]

model interpolation for mobile speech input,” in Inter-
speech, 2010, pp. 1812-1815.

Cyril Allauzen and Michael Riley, “Bayesian language
model interpolation for mobile speech input,” in Pro-
ceedings of Interspeech, 2011, pp. 1429-1432.

Jerome R. Bellegarda, “Statistical language model adap-
tation: review and perspectives,” Speech Communica-
tion, vol. 42, pp. 93-108, 2004.

Reinhard Kneser and Volker Steinbiss, “On the dynamic
adaptation of stochastic language models,” in Proceed-
ings of ICASSP, 1993, pp. 586-589.

Rukmini M. Iyer and Mari Ostendorf, “Modeling long
distance dependence in language: Topic mixtures versus
dynamic cache models,” Speech and Audio Processing,
IEEE Transactions on, vol. 7, no. 1, pp. 30-39, 1999.

Frank Wessel, Andrea Baader, and Hermann Ney, “A
comparison of dialogue-state dependent language mod-
els,” in ESCA Tutorial and Research Workshop (ETRW)
on Interactive Dialogue in Multi-Modal Systems, 1999,
pp. 93-96.

Wei Xu and Alexander I. Rudnicky, “Language model-
ing for dialog system,” pp. 118-121, 2000.

Karthik Visweswariah and Harry Printz, ‘“Language
models conditioned on dialog state,” in INTERSPEECH,
2001, pp. 251-254.

Navdeep Jaitly, Patrick Nguyen, Andrew Senior, and
Vincent Vanhoucke, “Application of pretrained deep
neural networks to large vocabulary speech recogni-
tion,” in Proceedings of Interspeech, 2012.

Andreas Stolcke, “Entropy-based pruning of backoff
language models,” in DARPA Broadcast News Tran-
scription and Understanding Workshop, 1998, pp. 270-
274.



[11] Hasim Sak, Francoise Beaufays, Kaisuke Nakajima, and
Cyril Allauzen, “Language model verbalization for au-
tomatic speech recognition,” in Acoustics, Speech and
Signal Processing, 2013. ICASSP 2013. IEEE Interna-
tional Conference on, 2013.

36



