
JOINT TRAINING OF INTERPOLATED EXPONENTIAL N -GRAM MODELS

Abhinav Sethy1, Stanley Chen1, Ebru Arisoy1, Bhuvana Ramabhadran1

Kartik Audkhasi2, Shrikanth Narayanan2, Paul Vozila3

1 IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
2 University of Southern California, Los Angeles, CA, USA

3 Nuance Communications, Burlington, MA, USA

ABSTRACT

For many speech recognition tasks, the best language model
performance is achieved by collecting text from multiple
sources or domains, and interpolating language models built
separately on each individual corpus. When multiple corpora
are available, it has also been shown that when using a domain
adaptation technique such as feature augmentation [1], the
performance on each individual domain can be improved by
training a joint model across all of the corpora. In this paper,
we explore whether improving each domain model via joint
training also improves performance when interpolating the
models together. We show that the diversity of the individual
models is an important consideration, and propose a method
for adjusting diversity to optimize overall performance. We
present results using word n-gram models and Model M, a
class-based n-gram model, and demonstrate improvements in
both perplexity and word-error rate relative to state-of-the-art
results on a Broadcast News transcription task.

1. INTRODUCTION

Language models are critical components in various natural
language processing applications such as machine translation
and speech recognition, and n-gram language models con-
tinue to be the dominant technology in state-of-the-art sys-
tems. For many tasks, training text is available from a collec-
tion of diverse data sources or domains, and the best perfor-
mance can be achieved by combining information from all of
these sources. While one can simply train a single model on
the pooled data, better performance can often be achieved by
building a separate language model on each individual cor-
pus and linearly interpolating the component models. Model
combination (in contrast to data combination) has the added
advantage that the final model can be inexpensively adapted
to a specific domain by adjusting a few interpolation weights,
rather than requiring retraining of the models themselves.

In this paper, we investigate whether domain adaptation
can be used to improve the performance of an interpolated
model by improving the quality of each component model. In
domain adaptation, one attempts to improve performance on

an in-domain test set by supplementing an in-domain training
set with a (typically larger) out-of-domain training set. With
training sets from multiple domains as in interpolated models,
each domain model can be improved by viewing the data from
the remaining domains as out-of-domain data, and applying a
domain adaptation technique.

Here, we focus on the feature augmentation algorithm
developed for domain adaptation for general classifiers, also
known as “frustratingly easy” domain adaptation [1, 2]. The
core idea is to construct a regularized model containing mul-
tiple copies of each feature, one copy for the global model,
and one copy for each domain model. Global features capture
statistics shared across all training corpora, while domain-
specific features represent knowledge particular to each data
source. Features are jointly trained across all of the data;
the global features enable the sharing of information between
subcorpora, potentially leading to better parameter estimates
for each domain. To apply this model to a particular domain,
only the global features and features specific to that domain
are included. Empirically, this method generally leads to bet-
ter performance on each component domain as compared to
building a model for each domain solely from the correspond-
ing subcorpus.

We explore whether applying feature augmentation to
each component model in an interpolated model can improve
the performance of the combined model. We find that a gain
can in fact be achieved, but small details can have a signifi-
cant effect on performance. In particular, the performance of
an interpolated model tends to improve the more diverse its
component models are, just as with other ensemble or system
combination techniques [3]. However, joint training tends to
make the domain-specific models less diverse, because of the
sharing of global features. We show that good performance is
contingent on finding the right level of diversity, and propose
a scheme using log-linear interpolation to vary the amount
of diversity present. We contrast this with the method of
varying regularization hyperparameters from [2]. In addition,
we show how to tune the level of diversity to optimize overall
performance.

While word n-gram models are usually represented as

25978-1-4799-2756-2/13/$31.00 ©2013 IEEE ASRU 2013

back-off language models, they may also be represented us-
ing exponential models, and this representation is more well-
suited to the use of feature augmentation. Furthermore, ex-
ponential models offer more flexibility in terms of the types
of features that can be supported (also taking regularization
into account), in contrast to the highly specialized smooth-
ing techniques used in conventional n-gram models. As we
utilize this flexibility when developing schemes for control-
ling model diversity, we consider only exponential language
models in this work. In addition to word n-gram models, we
also evaluate Model M, an exponential class-based language
model that has achieved superior performance across many
domains [4].

The next section discusses related work on language
model adaptation. Section 3 describes exponential language
models and feature augmentation in more detail. In Sections 4
and 5, we present our recipe for constructing interpolations
of jointly trained models, as well as our method for control-
ling diversity. In Section 6, we provide experimental results
on Broadcast News data and conclusions are presented in
Section 7.

2. RELATED WORK

The two fundamental issues underlying this work are: what
is the best way to combine information from training sets
from multiple sources; and what is the best way to use out-
of-domain data to improve an in-domain model, i.e., domain
adaptation. Both of these issues fall under the umbrella of lan-
guage model adaptation, which deals with the general task of
handling training data not matched to test data. An extensive
survey of the field can be found in [5].

The most widely-used method for combining multiple
data sources is to use linear interpolation to combine separate
models built from each source, due to its good performance
over a wide range of situations and its ease of implementa-
tion. Typically, interpolation weights are static, but dynami-
cally varying interpolation weights according to the language
model history can sometimes produce gains [6, 7]. Other
variations of linear interpolation include maximum a poste-
riori (MAP) and Bayesian interpolation [8], and log-linear
interpolation has also been shown effective [9]. While model
combination methods like interpolation are most popular,
data pooling methods such as count merging can also work
well. However, these approaches are not robust to the case
where much more data is available from some sources as
compared to others.

Domain adaptation can be considered as a special case
of combining multiple data sources, and thus all of the pre-
viously mentioned techniques can be applied. In addition,
there are methods that are tailored to the situation where
there is a clear “in-domain” corpus and “out-of-domain”
corpus. Minimum Discrimination Information (MDI) and
regularized MDI [10, 11] and MAP adaptation [12] use the

out-of-domain model as a prior when training the in-domain
model. These techniques work well for domain adaptation,
though regularization hyperparameters may need to be cho-
sen carefully. The MDI and MAP techniques are very similar
to feature augmentation [1, 2] in terms of the features retained
in the models. All of these methods include both global and
domain-specific copies of features. The main difference is
in how training is performed; in the former methods, the
out-of-domain model is trained first and fixed as a prior when
training the in-domain model. In feature augmentation, the
global and domain-specific models are trained jointly. The
use of domain-specific features in exponential n-gram models
has also been explored in [13, 14]. Unlike in our work, do-
main features are created only for n-grams that are correlated
(or anti-correlated) with a topic, rather than for most or all of
the n-grams that occur.

In this work, we use domain adaptation to improve com-
ponent models when using linear interpolation for model
combination. A similar idea was evaluated on a small Broad-
cast News task in [10], except using rMDI instead of feature
augmentation for domain adaptation. Linearly interpolating
each domain model with a global model (i.e., a model built
on all of the data pooled together) is another way to improve
each domain model. This is equivalent to the well-known
technique of adding the global model into the overall interpo-
lation. In [10], linear interpolation with the global model was
slightly better than the baseline linear interpolation, and the
use of rMDI did not appear to add any further improvement.

3. BACKGROUND

In this section, we cover exponential language models and
feature augmentation in more detail.

3.1. Exponential language models

We briefly review exponential language models including
Model M. For a set of target symbols y ∈ Y and history sym-
bols x ∈ X , an exponential model with parameters Λ = {λi}
and corresponding features fi(x, y), . . . , fF (x, y) has the
form

PΛ(y|x) =
exp(

∑F
i=1 λifi(x, y))

Z(x)
(1)

Z(x) =
∑
y∈Y

exp(

F∑
i=1

λifi(x, y)) (2)

In language models, the target y is typically the current word
wj and the history x is some number of previous words
wj−n+1 · · ·wj−1.

In an exponential word n-gram model for n = 3, say, we
have binary features f(x,y)(·) for (x,y) of the forms

(ε, wj), (wj−1, wj), (wj−2wj−1, wj) (3)

26

where f(x,y)(x, y) = 1 iff the history x ends in x and the
target word y is y. Although the number of possible features
for an n-gram model is V n where V is the size of the word
vocabulary, we only consider features that correspond to n-
grams that occur at least once in the training corpus.

We train exponential n-gram models using a combination
of `1 and `22 regularization [15]; i.e., parameters λi are chosen
to optimize

O`1+`22
(Λ) = log PPtrain +

α

D

∑
i

|λi|+
1

2σ2D

∑
i

λ2
i (4)

for some α and σ, where PPtrain is the training set perplexity
and D is the size of the training set in words [10].

Model M is a class-based n-gram model composed of two
separate exponential models, one for predicting classes and
one for predicting words. Let Png(y|λ) denote an exponential
n-gram model and let Png(y|λ1, λ2) denote a model contain-
ing all features in Png(y|λ1) and Png(y|λ2). If we assume that
every word w is mapped to a single word class, the trigram
version of Model M is defined as

PM (wj |wj−2wj−1) ≡Png(cj |cj−2cj−1, wj−2wj−1)×
Png(wj |wj−2wj−1cj) (5)

where cj is the word class of word wj . Model M has achieved
among the largest word-error rate improvements over word n-
gram models ever reported, with gains as high as 3% absolute
as compared to a Katz-smoothed trigram model [4].

3.2. Domain Adaptation by Feature Augmentation

Feature augmentation [1, 2] can be viewed as taking a global
feature set derived from the entirety of the training data,
and including an additional copy of these features for each
domain-specific data set. The global features are “active”
for all training events, while domain-specific features are ac-
tive only for the corresponding domain data (and otherwise
pinned to zero). In other words, if there are F global features
{fi(x, y)} and K domain corpora, there will be F × (K + 1)
features in the augmented model. We can view the first F
features as the global copy and each succeeding set of F
features the copy for each domain. If the vector ~φ (of size
F) represents the global feature values {fi(x, y)} for some
training event (x, y), then the augmented feature values will
be

~φaug = (~φ; ~φ,~0,~0, . . . ,~0)

if the event belongs to the first domain corpus;

~φaug = (~φ;~0, ~φ,~0, . . . ,~0)

if the event belongs to the second domain corpus; and so forth.
For each event, the only parts of the augmented vector that are
nonzero are the global copy and the copy corresponding to the
corpus from which the event is drawn.

Using global features enables the model to share infor-
mation across domains, by encoding domain-independent
statistics in the parameters of the global features and domain-
specific statistics in the parameters of the domain features. In
particular, it has been shown that the sum of the parameter
mass

∑
i |λi| in a model is a very good predictor of training

set overfitting (in log perplexity space), and global features
reduce overall parameter mass by absorbing parameter mass
that is shared across domains [4].

Note that although the total number of features is F ×
(K + 1), many features may never occur with nonzero val-
ues in many of the domain corpora, and the associated feature
copies can be ignored. Consequently, the effective dimen-
sionality of the augmented vector can be significantly smaller
than the upper bound of F × (K + 1), as will be discussed
further in following sections.

4. JOINT TRAINING WITH FEATURE
AUGMENTATION

To apply the feature augmentation framework described in
Section 3.2 to exponential n-gram language models, we sup-
plement the (global) feature templates given in Equation 3
(for n = 3) with domain-specific features of the form

(k,wj), (wj−1k,wj), (wj−2wj−1k,wj) (6)

where k ∈ {1, . . . ,K} identifies which domain the feature is
associated with. Then, the parameters {λi} attached to each
feature can be trained to optimize Equation 4 as before.

The jointly trained model can be used as a model for do-
main k by considering only the global features along with
the features associated with domain k; we denote the model
for domain k as Pk(y|x). We refer to the K domain mod-
els as component models. Linear interpolation of the com-
ponent models can be written as

∑
k wkPk(y|x) where the

weights wk are selected from the unit simplex. In common
practice, the weights wk are estimated using the expectation-
maximization (EM) algorithm to maximize the likelihood of
a held-out set.

As noted in [2], the value of the regularization hyperpa-
rameters (α, σ2) used in Equation 4 can have a large impact
on performance. Rather than using a single global value for
(α, σ2), it is beneficial to use at least two different values,
one for the global features and one for the domain-specific
features. A high regularization penalty for the global features
encourage the domain-specific models to behave like models
trained independently on each domain training set (i.e., to be
more diverse), while a high penalty on the domain-specific
models encourage them to approach a common global model
(i.e., to be less sparsely estimated).

Ultimately, we would like to select global and domain-
specific regularization hyperparameters to optimize the per-
formance of the interpolated model, e.g., in terms of perplex-
ity on a held-out set. However, for each hyperparameter set-

27

ting evaluated, the parameters {λi} need to be retrained which
is quite expensive, making hyperparameter search difficult.
Also, note that the hyperparameter settings that optimize in-
terpolated model performance may be unrelated to the set-
tings that optimize the performance of each domain model
individually. In the next section, we propose a simple alterna-
tive to hyperparameter optimization.

5. COMBINING MODEL AND PARAMETER SPACE
INTERPOLATION

The performance of a linearly interpolated model depends
both on the “strength” of the individual models (e.g., how
sparsely estimated they are) as well as on their diversity. We
now develop a new recipe for interpolation which trades off
diversity and model strength to achieve better performance.

First, let us rewrite our component models Pk(y|x) as
Pk(y|x; Λg,Λk), indicating that the parameters for the global
features Λg and the parameters for the domain-specific fea-
tures Λk are taken “as is” from the jointly trained model.
Then, for each domain k, we associate a scaling factor sgk with
the global parameters and a scaling factor sk with the domain-
specific parameters; i.e., the λi parameters are scaled by this
factor in the component models. (The original Pk(y|x) corre-
spond to sgk = sk = 1.) These scaling factors can be used as a
knob to tradeoff the diversity that the domain-specific features
bring against the more robust estimates from the global fea-
tures. Our proposed interpolation method can then be written
as

P (y|x) =
∑
k

wkPk(y|x; sgkΛg, skΛk)

This can be seen as a combination of model space interpola-
tion (across components) and parameter space interpolation
(between global and domain-specific λi’s). For each domain
k, we estimate three parameters: its interpolation weight wk;
a scale factor for global features sgk; and a scale factor for the
domain-specific features sk. For Model M, we use separate
scale factors for the class and word models, leading to 4 pa-
rameters per domain.

These parameters can be trained to optimize held-out set
likelihood using the generalized EM algorithm [16], alternat-
ing between assigning fractional counts to each domain for
each event; reestimating the mixture weights wk; and rees-
timating the scaling parameters sgk and sk. Estimating the
scale parameters can be framed as training an exponential
model with one feature per scaling parameter. Referring to
Equation 1, the feature corresponding to sgk has the value∑

i λg,ifi(x, y) and the feature corresponding to sk has the
value

∑
i λk,ifi(x, y). We use conjugate gradient descent

for parameter optimization, using the n-gram sorting process
described in [17] to efficiently compute the required gradi-
ents. Note that the λi’s and regularization hyperparameters
are fixed during this process, simplifying training.

PP WER
data pooling 121 13.2%

baseline 116 13.0%
adapt 109 12.8%

adapt+scale 104 12.7%

Table 1. Perplexities and WERs for various domain combi-
nation methods for word n-gram models.

6. RESULTS

We present results on an English Broadcast News task. The
language model training text for our experiments consists of
a total of 300M words from the following four data sources:
GALE Phase 2 Distillation GNG Evaluation Supplemental
Multilingual data (2007EN), EARS BN03 closed captions
(BN03), 1996 CSR Hub 4 Language Model data (98T31),
and Hub 4 acoustic model training transcripts (Hub4). A
vocabulary of 84k words is used. We compute word-error
rates (WERs) using lattice rescoring on a 2.5h rt04 evaluation
set containing 45k words. The held-out set consists of 45k
words of dev04 data. Building a separate unpruned modified
Kneser-Ney-smoothed language model on each subcorpus
and interpolating produces a WER of 13.0%. We primarily
report results for exponential word n-gram models, including
analysis of how regularization hyperparameters and scaling
factors affect diversity; and how diversity affects overall per-
formance. A smaller set of results is provided for Model M
in Section 6.2.

6.1. Word n-gram models

We first compare the perplexities (PPs) and WERs of various
domain combination methods in Table 1. The first line cor-
responds to building a single exponential n-gram model on
the pooled data; and baseline refers to linearly interpolating
separate models built on each subcorpus. All models are 4-
gram models, and the regularization hyperparameters (α, σ2)
are set to (0.5, 6) unless otherwise noted, as these values have
been found to work well over a wide range of tasks and model
types. On this data set, we see that the baseline linear inter-
polation does indeed outperform data pooling.

Next, we report the results from using joint training to
adapt the component models in the linear interpolation using
the default regularization hyperparameters (adapt). Finally,
we report results after applying optimized scale factors sgk and
sk to the model parameters (adapt+scale). We find that us-
ing feature augmentation to improve each component model
does in fact improve overall performance, reducing WER by
0.2% absolute over the baseline. Applying parameter scaling
improves performance even more, giving us a 0.3% absolute
reduction in WER and 12% reduction in perplexity compared
to the baseline. The WER reduction is statistically significant
at a p-level less than 0.005 under the Matched Pair Sentence

28

(α, σ2)
(0.5, 6) (0.3, 4.5) (1, 3) (500, 0.001)

2007EN 161 168 145 121
BN03 120 123 117 118
98T31 146 152 134 121
Hub4 131 138 119 118
adapt 109 109 110 117

Table 2. Effect of regularization hyperparameters on perplex-
ities for component models and overall model after interpola-
tion (adapt).

(α, σ2)
(0.5, 6) (0.3, 4.5) (1, 3) (500, 0.001)

2007EN 0.029 0.011 0.038 0.002
BN03 0.150 0.080 0.178 0.006
98T31 0.045 0.029 0.055 0.005
Hub4 0.050 0.036 0.054 0.004

Table 3. Effect of regularization hyperparameters on diversity
between models as measured by Equation 7.

Segment test.
Next, we examine the impact of varying regularization hy-

perparameters on the component models derived from joint
training. We keep (α, σ2) fixed at their default values for
the global features and only vary the regularization penalty
for domain-specific features. Perplexities for each component
model and for the associated interpolated model are given in
Table 2. The lower the α and the higher the σ2, the lower the
overall regularization penalty (see Equation 4).

As discussed earlier, high regularization penalties should
cause the component models to approach the pooled model.
This corresponds to the last column in the table, and accord-
ingly we find that all of the component models have a perplex-
ity similar to that of the pooled model (121), and interpolation
improves performance only slightly. On the other hand, lower
regularization penalties (as in the other columns) should en-
courage diversity, and the interpolated performance is signif-
icantly better even though the perplexities of the component
models are generally worse. This demonstrates the impor-
tance of model diversity for overall performance.

In order to quantify the effect of regularization on model
diversity, we measure the average empirical Kullback-Leibler
(KL) distance between each component model and the re-
maining models on the held-out set. That is, for each com-
ponent model Pk(y|x) we compute

KLk = − 1

Dh

Dh∑
d=1

K∑
k′=1

Pk(yd|xd) ln
Pk(yd|xd)

P ′k(yd|xd)
(7)

where the held-out set is denoted as (x1, y1), . . . , (xDh
, yDh

).
As can be seen from Table 3, there is a clear decrease in
the diversity between models as the regularization penalty on

separate opt. joint opt.
sgk sk div sgk sk div

2007EN 1.02 -0.10 0.0001 1.06 0.48 0.10
BN03 0.98 0.55 0.02 0.55 0.98 0.14
98T31 1.02 0.001 0.001 0.99 0.50 0.04
Hub4 1.01 0.34 0.001 0.92 1.45 0.016

PP 115 104

Table 4. Average KL diversity (div) with global (sgk) and
domain-specific (sk) scale factors optimized independently or
jointly.

total nonzero
data pooling 275M

baseline 310M 287M
adapt 587M 513M

Table 5. Comparison of total number of parameters and num-
ber of nonzero parameters for various methods.

domain-specific features increase.
In Table 4, we demonstrate the importance of estimating

the scaling factors sgk and sk jointly. The left half of the ta-
ble corresponds to the case where sgk and sk are estimated
separately for each domain model to optimize the perplex-
ity of the held-out set, while the right half of the table corre-
sponds to joint estimation as described in Section 5. We see
that joint estimation leads to higher weights for the domain-
specific models and to higher overall diversity, producing a
better tradeoff between diversity and individual component
model performance, and producing a better perplexity overall
as compared to separate estimation or not using scaling at all.

Next, we compare the total number of parameters for dif-
ferent methods in Table 5. Data pooling results in the least
number of parameters, as there is only a single copy of each
feature. In the baseline method where there is a separate
model for each domain, the same feature can occur in multi-
ple domain models. Finally, joint training results in the most
features, as there are both global features as in data pooling
and domain-specific features as in the baseline. While the
joint model can potentially have as many as K + 1 = 5 times
as many features as compared to data pooling, we find that in
this case the actual factor is close to two. This is expected as
higher-order n-gram features tend to be sparse, and will usu-
ally occur in only one domain corpus. We also note that about
13% of the features in the joint model have λi = 0 and can
be discarded, which is larger than the corresponding figure of
7% for the baseline. This can be attributed to feature overlap
while training under regularization.

6.2. Model M

Results with Model M are presented in Table 6. Since Model
M is a smoother model [4], it is expected that the benefit from

29

PP WER
baseline 108 12.4%

adapt+scale 103 12.2%

Table 6. Perplexities and WERs for various domain combi-
nation methods for Model M.

adaptation will be smaller. Accordingly, we get a 4% relative
reduction in perplexity and 0.2% absolute reduction in WER
as compared to the baseline WER of 12.4%, corresponding
to a linear interpolation of independently-estimated domain-
specific Model M’s. The WER reduction is statistically sig-
nificant at a p-level of 0.07 under the Matched Pair Sentence
Segment test. Note that the best Model M perplexity of 103 is
comparable to the best perplexity achieved with word n-gram
models (104), but the WER is significantly better (12.2% vs.
12.7%).

7. CONCLUSION

In this paper, we show that the performance of an interpo-
lated model can be improved by applying domain adaptation
to improve its component models. We show that feature aug-
mentation can be used to better state-of-the-art performance
on a large-scale task by up to 0.3% absolute. We find that
diversity is an important consideration when designing inter-
polated models, and show how diversity can be varied via reg-
ularization hyperparameters. However, searching for optimal
hyperparameters is extremely expensive; evaluating just a sin-
gle set of hyperparameters (corresponding to a single column
in Table 2) took around 15 hours. Consequently, we propose
a novel method for controlling diversity through parameter
scaling and give an efficient method for training scaling fac-
tors. For this data, the entire scaling factor optimization re-
quired about an hour of computation.

Joint training results in a model about twice the size of the
baseline. However, if log-linear interpolation is used to com-
bine component models rather than linear interpolation, then
this disparity disappears as multiple copies of the same fea-
ture can be merged into one. In addition, log-linear interpo-
lation leads to lower run-time computation since interpolated
parameters can be precomputed statically. Log-linear inter-
polation typically gives similar performance as compared to
linear interpolation, and we plan to explore this avenue in fu-
ture work. This paper was focused on exponential n−gram
models. We plan to explore whether the techniques presented
in this paper apply to other class of models including neural
net language models.

8. REFERENCES

[1] Hal Daumé and D Marcu, “Frustratingly easy domain adap-
tation,” in Annual meeting-association for computational lin-
guistics, 2007, vol. 45, p. 256.

[2] Jenny Rose Finkel and Christopher D Manning, “Hierarchi-
cal bayesian domain adaptation,” in Proceedings of Human
Language Technologies: The 2009 Annual Conference of the
North American Chapter of the Association for Computational
Linguistics. Association for Computational Linguistics, 2009,
pp. 602–610.

[3] Ludmila I. Kuncheva and Christopher J. Whitaker, “Measures
of diversity in classifier ensembles and their relationship with
the ensemble accuracy,” Mach. Learn., vol. 51, no. 2, pp. 181–
207, May 2003.

[4] Stanley F. Chen, “Shrinking exponential language models,” in
Proceedings of NAACL-HLT, 2009.

[5] Jerome R Bellegarda, “Statistical language model adaptation:
review and perspectives,” Speech communication, vol. 42, no.
1, pp. 93–108, 2004.

[6] Bo-June Hsu, “Generalized linear interpolation of language
models,” in Automatic Speech Recognition & Understanding,
2007. ASRU. IEEE Workshop on. IEEE, 2007, pp. 136–140.

[7] X Liu, MJF Gales, and PC Woodland, “Context dependent
language model adaptation,” in Proceedings of the 8th Interna-
tional Conference on Speech Communication and Technology
(INTERSPEECH08), 2008, pp. 837–840.

[8] Cyril Allauzen and Michael Riley, “Bayesian language model
interpolation for mobile speech input,” in Proc. of Interspeech,
2011, pp. 1429–1432.

[9] Dietrich Klakow, “Log-linear interpolation of language mod-
els,” in Proc. ICSLP, 1998, vol. 5, pp. 1695–1698.

[10] Stanley F. Chen, Lidia Mangu, Bhuvana Ramabhadran, Ruhi
Sarikaya, and Abhinav Sethy, “Scaling shrinkage-based lan-
guage models,” Tech. Rep. RC 24970, IBM Research Division,
April 2010.

[11] Adam Berger and Robert Miller, “Just-in-time language mod-
elling,” in Acoustics, Speech and Signal Processing, 1998. Pro-
ceedings of the 1998 IEEE International Conference on. IEEE,
1998, vol. 2, pp. 705–708.

[12] Ciprian Chelba and Alex Acero, “Adaptation of maximum en-
tropy capitalizer: Little data can help a lot,” Computer Speech
& Language, vol. 20, no. 4, pp. 382–399, 2006.

[13] Jun Wu and Sanjeev Khudanpur, “Combining nonlocal, syn-
tactic and n-gram dependencies in language modeling,” in Pro-
ceedings of Eurospeech, 1999, vol. 99, pp. 2179–2182.

[14] Stanley F Chen, Kristie Seymore, and Ronald Rosenfeld,
“Topic adaptation for language modeling using unnormalized
exponential models,” in Acoustics, Speech and Signal Process-
ing, 1998. Proceedings of the 1998 IEEE International Confer-
ence on. IEEE, 1998, vol. 2, pp. 681–684.

[15] Jun’ichi Kazama and Jun’ichi Tsujii, “Evaluation and exten-
sion of maximum entropy models with inequality constraints,”
in Proceedings of EMNLP, 2003, pp. 137–144.

[16] Radford M Neal and Geoffrey E Hinton, “A view of the em
algorithm that justifies incremental, sparse, and other variants,”
in Learning in graphical models, pp. 355–368. Springer, 1998.

[17] Abhinav Sethy, Stanley F Chen, and Bhuvana Ramabhadran,
“Distributed training of large scale exponential language mod-
els,” in Acoustics, Speech and Signal Processing (ICASSP),
2011 IEEE International Conference on. IEEE, 2011, pp.
5520–5523.

30

