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ABSTRACT

Using words as vocabulary units for tasks like speech recog-
nition is infeasible for many morphologically rich languages,
including Finnish. Thus, subword units are commonly used
for language modeling. This work presents a novel algorithm
for creating a subword vocabulary, based on the unigram like-
lihood of a text corpus. The method is evaluated with entropy
measure and a Finnish LVCSR task. Unigram entropy of the
text corpus is shown to be a good indicator for the quality
of higher order n-gram models, also resulting in high speech
recognition accuracy.

Index Terms— Large Vocabulary Continuous Speech
Recognition, Vocabulary Selection, Subword Modeling

1. INTRODUCTION

Morphologically rich languages pose special challenges for
natural language processing tasks such as speech recogni-
tion and machine translation [1]. Because of morphological
processes like agglutination, compounding and inflection,
the amount of different word forms may be huge and cause
problems for traditional word-based language modeling ap-
proach. A common solution is to use a vocabulary consisting
of subwords instead of words. Subword-based approaches are
widely applied in automatic speech recognition for languages
such as Finnish, Estonian, Turkish, Hungarian, Thai, Czech,
and Slovenian. For a comprehensive survey of different
methods, see [2]. The subword vocabularies selected using
unsupervised machine learning methods have been shown to
perform well [3, 4], so neither a morphological analyzer nor
an annotated training corpus is required. One common unsu-
pervised method is Morfessor [5], which is used as a baseline
method in this work.

Modern speech recognizers aimed for large vocabulary
tasks typically utilize n-grams for language modeling. To
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Hirsimäki, Dr. Vesa Siivola, and Dr. Mathias Creutz for fruitful discussions
and their help in developing the algorithm.

avoid data sparseness issues and achieve good n-gram esti-
mates, the vocabulary size and units should be selected care-
fully. Also out-of-vocabulary (OOV) rate has to be consid-
ered. For a morphologically rich language, using words as
vocabulary units leads either to a high OOV rate if the vocabu-
lary is too small, or difficulties in estimating the n-gram prob-
abilities if the vocabulary is too large. By using a subword
vocabulary, it is possible to achieve virtually unlimited word
vocabulary by using subwords as building blocks. Recogni-
tion rates for words not in the training data have been ana-
lyzed in [2, 6]. For analysis of recognition rates for word and
subword-based speech recognition, see for example [7].

There are many possible ways to select a subword vo-
cabulary. Morphologically motivated units like statistical
morphs have proven to be a good choice. By definition, mor-
phemes are the smallest meaning-bearing units of a language
and morphs are their realizations in text or speech. Different
algorithms for morphological segmentations have been evalu-
ated in Morpho Challenge competitions [8] that have included
speech recognition tasks [3]. For comparing the prediction
ability of different subword vocabularies, a useful measure is
the cross-entropy of an n-gram model trained for the subword
units. In this work, we study whether the unigram likelihood
would be a suitable criterion for learning a subword vocabu-
lary that would produce an accurate high-order n-gram model
for an LVCSR task. We introduce an unsupervised segmenta-
tion method that explicitly optimizes unigram likelihood for
given vocabulary size. We also compare the unigram entropy
and morphological correctness of the subwords as the criteria
for achieving a high-order model with low entropy.

2. GREEDY ALGORITHM FOR SUBWORD
VOCABULARY LEARNING

The goal of the suggested new algorithm is to create a sub-
word vocabulary that gives a high unigram likelihood for the
training corpus. This criterion is difficult to optimize directly
for a limited vocabulary size, but the Greedy 1-Grams (G1G)
algorithm that we present, provides a reasonable approxima-
tion. The approach taken is to start with a large amount of
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candidate subwords and gradually constrain the subword vo-
cabulary and refine word segmentations to reject subwords
that are least significant for the likelihood.

The algorithm takes as input a list of words and their fre-
quencies. The subword vocabulary V consists of subwords
and a probability for each subword, forming a unigram distri-
bution over the vocabulary. The model structure is explained
in more detail in Subsection 2.1. The algorithm consists of
separate initialization and pruning phases which are explained
in more detail in Subsections 2.2 and 2.3.

2.1. Markov models and subword segmentation

Generating words from a subword unigram model may be
viewed as a zero-order Markov process. However, with re-
spect to inferring model parameters from a set of words, the
states of the process are not directly observable, because the
states emit subwords of varying length and the borders be-
tween the subwords are not observed. Extending the Viterbi
and Forward-Backward algorithms for this multigram frame-
work [9] is straightforward. Figure 1 shows an example how
Finnish word “talossa” could be segmented as a sequence of
letters, subwords, or as a single observation. The most likely
segmentation returned by Viterbi would in this case be “talo
+ ssa”.
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Fig. 1. Segmentation paths for word “talossa” using a sub-
word model. The numbers are log-likelihoods of the units.

The vocabulary may be stored in a letter-trie-like data
structure to allow fast subword lookups starting from each
character position.

2.2. Initialization

The algorithm proceeds by starting with a large vocabulary,
which is then pruned to a suitable size. Because no new sub-
words will be introduced, proper initialization is important.

1. Train a letter n-gram model from the training corpus.
Forward-backward algorithm in step 4 decreases the dif-
ferences between different discounting methods.

2. Select the initial pool of subwords V = {si}, for example
all substrings from the most common words in the train-
ing data up to a reasonable maximum length.

3. Calculate a log-probability lpi for each subword si using
the letter n-gram model. For example, if the subword si
is a four-letter string “abcd”:

lpi(abcd) = lp(a) + lp(b|a) + lp(c|ab) + lp(d|abc) (1)

Normalize the probabilities to sum to one.

4. Using the subword probabilities, iterate Forward-backward
over the training corpus until convergence. In practice,
around 5 iterations is enough. Update the probabilities
for all subwords.

5. Iterate Viterbi training. After each iteration increase cut-
off value and remove subwords with frequency below the
cutoff value. Stop when a suitable maximum cutoff value
is reached.

2.3. Vocabulary pruning

The actual pruning is done with a more refined pruning strat-
egy, which tries to account for the effect that removing a sub-
word has on the likelihood. For segmentation, either Forward-
backward or Viterbi algorithm may be used. We did not ob-
serve significant difference between them, and thus Viterbi
segmentation was used. Iterate:

1. Resegment all words, update subword probabilities and
store pointers from subwords to words.

2. Select a list of candidate subwords for removal, for exam-
ple the least frequent subwords in the vocabulary.

3. For each candidate subword, estimate the cost of remov-
ing it by resegmenting the words without it.

4. Sort the list of candidate subwords in descending order by
the value of estimated likelihood change.

5. Remove a defined amount of top candidate subwords. Al-
ternatively it is possible to update parameters after each
removal and verify that the cost for each subsequent re-
moval is above a threshold value.

3. EXPERIMENTS

3.1. Experimental setup

The text corpus used in all further experiments is the Finnish
CSC Kielipankki corpus [10]. It contains text from Finnish
newspapers, magazines and books. The corpus contains in to-
tal 144 million word tokens and 4.1 million word types. The
corpus was preprocessed by removing punctuation and other
special characters and numbers were expanded to their writ-
ten form. The order of the sentences was randomized and the
sentences divided into training, development and evaluation
sets. Training set consists of 139 million word tokens. It is
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used for training the subword vocabularies and n-gram mod-
els. The development set consists of 190000words tokens and
meant for optimizing discount parameters of n-gram models.
The evaluation set consists of 3.9 million word tokens and is
used in evaluating the entropy of the n-gram models.

The speech recognition task is based on the Finnish
Speechdat database1, which consists of 4000 speakers recorded
over fixed telephone line (8 khz). 55 hours from 3696 speak-
ers were used for training. For both development and test sets
150 separate speakers were allocated with about 2.2 hours of
speech in each set. The task is relatively hard because of wide
range of speakers and at times low sound quality.

The speech recognition system is a large vocabulary
speech recognizer, which utilizes Hidden Markov Models for
acoustic modeling and n-grams for language modeling. The
HMM is based on context-dependent triphones with 1783
tied HMM states. State emission PDFs are diagonal Gaussian
mixture models with varying numbers of Gaussian trained
using maximum likelihood training with a global MLLR lin-
ear transform. The total number of Gaussian was 85758. No
speaker adaptation was utilized in these experiments. To be
able to use subword units and allow long-context n-grams,
there are special issues to consider in the decoder implemen-
tation [11]. Letter-to-phoneme mapping for Finnish is quite
straightforward and using triphone models solves most of the
issues.

3.2. Subword vocabularies

3.2.1. G1G

The initial pool of subwords was selected by taking all sub-
strings up to length of 15 from the 500k most common words
in the training data. The initial number of subwords was 4.8
million. A letter 8-gram model was trained using the SRILM
toolkit [12]. Each of the strings was then assigned an ini-
tial unigram score using the letter n-gram model. From this
point on 1M most common words were used as the train-
ing data, as the remainder had negligible effect on the re-
sult. Forward-backward algorithm was iterated 5 times. After
this we changed to Viterbi segmentation, removing all unused
subwords. The vocabulary size dropped to 493k subwords.
Viterbi segmentation was then iterated 20 times while increas-
ing a cutoff value in steps of 2.5 to a maximum of 50. This
further reduced the vocabulary size to 177k subwords.

Pruning was done as follows: in each iteration, a list of
candidate removals of size 25k was created and sorted using
the estimate of their impact on the likelihood. Before reaching
vocabulary size of 100k, 2500 subwords were removed per
iteration. For vocabulary sizes 50–100k, 1000 subwords were
removed per iteration and for vocabulary sizes 10–50k, 500
subwords were removed per iteration.

1http://www.speechdat.fi

Table 1 illustrates the development of subword vocabu-
lary size and unigram log-likelihood after subsequent steps
in G1G training. The last steps show the points in iteration
where the size reached 100k, 50k, 25k and 10k.

Table 1. G1G training statistics (LL = log-likelihood).
Step Vocabulary size LL (109)
Initialization 4.8M -1.58
Forward-backward (5 iter) 4.8M -1.39
First Viterbi segmentation 493k -1.39
Cutoff 50 177k -1.42
Iteration 32 100k -1.45
Iteration 81 50k -1.51
Iteration 131 25k -1.58
Iteration 161 10k -1.72

3.2.2. Morfessor

Morfessor vocabularies were created with the Morfessor
Baseline script [13]. Unweighted lists of common words
were given as input to the algorithm. Longer word list results
in a larger vocabulary and vice versa. To obtain the results
of this paper, we took 50k-–600k most common words in the
training corpus.

For longer word lists with word frequencies, Morfessor
algorithm segments very few words. The underlying reason
for the undersegmentation is that Morfessor is based on the
MDL two-part criterion, having a cost for the vocabulary and
the data. The cost for the vocabulary must be on a meaningful
level compared to the data cost. It is possible to guide the
algorithm to segment more by setting a larger weight for the
lexicon cost. Lexicon-weighted Morfessor has been evaluated
with respect to morphological F-measure in [14], but no prior
evaluation for language modeling and LVCSR exists.

The lexicon-weighted Morfessor segmentations were cre-
ated using a frequency weighted list of 500k most common
words in the training corpus. Word list of 1M words was
noticed to result in a slight performance degradation. The
lexicon size was controlled by varying the weighting term be-
tween corpus and lexicon codelengths. In these experiments
the lexicon weight was varied between 50–400.

3.3. F-measure for morphological segmentation

The methods were evaluated in terms of morphological F-
measure using the BPR evaluation and gold standard segmen-
tations described in [15]. F-measure is defined as the har-
monic mean of precision (P) and recall (R) for the placement
of morph boundaries:

P = H/(H + I); R = H/(H +D), (2)
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where H is the number of correct boundary positions, I is the
number of incorrect boundary positions, and D is the num-
ber of missing boundary positions when compared to the gold
standard segmentation.

The results for vocabulary sizes of 35k are shown in Ta-
ble 2. As the vocabulary size has been selected for speech
recognition task, rather than for morphological evaluation,
these are not the best possible F-measures for the methods.
While Morfessor Baseline trained without word frequencies
reached the best F-measure, also Morfessor LW and G1G
were reasonably accurate.

Table 2. Morphological F-measures for the methods.
Method Precision Recall F-Measure
Morfessor 0.73 0.52 0.61
Morfessor LW 0.69 0.47 0.56
G1G 0.70 0.48 0.57

3.4. Entropy evaluation

Language models were trained using the VariKN toolkit [16].
Models are Kneser-Ney smoothed and trained using a grow-
ing algorithm. The training data was processed to contain a
special word boundary symbol between all words and also in
the beginning and end of sentences. An example training sen-
tence would thus look like:

<s> <w> kissa <w> käve li <w> kadu lla <w> </s>

Average word entropy is a good measure of how well the
language model can predict the words and word sequences
in the evaluation set [17]. Entropy was evaluated for each
n-gram model as follows:

1. Segment the evaluation corpus C with the n-gram model
M into subwords in similar format as the training data.
This was done using a segmenter, which finds the most
likely subword segmentation for each sentence, given the
model M.

2. Average word entropy for the evaluation corpus was then
computed with the following formula:

HM(C) =
1

|C|

∑

s∈C

−
1

Ws

∑

i∈[2,|Ts|]

log2 P (ti|t
i−1
0 ,M),

(3)
where |C| is the total number of sentences, Ws number
of words in the sentence s and Ts all text tokens in the
sentence s. The cost for the two first tokens is omitted
as they are the same for each sentence. Word normaliza-
tion is important as token-wise entropy is not meaningful
when comparing different vocabularies. The result is in
bits per word.

In the first experiment, unigram entropy of the evaluation
corpus was evaluated as a function of the vocabulary size.
The results are in Figure 2. It can be seen that there are
relatively large differences between the methods. It seems
that G1G performs best and the Morfessor Baseline worst,
lexicon-weighted Morfessor reaching roughly the same level
as G1G. Comparing the morphological F-measures in Table
2 and the unigram entropies in Figure 2, it may be noticed that
for the evaluated methods, unigram entropy and morphologi-
cal F-measure are negatively correlated.

In the second experiment, the vocabulary size was set to
roughly the same number for all methods, and variable-length
high order n-gram models were trained with the VariKN
toolkit. The maximum order of n-grams was set to 10 for all
models. N-gram frequency cutoff 2 was used for all models
and all n-gram orders ranging from 2–10. In preliminary
tests, this gave the best models. Model sizes were controlled
by varying the pruning parameters. Word entropy was mea-
sured as a function of the n-gram model size. The results
are in Figure 3. G1G and Morfessor LW perform better than
baseline Morfessor method for most of the model sizes. The
entropy curves were found to be quite invariant to even large
changes in vocabulary size.
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Fig. 2. Word unigram entropy as a function of vocabulary
size.

3.5. Finnish LVCSR task

The language models in this task are the same as in the en-
tropy evaluation. One model with around 16 million n-grams
was chosen for each method. In addition, 2-gram lookahead
models were trained for each method. The development set
was used to optimize the language model scale. Real-time
factor for decoding was evaluated on an Intel Xeon E3-1230
3.30GHz CPU using precomputed acoustic probabilities.
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Table 3. Results in a Finnish LVCSR dictation task
Method Vocab n-grams LER WER RTF
Morfessor 35k 16.0 M 7.40 22.32 2.41
Morfessor LW 35k 16.0 M 7.25 21.88 2.34
G1G 35k 16.0 M 7.18 22.02 2.15

The results can be found in Table 3. Because the Finnish
words are quite long and typically contain several mor-
phemes, the most widely used performance measure is letter
error rate (LER). Prior to this work, Morfessor Baseline has
been the best performing method in our setup. Training Mor-
fessor with frequencies and by weighting lexicon, a decrease
in both LER and real time factor (RTF) was recorded. G1G
algorithm further improves both metrics. We experimented
also with model sizes of around 10 and 24 million n-grams
and the conclusions were similar. The improvements in error
rates are modest, but quite clear because of the large testset.
Also, around 10% improvement in decoding speed signifies
that the model is consistently suggesting better hypotheses.

4. DISCUSSION

The purpose was to test whether a good subword vocabulary
could be constructed by minimizing the average word entropy
for a given subword vocabulary size. As directly optimizing
the high order n-grams required by LVCSR is computation-
ally hard, we approximated it by trying to minimize the uni-
gram entropy of the training corpus.

High morphological accuracy is a good property for a sub-
word vocabulary for many natural language processing tasks
[15]. Unigram entropy and F-measure are probably some-
what dependent, as all the methods tried in this work per-
formed reasonably well in both respects. Our results suggest

that unigram entropy is more important than morphological
correctness if the goal is to train a high-order n-gram model
for a speech recognition task.

The proposed approach of starting with a large pool of
candidate substrings and pruning it to a suitable size pro-
vided the most efficient subword vocabulary for a Finnish
LVCSR task. Our experiments also showed that training Mor-
fessor with word frequencies by weighting the lexicon cost
improved over the baseline Morfessor. A possible future work
is system combination with G1G and Morfessor based sub-
word models, because both methods give good recognition
results, but with different subwords and recognition errors.

As the proposedG1G algorithm is quite general, it should
be easy to extend in various ways:

Scalability to longer strings. As the number of allowed
substrings is limited, it is possible to scale the algorithm for
longer strings. This is more difficult with approaches such
as Morfessor, that introduce new strings during training. In
the context of language modeling, a possible generalization
would be segmenting sentences into more general chunks of
text, allowing cross-word segments and multiwords (cf. [9,
18]). In many languages, through declension, the suffix of
previous word is connected to the adjacent word. These cases
might be better modelled by allowing the units to cross word
boundaries. At least in conversational LVCSR, it is a rela-
tively common practice to use multiword units [19]. G1G
algorithm could be used to learn the most important multi-
words on text-level. With suitable modifications, the algo-
rithm could be used in segmenting continuous strings, not
limited to natural language.

Pronunciation variants. By removing subwords instead
of introducing new ones, it should be easy to control the qual-
ity of pronunciation lexicon for languages with more com-
plex letter-to-phoneme mapping. The vocabulary could be
initialized by selecting only strings with a well defined or es-
timable pronunciation variant and record the possible changes
on word-level while pruning the vocabulary.

Higher-order statistics. If the goal is to optimize the en-
tropy of a high-order n-gram model, utilizing higher-order
statistics [20] already in the vocabulary training phase could
improve results. Bigram statistics have been tried for instance
in Chinese word segmentation [21]. In our initial experiments
for subword segmentation, starting with a large vocabulary
seemed to avoid local maxima rather well.

5. CONCLUSIONS

Our results suggest that unigram entropy is a good indicator
for the quality of high order n-gram models for that vocabu-
lary. A novel algorithm, G1G, which learns a subword vocab-
ulary based on unigram likelihood, was presented. It provided
the best performing subword vocabulary for a Finnish LVCSR
task. The algorithm is quite general by nature and could prove
useful for other string segmentation and compression tasks.
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[4] P. Mihajlik, Z. Tüske, B. Tarján, B. Németh, and
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