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ABSTRACT

Conventional n-gram language models are known for their
limited ability to capture long-distance dependencies and
their brittleness with respect to within-domain variations.
In this paper, we propose a k-component recurrent neural
network language model using curriculum learning (CL-
KRNNLM) to address within-domain variations. Based on
a Dutch-language corpus, we investigate three methods of
curriculum learning that exploit dedicated component models
for specific sub-domains. Under an oracle situation in which
context information is known during testing, we experimen-
tally test three hypotheses. The first is that domain-dedicated
models perform better than general models on their specific
domains. The second is that curriculum learning can be used
to train recurrent neural network language models (RNNLMs)
from general patterns to specific patterns. The third is that
curriculum learning, used as an implicit weighting method
to adjust the relative contributions of general and specific
patterns, outperforms conventional linear interpolation. Un-
der the condition that context information is unknown during
testing, the CL-KRNNLM also achieves improvement over
conventional RNNLM by 13% relative in terms of word pre-
diction accuracy. Finally, the CL-KRNNLM is tested in an
additional experiment involving N-best rescoring on a stan-
dard data set. Here, the context domains are created by
clustering the training data using Latent Dirichlet Allocation
and k-means clustering.

Index Terms— Recurrent Neural Networks, Language
Models, Curriculum Learning, Latent Dirichlet Allocation,
Topics, Socio-situational setting.

1. INTRODUCTION

Conventional n-gram language models are known to suffer
in the face of data sparseness. Further, they are limited in
ability to model long-distance dependencies and are brittle to
within-domain variations [1]. Recent studies have shown that
a recurrent neural network language model (RNNLM) can out-
perform n-gram language models [2]. RNNLMs have superior

capabilities to reduce the effect of data sparseness, as well as
to model long-distance dependencies.

Here, we focus on addressing the problem of within-
domain variations in language modeling. Specifically, we
exploit curriculum learning [3] strategies to train RNNLMs.
As is argued by [4], it is important to start from simple and
small in training recurrent neural networks. This approach is
inspired by human learning, which starts from simple patterns
and moves to complex patterns. The main contribution of this
paper is the use of curriculum learning methods for RNNLMs
exploiting component models trained by moving from gen-
eral patterns to specific patterns. The general patterns and
specific patterns used in this paper can be viewed as a special
form of simple and complex patterns.

Our proposal to use curriculum learning that moves from
general to specific is inspired by the observation that the
word-usage patterns and, in particular, n-gram occurrence
frequencies, vary among different context sub-domains [5].
The dominant patterns reflected by the whole data are dif-
ferent from the dominant patterns observed in the specific
sub-domains. General language models are good at learn-
ing the overall pattern of the whole training data. However,
the specific patterns in the sub-domains of the training data
can be ignored by the general models. For example, in the
Dutch-language corpus discussed in more detail later, the
most frequent bigram in “Lectures/seminars” sub-domain is
not ranked into the top 100 bigrams from the whole data.

In addition, neural networks benefit more from new pat-
terns during training, which means that the data that is fed to
the network later in the training process contributes more to
the final model. Curriculum learning can be viewed as an im-
plicit way of weighting different parts of the whole data. Basi-
cally, the later part of the training data receives more emphasis
than the initial part of the training data. The complex patterns
that are learned after the simple patterns get more weight. By
scheduling the specific sub-domain data later in the training
process, we can implicitly let the RNNLM put more weight on
the specific patterns.

In this paper, we use a Dutch corpus collected from differ-
ent contexts of language use (referred to as ‘social-situational
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settings’) to investigate the performance of the CL-KRNNLM
when it exploits three different curriculum learning strategies:
Starting from Vocabulary (SV), Training Data Sorting (DS)
and All-then-Specific Training (AS). The corpus as a whole
represents a domain and the contexts represent individual sub-
domains, which in this case are known during training. We
carry out a comparison of specific models with general mod-
els to confirm the importance of modeling sub-domains indi-
vidually and to demonstrate the potential of curriculum learn-
ing. In an additional experiment, we investigate the potential
of CL-KRNNLM when the sub-domains are unknown. The re-
sults confirm that curriculum learning can be applied in case
where the sub-domains are not known during training. How-
ever, they also reveal that the performance gains of curriculum
learning are dependent on the sub-domain variation in the do-
main to which the CL-KRNNLM is applied.

The rest of the paper is organized as follows. Section 2
discusses related work on RNNLMs, curriculum learning, and
language modeling with mixture models. In Section 3, we
discuss three methods of curriculum training in constructing
specific component models. Section 4 presents the results of
experiments in which sub-domain information is known dur-
ing training. Section 5 presents an additional experiment in
which sub-domain information is unknown. The final section
concludes.

2. RELATED WORK

Our work is related to previous work about the following ar-
eas: recurrent neural networks language modeling, curricu-
lum learning for recurrent neural networks and mixture mod-
els, which are covered in this section in turn.

In [6, 7], a sentence level mixture model is proposed, in
which the joint probability of each sentence is a linear inter-
polation of the sentence probabilities from all k component
language models. Each component language model is trained
on one cluster of the training data. The performance of mix-
ture models depends on the clustering of the training data. In
[7], a two-stages clustering process is used. In this paper, we
use Latent Dirichlet Allocation [8] with a k-means method
to cluster the training data. Considering that too aggressive
partition of the training data may aggravate data spareness
for component language model training, cf. [7], the mixture
probability is interpolated with an additional general model.
In this paper, we propose curriculum learning as an alter-
nate to linear interpolation capable of implicitly adjusting the
weights between the general and specific data.

Feed-forward neural network language models were pro-
posed in [9]. Each word in the vocabulary is mapped by a
shared parameter matrix to a real vector. Mikolov [2, 10] ex-
tended the feed-forward neural network language model to
a recurrent neural network language model by incorporating
the time dimension into the input layer. As is shown in [11],
RNNLMs outperform other advanced language models. Their

superior capability is derived from their use of a mapping that
projects discrete words into a continuous space. Also, the
memory they include can be used to model long-distance de-
pendencies. In this paper, we take advantage of the ability
of the RNNLM framework to model long-distance context do-
main information (i.e., socio-situational setting and topic).

Recently, Mikolov et al. [12] proposed a context depen-
dent RNNLM, in which context information is obtained from
the preceding text using Latent Dirichlet Allocation (LDA). In
this paper, we also use LDA in the process of clustering the
training data. However, instead of using one general model,
we propose to use k-component models trained by curricu-
lum learning. The k-component recurrent neural network lan-
guage models were first proposed by our previous paper [13],
in which the specific component RNNLMs are constructed us-
ing interpolation. In this paper, the component models are
constructed using curriculum learning.

Curriculum learning for recurrent neural networks has
been investigated by [4] from the perspective of the intersec-
tion of cognitive science and machine learning. The results
presented in [4], which were based on learning the grammat-
ical structure of a language, suggested that it is important
to train neural networks using a curriculum such that the
training starts with simple patterns and then gradually pro-
ceeds to complex patterns. The curriculum learning strategy
was recently revisited by [3] and [14]. Their results show
that well-designed curricula can benefit RNNLMs for faster
convergence, as well as reduced perplexity. Inspired by this
work, we also use the curriculum learning, but for a differ-
ent purpose. Instead of moving from simple to complex, we
take advantage of information concerning context to shape
the training of a specific component language model from
general data to specific data.

3. CURRICULUM LEARNING FOR
K-COMPONENT MODELS

In this section, we discuss three different ways of using cur-
riculum learning in constructing the k-component models in-
cluded in CL-KRNNLM. At first, we describe the basic struc-
ture of RNNLM. Then we give the details about the curriculum
learning methods used in this paper.

3.1. Recurrent Neural Network Language Models

The recurrent neural network adopted in our work originated
with [2]. It has three layers: an input layer x, a hidden layer
h and an output layer y. It is characterized by a loop between
the input layer and the hidden layer, which plays the role of
a short abstract memory that stores previous information. At
each time t, the input vector x(t) is constituted by the current
word vector w(t) as well as a copy h(t − 1) from the previ-
ous hidden neurons. The sigmoid function and softmax func-
tion are used as the activation functions in the hidden layer
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and output layer, respectively. The output layer is generally
structured in classes. The weight matrix between the input
layer and the hidden layer is estimated by backpropagation-
through-time (BPTT)[10], which actually unfolds the loop as
a deep neural network. When the maximum entropy exten-
sion is applied, there is a weight matrix directly connect the
n-gram features to the output layer.

3.2. Different curriculum learning setups

In this paper, the following three different curriculum learn-
ing strategies for training the component models has been
studied. These methods are constructed so that the impact
of the overall domain data (i.e., the general data) increases.
With ‘Start from Vocabulary’ the general data only contribute
the vocabulary, and in ’Training Data Sorting’ the general
data contribute in sequence over the course of training, and
’All-to-Specific’ the data contribute in full at the beginning of
training.

Start from Vocabulary (SV) We first extract the vocabulary
from the whole training data. Each component model
in the CL-KRNNLM is constructed with the same vocab-
ulary. Each one is further trained by the data only from
its corresponding sub-domain. The training is termi-
nated when the component model cannot achieve ad-
ditional improvement on the validation data, which is
selected from the specific sub-domain.

Training Data Sorting (DS) This setup is driven by train-
ing data sorting. Each component model in the CL-
KRNNLM is trained by the same data except the dif-
ferent sub-domain order with the corresponding sub-
domain data at the end. The validation data is drawn
from the corresponding sub-domain.

All-to-Specific Training (AS) Each specific component model
in the CL-KRNNLM starts with a specified number of
epochs of general training in which the specific com-
ponent models are trained using the whole data. After
the general training, the component models are fur-
ther trained by training data from the corresponding
sub-domain. In the general-training period, we choose
validation data that covers all the sub-domains. In the
specific-training period, the validation data is selected
only from the particular sub-domain.

4. EXPERIMENT WITH KNOWN CONTEXT
INFORMATION

The experiments in this section are carried out in a scenario
in which the sub-domain labels that reflect the context of use
(i.e., socio-situational setting) are known at training time. The
first experiment in this section involves an oracle condition
under which the correct sub-domain label of each sentence of

the test data is known to the system during testing. The second
experiment investigates the performance of the system when
there are no sub-domain labels available for the test data.

4.1. The socio-situational setting data set

In this section, we investigate curriculum learning based on
the socio-situational settings of the training data. As is dis-
cussed in [5], the word distribution, syntactic structures all
vary according to different socio-situational settings.

The Spoken Dutch Corpus (Corpus Gesproken Neder-
lands, CGN) [15] contains audio recordings of Dutch spoken
by adults in Netherlands and Flanders. Table 1 gives the
overview of the CGN data set. It contains nearly 9 million
words divided into 13 components that correspond to differ-
ent socio-situational settings. Components comp-a to comp-h
contain dialogues or multilogues and the components comp-i
to comp-o contain monologues. From the CGN data, we ran-
domly selected 80% for training, 10% for validation and 10%
for testing. The test data OOV rate is 3.8%.

Table 1. Overview of the Spoken Dutch Corpus (CGN)
components socio-situational setting
comp-a Spontaneous conversations (‘face-to-face’)
comp-b Interviews with teachers of Dutch
comp-c&d Spontaneous telephone dialogues
comp-e Simulated business negotiations
comp-f Interviews/ discussions/debates
comp-g (political) Discussions/debates/ meetings
comp-h Lessons recorded in the classroom
comp-i Live (e.g., sports) commentaries (broadcast)
comp-j Newsreports/reportages (broadcast)
comp-k News (broadcast)
comp-l Commentaries/columns/reviews (broadcast)
comp-m Ceremonious speeches/sermons
comp-n Lectures/seminars
comp-o Read speech

4.2. Comparisons of general models with specific models

To compare the performance of the component model in the
CL-KRNNLM using these different curriculum learning strate-
gies, we use perplexity (PPL) and word prediction accuracy
(WPA). Perplexity is a commonly used metric for measur-
ing language model performance. It is calculated as the geo-
metric average of the inverse probability of the words on the
test data. In addition to perplexity, we use WPA [16] as a
practical measure for the language models. Word prediction
has many applications in natural language processing, such
as augmentative and alternative communication, spelling cor-
rection, word and sentence auto completion.

The performance of the different curriculum learning
strategies is shown in Table 2 and 3 in terms of perplexity and
WPA. In these tables, all the models have 300 hidden neu-
rons and use 100 classes. The results on these two tables are
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obtained based on the oracle situation. In other words, each
component model is tested on its corresponding sub-domain.

Table 2. The perplexity (PPL) comparison of conven-
tional general RNNLM (base) and component models in CL-
KRNNLM using different setups of curriculum training on the
sub-domains of the CGN data set.

comp base SV AS DS

a 82.6 90.6 80.4 81.0
b 104.2 120.2 89.6 91.9
c&d 73.1 81.2 67.8 69.3
e 80.1 62.2 47.8 47.6
f 157.4 180.1 129.2 133.6
g 283.4 245.2 179.4 180.0
h 141.9 177.0 117.6 120.4
i 341.3 189.8 145.8 146.9
j 222.8 338.8 174.3 176.0
k 553.1 292.9 230.3 221.6
l 293.3 486.8 235.5 236.0
n 289.1 411.8 228.3 228.2
o 480.2 328.4 261.3 269.2

As is shown in these two tables, the curriculum learn-
ing SV strategy performs worse than the other two curricu-
lum learning methods over all the components. This suggests
that although each specific context is characterized by its own
style, it is still based on some general patterns that are insuf-
ficiently trained by the SV method.

In AS curriculum learning method, we find that good per-
formance is attained. In our experiment, for most compo-
nents, the component models with ten epochs general train-
ing achieve the best performance. All the component mod-
els trained by the AS curriculum learning outperform conven-
tional general RNNLMs under the oracle condition.

The performance of component models using DS curricu-
lum learning achieve similar performance as the component
models trained by AS. In each epoch of DS training, the com-
ponent models in the CL-KRNNLM are actually first trained by
the general data and then further trained by the specific data.
The difference between AS and DS is that AS makes the trans-
fer from general to specific outside of each epoch, while DS
makes it happen inside each epoch.

The condition “base-int” involves component models con-
structed by a conventional linear interpolation method [7].
Each component language model in the mixture model is a
linear interpolation of a model trained on the specific domain
with a model trained on the whole data. The interpolation
weight is tuned on validation data. Table 3 shows that the AS
and DS strategies performs better than the conventional linear
interpolation method.

Table 2 and 3 reveal that no matter whether linear inter-
polation or curriculum learning is used, component models,
which emphasize specific sub-domain information, outper-
form general models on a given sub-domain. Especially, on

Table 3. The word prediction accuracy comparison of con-
ventional general RNNLM (base), component models us-
ing linear interpolation (int) and component models in CL-
KRNNLM using different setups of curriculum training on the
sub-domains of the CGN data set. “acc” denotes the sentence
level context prediction accuracy. The percentage symbol %
is omitted for all the numbers in this table.

comp base base-int SV AS DS acc
a 24.0 24.2 23.5 24.3 24.3 81.2
b 20.2 19.4 19.0 21.0 21.0 98.4
c&d 25.5 25.4 24.5 25.9 25.8 20.3
e 24.5 25.0 23.7 25.9 26.6 100.0
f 18.6 18.3 17.4 19.3 19.1 98.6
g 15.9 16.5 16.0 17.7 17.6 96.3
h 20.9 20.5 18.7 21.7 21.6 97.5
i 16.5 19.9 18.8 19.8 19.7 99.7
j 17.3 16.6 13.4 18.5 18.3 67.0
k 14.5 20.0 19.7 19.8 19.9 100.0
l 15.2 13.7 12.8 17.0 17.2 94.8
n 14.8 13.0 12.4 16.3 16.5 93.2
o 14.2 15.6 15.2 16.4 16.3 100.0

some specific sub-domains which are dramatically different
from the general pattern in the whole data, the component
models demonstrated substantial improvement over the gen-
eral models. For example, in the sub-domain for “News”, all
the component models get over 50% reduction in terms of PPL
and more than 30% of improvement in terms of WPA. This
case not only indicates that language models are very sensi-
tive to domain changes, but also shows that it is important to
take the context domain information into consideration.

4.3. Component model selection

In practice, the context is unavailable in testing. In this paper,
we use the sentence level probability maximization to select
one component model for each sentence in testing.

The last column “acc” in Table 3 shows the sentence level
context information prediction accuracy. In this paper, we
determine the sentence s context information labels C(s) as
follows:

C(s) = argmax
k

pk(s, hs), (1)

where hs is the history of sentence s. pk(s, hs) is the joint
probability of sentence s with its history, which is assigned
by the k-th component model in CL-KRNNLM.

As is shown in Table 3, nine out of thirteen components
attain more than 95% classification accuracy. For at least
these sub-domains, the CL-KRNNLM can use the maximum
sentence-level probability can achieve similar performance as
it achieves in the oracle situation in which the sub-domain of
the test data is known.

Table 4 shows the perplexity and WPA results on the CGN
data when context (i.e., sub-domain) information is unknown
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for the test data. The AS curriculum learning method gives

Table 4. Word prediction accuracy (WPA) result for the Spo-
ken Dutch Corpus (CGN).

models WPA (%)
base 20.6
base-int 21.3
SV 20.1
DS 22.1
AS 23.2

the best results. It achieve 13% relative improvement over the
conventional RNNLMs in terms of word prediction accuracy.

5. ADDITIONAL EXPERIMENT WITH UNKNOWN
CONTEXT

In this section, we apply the proposed CL-KRNNLM to the
Wall Street Journal (WSJ) data set. In previous section, the
CL-KRNNLM is shown to be able to outperform both the con-
ventional RNNLM and the sentence level mixture models on
the CGN data. However, the CGN covers many sub-domains.
Each sub-domain is dramatically different from the others. In
addition, the data is collected according to different contexts,
which means the sub-domain of the training data is known.
However, in practice, many data sets do not have known con-
text. In this section, we will investigate the speech recognition
performance of the CL-KRNNLM for the WSJ data set using
LDA-based topic clustering for the training data.

5.1. WSJ data

In the WSJ, we use 100-best speech recognition lists from the
DARPA WSJ’92 and WSJ’93 data sets, as used by [2, 17]. In
the 100-best list set, 333 sentences are used as development
data for tuning the combination of language models score and
acoustic model score (DEV). The rest, 465 sentences, are used
for evaluation (EVAL). The oracle WER for the development
data and evaluation data are 6.1% and 9.5%, respectively. The
training corpus contains 37M words of running text from the
NYT section of English Gigaword. The validation data set
contains 186K words. The vocabulary size is 194K.

5.2. Results

In this experiment, all the RNNLMs have 200 hidden neu-
rons and 100 classes. The models are trained by 4 times
backpropagation-through-time with a block size of 10. When
the Maximum entropy method is used, the size of the direct
connection matrix, which connect the previous 3-gram infor-
mation to output layer, is 1 billion.

Table 5 shows the word error rate performance of the CL-
KRNNLM for N-best rescoring. The models using the DS cur-
riculum learning of CL-KRNNLM (i.e., DS and ME-DS in Ta-
ble 5 achieve 0.1%−0.2% improvement over the conventional

RNNLM (i.e., base and ME-base) in terms of WER. Although
this improvement is too small to be significant (according to
a paired t-test), we note that the gains are comparable in mag-
nitude to those reported on another type of RNNLM extension,
namely context based RNNLM [12]. We have tested the max-
imum entropy extension of RNNLM model in order to shed
light on the contribution of the underlying architecture. As
can be seen in Table 5, the DS curriculum learning method
can improve the baseline model for these two architectures.
This suggests that the small improvement of DS can be repro-
ducible under varying architectures.

Table 5. The percent word error rate (WER) on the WSJ
data set comparing Keneser-Ney 5-gram language models
(kn-5), the conventional RNNLMs (base) the linear interpo-
lation of sentence level mixture models (base-int), the CL-
KRNNLMs using different curriculum training methods(SV,
DS and AS) and the maximum entropy extensions of all the
models (“ME”). “T” column represent the topic number.

models T DEV EVAL T DEV EVAL

kn-5 12.1 17.3
base 11.4 15.5
base-int 5 12.0 15.9 10 11.9 16.5
SV 5 11.5 16.3 10 11.8 16.6
DS 5 11.0 15.6 10 11.1 15.4
AS 5 11.3 15.7 10 11.4 15.6
ME-base 10.3 14.9
ME-base-int 5 11.2 15.3 10 11.3 15.9
ME-SV 5 11.3 16.1 10 11.4 16.3
ME-DS 5 10.4 14.7 10 10.2 15.2
ME-AS 5 10.1 15.1 10 10.3 14.9
Compared with the experimental results on the CGN data,

the CL-KRNNLM only achieves a small improvement over
the conventional RNNLM on the WSJ data set. This observa-
tion suggests that achieving optimal performance on data for
which the context is unknown requires careful optimization
of the context representation. The latent topic representation
that we built might be disadvantaged by the format of the
data—the data set contains no document boundary informa-
tion. The latent topic models are built on sentences which
may contain insufficient contents. We also note that the WSJ
is a news corpus, there are no great variation in style in the
data. It is possible that even under assignment of optimal
context, the performance would not reach that achieved on
the CGN data. The additional experiment reveals that the
move from a context-known condition to context-unknown
condition is non-trivial and requires understanding of how to
build context classes and the nature of the sub-domains in the
data.

6. CONCLUSIONS

In this paper, we proposed a k-component recurrent neural
network language model (CL-KRNNLM) that use curricu-
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lum learning methods. Each component model was trained
using a curriculum that prioritized the training data from
its corresponding context domain. Three different curricu-
lum learning approaches have been proposed in this paper,
namely, starting from the same vocabulary (SV), data sort-
ing (DS) and all-to-specific training (AS). We compared
these approaches using a Dutch corpus, which is labeled
with socio-situational setting information. The results under
the oracle condition show that each component model in CL-
KRNNLM using DS and AS outperforms conventional RNNLM.
Especially on the “News” sub-domain, the component mod-
els achieve over 50% reduction in terms of perplexity and
more than 30% improvement in terms of word prediction
accuracy. When the context information is unavailable dur-
ing testing, CL-KRNNLM still showed better performance
than both conventional RNNLM. In an additional experiment,
the CL-KRNNLM is further extended to handle the cases in
which context information is unknown. The approach use
latent topic information, which is constructed using Latent
Dirichlet Allocation and k-means clustering method. The CL-
KRNNLM using the DS curriculum learning method achieves
a small 0.1%− 0.2% absolute word error rate reduction over
conventional RNNLM. This result suggests that the contribu-
tion of curriculum learning in CL-KRNNLM is dependent on
the nature of the data to which it is applied.
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