
Fast Speaker Diarization Using a High-Level
Scripting Language

Ekaterina Gonina #1, Gerald Friedland ∗2, Henry Cook #3, Kurt Keutzer #4

University of California, Berkeley
1 egonina@eecs.berkeley.edu
3 hcook@eecs.berkeley.edu

4 keutzer@eecs.berkeley.edu

∗ International Computer Science Institute
2 fractor@icsi.berkeley.edu

Abstract—Most current speaker diarization systems use ag-
glomerative clustering of Gaussian Mixture Models (GMMs) to
determine “who spoke when” in an audio recording. While state-
of-the-art in accuracy, this method is computationally costly,
mostly due to the GMM training, and thus limits the performance
of current approaches to be roughly real-time. Increased sizes
of current datasets require processing of hundreds of hours of
data and thus make more efficient processing methods highly
desirable. With the emergence of highly parallel multicore and
manycore processors, such as graphics processing units (GPUs),
one can re-implement GMM training to achieve faster than
real-time performance by taking advantage of parallelism in
the training computation. However, developing and maintaining
the complex low-level GPU code is difficult and requires a
deep understanding of the hardware architecture of the parallel
processor. Furthermore, such low-level implementations are not
readily reusable in other applications and not portable to other
platforms, limiting programmer productivity. In this paper we
present a speaker diarization system captured in under 50 lines of
Python that achieves 50-250× faster than real-time performance
by using a specialization framework to automatically map and
execute computationally intensive GMM training on an NVIDIA
GPU, without significant loss in accuracy.

I. INTRODUCTION

Speaker diarization is the process of segmenting an audio

signal into speaker-homogeneous regions, addressing the ques-

tion “who spoke when?” without any prior knowledge of the

number of speakers, specific speaker models, text, language,

or amount of speech present in the recording. One popu-

lar diarization method is the Bayesian Information Criterion

(BIC) [1] with Gaussian Mixture Models (GMMs) trained with

frame-based cepstral features [2],[3]. This method combines

the speech segmentation and segment clustering tasks into

a single stage using agglomerative hierarchical clustering, a

process by which many simple candidate models are iteratively

merged into more complex, accurate models. Figure 1 shows

the general organization of such a diarization system.
While recent publications have achieved sub-realtime per-

formance with specialized algorithmic optimizations (see Sec-

tion III), performance still limits many applications that rely

on processing large amounts of data and/or are not compatible

with a certain algorithmic optimization. This limitation is

especially relevant in applications where a speaker diarization

system is used online, as part of large-scale event detection or

as front-end for an automatic speech recognition system on a

large corpus.
Fundamental physical constraints on processor design have

led us into an era where programmers can no longer expect

sequential implementations of their applications to obtain

automatic performance improvements on new generations of

processors [4]. However, these hardware constraints have led

to the recent widespread commoditization of a variety of

parallel platforms. Servers and laptops have multi-core CPUs,

and many also contain high-end graphics processing units

(GPUs) with tens of cores each capable of executing operations

on large data vectors. Modern GPUs can be programmed

with languages such as CUDA [5] and OpenCL [6], which

are intended to be used to accelerate both general-purpose

and scientific applications. Many speech processing algorithms

have already seen significant speedups on parallel processors

(see Section III).
While the performance benefits of creating a parallel im-

plementation of an algorithm are appealing, developers must

overcome two challenges to productivity: increased code com-

plexity and a need for detailed knowledge of the underly-

ing hardware architecture. In this paper, we present a new

speaker diarization system that combines several algorithmic

optimizations while automatically utilizing available parallel

hardware. Our system exemplifies a tiered approach to par-

allel programming that provides the performance gains of

parallel processing without incurring productivity burdens.

Specifically, we use a specialization framework to automat-

ically generate an optimized parallel implementation of the

Gaussian Mixture Model training algorithm based on training

problem parameters and the details of the available hardware

parallelism.
Our speaker diarization system, based on agglomerative

hierarchical clustering of GMMs using the BIC, is captured

in about 50 lines of Python. However, using the specializa-

tion framework it achieves 50×-250× faster than real-time1

1For readability, we inversed the xRT numbers throughout the paper: 10×
faster than real-time denotes that processing ten minutes of audio requires 1
minute.

553978-1-4673-0367-5/11/$26.00 ©2011 IEEE ASRU 2011

(Re-)Training

Merge two
Clusters?

End

Yes No

Initialization

(Re-)Alignment

Cluster1 Cluster2 Cluster3 Cluster1 Cluster2 Cluster3

Cluster1 Cluster2 Cluster1 Cluster2

Cluster1Cluster2 Cluster2 Cluster3

Fig. 1. Illustration of the segmentation and clustering algorithm used for
speaker diarization.

performance by utilizing a parallel NVIDIA GPU processor,

without significant loss in the diarization accuracy.

Furthermore, any other algorithm that uses GMM training

(e.g. acoustic modeling for automatic speech recognition or

speech activity detection) can use the same framework to

automatically obtain significant performance improvements

without significant engineering effort. With this paper we

would like to encourage the research community to do so.

This paper is structured as follows: Section II describes

the speaker diarization system. Section III discusses related

work. Section IV describes the computational bottlenecks of

the diarization system, algorithmic optimizations and paral-

lelization of GMM training on the GPU. Section V discusses

the specialization framework and the process for automatically

mapping the training function to the parallel hardware. Section

VI shows performance results and Section VII concludes.

II. SPEAKER DIARIZATION

Our diarization system consists of a pre-processing phase

and a segmentation and clustering phase.

A. Pre-Processing

The diarization is based on 19-dimensional, gaussianized,

Mel-Frequency Cepstral Coefficients (MFCCs). We use a

frame period of 10 ms with an analysis window of 30 ms in

the feature extraction, as well as the speech/non-speech seg-

mentation used in [7] and described in [8]. This methodology

is an HMM/GMM system trained on broadcast news data that

generalizes well to the meeting diarization context.

B. Speaker Diarization

In the segmentation and clustering stage of speaker di-

arization, an initial segmentation is generated by uniformly

partitioning the audio track into K segments of the same

length. K is chosen to be much larger than the assumed

number of speakers in the audio track. For meeting recordings

of about 30 minute length, previous work [9] experimentally

determined K = 16 to be a good value.

The procedure for diarization is shown in Figure 1 and takes

the following steps (more details can be found in [7]):

1) Initialization: Train a set of GMMs, one per initial

segment, using the expectation-maximization (EM) al-

gorithm [10].

2) Re-segmentation: Re-segment the audio track using

majority vote over the GMMs’ likelihoods for 2.5 s
duration [11].

3) Re-training: Retrain the GMMs on the new segmenta-

tion.

4) Agglomeration: Select the most similar GMMs and

merge them. At each iteration, the algorithm checks

all possible pairs of GMMs, looking to obtain an im-

provement in BIC scores by merging the pair and re-

training it on the pair’s combined audio segments. The

GMM clusters of the pair with the largest improvement

in BIC scores are permanently merged. The algorithm

then repeats from the re-segmentation step until there

are no remaining pairs whose merging would lead to an

improved BIC score.

The result of the algorithm consists of a segmentation of the

audio track with n segment subsets and with one GMM for

each subset, where n is assumed to be the number of speakers.

This system was proven to be highly effective in the past,

but the computational burden was such that the processing took

about real-time [12]. In the following sections we discuss how

software frameworks such as ours can provide performance

gains to mitigate such overheads, while still allowing innova-

tion at the application level.

III. RELATED WORK

There is much prior work on accelerating speaker diariza-

tion [13]. For example Huang et al. [12] describes strategies for

selecting most likely clusters to merge during agglomerative

clustering to enable fast matching. Most recently, Anguera

et al. [14] presented an algorithmic trick to reduce speaker

diarization processing time to almost 10× faster than real-time

at the cost of a slight decrease in accuracy.

Chong et al. discussed the benefits that parallelization of

computationally intensive components can offer diarization

applications [15]. Many speech and speaker recognition appli-

cations have also seen performance benefits from paralleliza-

tion [16], [17], [18], [19]. While these efforts demonstrate

significant speedups (e.g. Chong et al. achieve 10.5× faster

than real-time performance with a parallel speech recognition

decoder [17]), their parallel implementations are written in

complex low-level code, are not readily reusable in other

applications, and the applications as a whole are not portable

to other platforms. In contrast, our approach allows for code

reuse by abstracting the GMM training computation into a

specialization framework which can be used by any application

on multiple parallel platforms, all transparent to the high-level

application writer.

Our methodology for developing the specialization frame-

work for accelerating GMM training using a high-level script-

ing language is based on the the Selective Embedded Just-In-

Time Specialization (SEJITS) mechanism originally described

in [20]. We use a specific implementation of SEJITS called

554

Asp [21]2. Our framework extends the original GPU GMM

training code described in [22]. Other parallel GMM imple-

mentations on the GPU include [23] and [24]. Dixon et al.

([23]) offloads the observation probability computation in a

speech recognition engine to the GPU, while Kumar et al.

([24]) uses the GPU to train GMMs to obtain 164× speedup

over a sequential CPU implementation (no ×RT factor was

given). EhKan et al. [25] implemented a GMM-based speaker

identification system on FPGAs, achieving 90× speedup over

sequential software version.

IV. SPEAKER DIARIZATION IMPLEMENTATION

Previous analysis of the diarization engine [26] showed two

main computational bottlenecks: the training of the GMMs,

and choosing the GMM pair to merge during agglomeration.

A. Algorithmic Optimizations

To mitigate the overhead of choosing the GMM pair to

merge, we algorithmically reduced the re-segmentation bot-

tleneck by using an unscented-transform based approximation

of KL-divergence introduced by Huang et al. [12]. The ap-

proximation gives top k candidate pairs of GMMs to merge at

a much lower computational cost without affecting accuracy.

Secondly, we reduced the bottleneck of training the Gaus-

sian Mixture Models by using a parallel implementation of the

training on the GPU, described in the following section.

B. GMM Training on a GPU

Training of the Gaussian Mixture Models is performed on

the GPU by adopting the expectation-maximization algorithm

described in [22] written in CUDA, a low-level extension to

the C programming language [5]. We also have a Cilk+ [27]

implementation that targets multi-core CPUs, however in this

paper we focus on GPU performance.

A CUDA application is organized into sequential host code

written in C running on the CPU and many parallel device
kernels running on the GPU [5]. The kernel executes a set

of scalar sequential programs across a set of parallel threads.

The programmer can organize these threads into thread blocks,

which are mapped onto the processor cores at runtime. Each

core has a small software-managed fast local memory. To run

an application on the GPU, data structures must be explicitly

transferred from host to device. Task scheduling and load

balancing are handled by the device driver automatically.

The parallel GMM training code consists of a set of kernel

functions for the expectation and maximization steps of the

EM algorithm. There are four parameters for this computation:

K - the number of GMMs, M - the number of Gaussian

components in each GMM, D - the dimensionality of the

Gaussian components and N - the number of feature frames

in the meeting. The algorithm is outlined as follows:

1) Copy the input data from the CPU to the GPU

2Recursive acronym: Asp is a SEJITS for Python. Asp is a
general framework for developing specializers, it is available at
http://aspsejits.pbworks.com. Others are encouraged to contribute specialized
algorithms and code generators.

2) Initialize the GMMs and copy model data to the GPU

3) Launch expectation kernels; aggregate log-likelihood

values from each GMM

4) Launch maximization kernels; aggregate parameters

from each GMM

5) Repeat steps 3 and 4 some number of times (we use 3)

6) Copy model parameter values to the CPU

In the expectation step, each thread block is assigned a

Gaussian component and a subset of the feature frames to

compute the log likelihood for. Each thread computes the log

likelihood of one frame. The log likelihoods are then added

across components for each frame.

In the maximization step, each parameter in the Gaussian

models (weight, means and covariance matrix) is computed

in a separate kernel. For the weight computation kernel, each

thread block is assigned a Gaussian component (total of M
thread blocks) and each thread computes the contribution

of each frame to the weight of the Gaussian (N threads)

followed by a normalization step. For the mean computation

kernel, each thread block is assigned one dimension in one

Gaussian component’s mean vector (M × D thread blocks)

and each thread is assigned a feature frame (N threads). For

the covariance matrix computation we implement different

versions of the kernel, as described in the next section.

1) Covariance Matrix Computation: Covariance matrix

computation is the most computationally intensive step in

the EM algorithm (50–60% of the overall runtime of the

algorithm). We extend the parallel implementation from [22]

to more efficiently compute the matrix for various training

problem sizes in our specialization framework.

The covariance matrix for a Gaussian mixture component

is the sum of the outer products of the difference between the

observation feature vectors and the component’s mean vector

computed in the current iteration:

Σ
(k+1)
i =

∑N
j=1(pi,j(xj − μ

(k+1)
i)(xj − μ

(k+1)
i)T)

∑N
j=1 pi,j

(1)

where pi,j is the probability of frame j belonging to compo-

nent i and xi is the feature frame.

The covariance computation exhibits a large amount of

parallelism due to the mutual independence of each compo-

nent’s covariance matrix (M), each cell in a matrix (D), and

each feature vector’s contribution to a cell in the matrix (N).

These degrees of parallelism allow different versions of the

covariance kernel to target different dimensions of algorithmic

parallelism. For example, one version assigns each thread

block a Gaussian component and each thread a feature frame,

while another assigns each thread block one cell in a matrix

of one component and each thread a subset of feature frames

(for a full description of the code versions refer to [28]).

2) Code Version Selection: The efficiency of each version

depends on values of M , D and N as well as the hardware

characteristics of the GPU. For example, during diarization

the number of components in each cluster changes as we

merge more clusters together. If the number of components

in a GMM is smaller than the number of cores on the GPU

555

and we assign each thread block to compute a covariance

matrix of one component, we will underutilize the cores on

the GPU and thus will need to choose a different kernel

version. On average we saw a 30% performance improvement

in covariance matrix computation time [28] by using the

optimal code version compared to always using the original

implementation described in [22].

Our framework automatically selects the best version given

M , D and N values and the platform specifications instead

of re-implementing the code for every specific application and

manually optimizing it, as described in the next section.

V. AUTOMATIC MAPPING TO THE GPU

Our framework uses the Selected Embedded Just-in-Time

Specialization (SEJITS) [20] mechanism to automatically se-

lect best parallel code version of the GMM training and

execute it on the GPU from high-level Python code.

A. SEJITS

We use selective just-in-time specialization as the mecha-

nism to accomplish the separation of concerns: the application

Python programmer can focus on developing and innovating

the application and the parallel Cilk+/CUDA programmer can

focus on developing fast parallel code for the target hardware

architecture. Our GMM training specialization framework is

implemented on top of Asp [21].

When using the SEJITS-based frameworks, scientists ex-

press their applications entirely in Python using Python li-

braries and tools. They also import a special library containing

our GMM objects. When the training method of the GMM ob-

jects is called, the framework selects the best parallel version

of the training algorithm, transfers the needed data to the GPU

and executes the fast CUDA code, all transparent to the Python

application writer. From the Python programmer’s view, this

experience is like calling a pure Python library, except that

performance is potentially several orders of magnitude faster.

B. Code Version Selection

To find the best parallel implementation of the GMM

training algorithm (specifically the covariance matrix com-

putation), our specialization framework keeps track of the

best performing implementation in a database. When a GMM

training method is called on a particular problem size on a

specific platform, the framework gets the name of the best-

performing version from the database and executes it on the

parallel processor. When a new generation of the GPU is

available, the framework will automatically choose the best

variant by running a set of test executions and recording best

performing variant in the database.

Other specialized functions related to GMM evaluation and

manipulation are also provided such as model data allocation

and log likelihood computation.

C. Speaker Diarization in Python

Using Asp, the implementation of our diarization system is

captured in less than 50 lines of Python code and is shown

1 from em import ∗
2

3 def c l u s t e r (s e l f , M, D, K, d a t a) :
4

5 gmm lis t = new gmm list (M, D,K)
6 p e r c l u s t e r = N/K
7 i n i t = u n i f o r m i n i t (gmm lis t , da t a , p e r c l u s t e r , N)
8 f o r gmm, d a t a in i n i t :

9 gmm.train(data)

10

11 # Per form h i e r a r c h i c a l a g g l o m e r a t i o n
12 b e s t B I C s c o r e = 1 . 0
13 whi le (b e s t B I C s c o r e > 0 and l e n (gmm lis t) > 1) :
14

15 # Resegment da ta based on l i k e l i h o o d s c o r i n g
16 L = gmm lis t [0] . s c o r e (d a t a)
17 f o r gmm in gmm lis t [1 :] :

18 L = np . c o l u m n s t a c k ((L , gmm.score(data)))

19 m o s t l i k e l y = L . argmax ()
20 s p l i t d a t a = s p l i t o b s d a t a L (m o s t l i k e l y , d a t a)
21

22 f o r gmm, d a t a in s p l i t d a t a :

23 gmm.train(data)

24

25 # Score a l l p a i r s o f GMMs u s i n g BIC
26 best merged gmm = None
27 b e s t B I C s c o r e = 0 . 0
28 m pai r = None
29

30 # f i n d most l i k e l y merge c a n d i d a t e s u s i n g KL
31 gmm pairs = get top K GMMs (gmm lis t , 3)
32

33 f o r p a i r in gmm pairs :
34 gmm1, d1 = p a i r [0] # g e t gmm1 and i t s d a ta
35 gmm2, d2 = p a i r [1] # g e t gmm2 and i t s da ta
36 new gmm , s c o r e =

37 compute BIC(gmm1, gmm2, concat((d1, d2)))

38 i f s c o r e > b e s t B I C s c o r e :
39 best merged gmm = new gmm
40 m pai r = (gmm1, gmm2)
41 b e s t B I C s c o r e = s c o r e
42

43 # Merge t h e winn ing c a n d i d a t e p a i r
44 i f b e s t B I C s c o r e > 0 . 0 :
45 merge gmms (gmm lis t , m pai r [0] , m pai r [1])

Fig. 2. Speaker diarization in Python. Components that are executed on the
GPU are highlighted in light-gray

in Figure 2 with the components that are executed on the

GPU highlighted in light-gray. The specialization framework

itself is written in about 800 lines of Python and the C/CUDA

code for GMM training is written in about 1500 lines. Both

the specialization framework and the low-level GMM training

code are written once and can be reused by all applications

on any recent CUDA-programmable GPU.

Based on the algorithm description from Section II we now

step through the Python code:

1) Initialization: First we import our specialization frame-

work (line 1) and uniformly initialize a list of K GMMs

(in our case 16 5-component GMMs) on line 5. After

creating the list of GMMs, we perform initial training

on equal subsets of feature vectors (lines 6-9). The

training computation is executed on the GPU. Next,

we implement the agglomerative clustering loop based

on the Bayesian Information Criterion (BIC) score [29]

556

(line 12-13).

2) Re-segmentation: In each iteration of the agglomeration,

we re-segment the feature vectors into subsets using

majority vote segmentation (lines 16-18). We use the

GPU to compute the log-likelihoods (gmm.score()
method), which calls the E-step of the GMM training

algorithm on the GPU.

3) Re-training: After re-segmentation we re-train the Gaus-

sian Mixtures on the GPU on the corresponding subsets

of frames (lines 22-23).

4) Agglomeration: After re-training, we decide which

GMMs to merge by first computing the unscented-

transform based KL-divergence of all GMMs (line 31).

We then compute the BIC score of the top k pairs of

GMMs (in our case k = 3) by re-training merged GMMs

on the GPU as described in Section II (lines 33-37) and

keeping track of the highest BIC score. Finally we merge

two GMMs with the highest BIC score (lines 43-45) and

repeat the iteration until no more GMMs can be merged.

All data structure allocation and transfers are handled by the

framework transparent to the application writer. The following

section describes accuracy and speedup results of the diarizer.

VI. RESULTS

A. Test Sets
In order to evaluate the accuracy and speed of the approach

described above, we use a popular subset of 12 meetings

(5.4 hours) from the Augmented Multi-Party Interaction (AMI)

corpus [30]. The AMI corpus consists of audio-visual data

captured from four to six participants in a natural meeting

scenario. The participants volunteered their time freely and

were assigned roles such as “project manager” or “marketing

director” for the task of designing a new remote control device.

The teams met over several sessions of varying lengths (15–

35 minutes). The meetings were not scripted and different

activities were carried out such as presenting at a projector

screen, explaining concepts on a whiteboard or discussing

while sitting around a table. The meeting recordings are

therefore very close to real-world scenarios and participants

interacted naturally, including talking over each other.
The 12-meeting subset contains the most comprehensively

annotated meetings in the corpus and is therefore quite pop-

ular among researchers [31]. Since our work investigates an

unsupervised approach that does not require any tuning, there

is no need to split the data into test and training sets. For

the experiments described here, the beamformed far-field and

near-field array microphone signals were used. To make the

scores compatible with the baseline system, the Shout speech

activity detection was used as described in Section II and in

[7]. MFCC features were calculated as a preprocessing step.

The feature computation and speech activity detection step is

not part of the runtime computation.
After processing the files, the output of the diarization

was scored using Diarization Error Rate, which is defined

by NIST [32]. DER is composed of three additive compo-

nents: misses (speaker in reference, but not in hypothesis),

TABLE I
Diarization Error Rate (DER) of the diarization system and the faster than

real-time performance factor (×RT) for far-field (FF) and the near-field
(NF) microphone array setup for the AMI corpus.

Meeting ID FF DER FF ×RT NF DER NF ×RT
IS1000a 40.99% 71.19× 25.38% 72.83×
IS1001a 27.38% 80.88× 32.34% 163.22×
IS1001b 41.28% 70.02× 10.57% 123.28×
IS1001c 46.83% 59.71× 28.40% 177.80×
IS1003b 41.54% 80.85× 34.30% 254.81×
IS1003d 66.89% 64.33× 50.75% 56.13×
IS1006b 29.88% 74.03× 16.57% 129.35×
IS1006d 63.68% 54.87× 53.05% 58.36×
IS1008a 2.19% 64.29× 1.65% 60.35×
IS1008b 4.99% 81.46× 8.58% 151.80×
IS1008c 32.43% 67.20× 9.30% 81.13×
IS1008d 27.84% 83.42× 26.27% 55.77×
Average 35.49% 71.02× 24.76% 115.40×

false alarms (speaker in hypothesis, but not in reference),

and speaker errors (mapped reference is not the same as

hypothesized speaker). Table I columns “FF DER” and “NF

DER” show the accuracy in terms of % DER for far-field

array microphone (FF) and near-field array microphone (NF)

setups. The results for both evaluation sets are comparable to

state-of-the art DER for the AMI corpus [31].

B. Performance Results

Table I columns “FF ×RT” and “NF ×RT” show corre-

sponding performance for far-field (FF) and near-field (NF)

microphone setup in terms of faster than real-time fac-

tor (×RT) using our specialization framework on NVIDIA

GTX480 GPU using CUDA 3.2. The ×RT factor is computed

by dividing the meeting time by the processing time. For

example, a 100× real-time factor means we can process a

ten minute meeting in six seconds. On average the far-field

microphone array meetings take longer to process than near-

field (71.02×RT and 115.40×RT respectively) with higher

DER on average (35.49% and 24.76% respectively). The real-

time performance varies by each meeting from about 50-

250×RT, depending on the length of the audio as well as the

number of clustering iterations computed before convergence.

Overall, the system achieved about 2× speedup by using

the KL-divergence fast-match strategy (shown in [12]) and

70− 115× speedup by using the GPU.

VII. CONCLUSION

This paper describes a fast speaker diarization algorithm that

achieves 50-250× faster than real-time performance without

significant loss in accuracy. Our diarization approach is cap-

tured in less than 50 lines of Python code and achieves fast

performance by using a specialization framework for Gaussian

Mixture Model (GMM) training on an NVIDIA graphics

processing unit (GPU). When mapping a problem instance

onto a parallel hardware platform, our framework automat-

ically selects the best parallel implementation of the GMM

training algorithm based on the diarization problem size and

the processor features. This automation allows the scientist to

focus on developing the application algorithm while achieving

significant additional performance improvements. Expressing

557

the application in Python is pedagogically useful - it allows

for a clear, high-level specification of the algorithm that is

accessible and easy to understand. Our framework is available

at http://diarization.icsi.berkeley.edu/diarization/ for the com-

munity to use to develop other GMM-based applications that

automatically utilize parallel hardware.
Our future work includes implementing speech activity-

detection using the same framework and integrating multi-

stream approaches for diarization into the system.

VIII. ACKNOWLEDGEMENTS

Thank you to Shoaib Kamil and Armando Fox for providing

the Asp infrastructure and insightful discussions during this

work. Research supported by CISCO URP Grant 2010-07822

(3696) and DARPA (contract #FA8750-10-1-0191), as well

as Microsoft (Award #024263) and Intel (Award #024894)

funding and by matching funding by U.C. Discovery (Award

#DIG07-10227). Additional support comes from Par Lab

affiliates National Instruments, Nokia, NVIDIA, Oracle, and

Samsung.
REFERENCES

[1] D. Reynolds and P. Torres-Carrasquillo, “Approaches and Applications
of Audio Diarization,” Acoustics, Speech, and Signal Processing, 2005.
Proceedings.(ICASSP’05). IEEE International Conference on, vol. 5, pp.
953–956, March 2005.

[2] S. S. Chen and P. S. Gopalakrishnan, “Speaker, environment
and channel change detection and clustering via the
bayesian information criterion,” in Proceedings of the DARPA
Broadcast News Transcription and Understanding Workshop,
Lansdowne, Virginia, USA, February 1998. [Online]. Available:
http://www.nist.gov/speech/publications/darpa98/pdf/bn20.pdf

[3] X. Anguera, C. Wooters, B. Peskin, and M. Aguilo, “Robust speaker
segmentation for meetings: The ICSI-SRI spring 2005 diarization sys-
tem,” in Proceeding of the NIST MLMI Meeting Recognition Workshop,
Edinburgh. Springer, 2005.

[4] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and
K. A. Yelick, “The landscape of parallel computing research: A view
from Berkeley,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2006-183, Dec 2006.

[5] NVIDIA CUDA Programming Guide, NVIDIA Corporation, March
2010, version 3.2. [Online]. Available: http://www.nvidia.com/CUDA

[6] OpenCL 1.1 Specification, Khronos Group, September 2010, version 1.1.
[Online]. Available: http://www.khronos.org/registry/cl/specs/opencl-
1.1.pdf

[7] C. Wooters and M. Huijbregts, “The ICSI RT07s Speaker Diarization
System,” Baltimore, Maryland, 2007, pp. 509–519.

[8] M. A. H. Huijbregts, “Segmentation, diarization and speech transcription
: surprise data unraveled,” Ph.D. dissertation, Enschede, November
2008. [Online]. Available: http://doc.utwente.nl/60130/

[9] D. Imseng and G. Friedland, “Robust speaker diarization for short speech
recordings,” in Proceedings of the IEEE workshop on Automatic Speech
Recognition and Understanding, 12 2009, pp. 432–437.

[10] C. M. Bishop, Neural Networks for Pattern Recognition. New York:
Oxford Univ. Press, 1995.

[11] G. Friedland and O. Vinyals, “Live speaker identification in
conversations,” in Proceeding of the 16th ACM international
conference on Multimedia, ser. MM ’08. New York,
NY, USA: ACM, 2008, pp. 1017–1018. [Online]. Available:
http://doi.acm.org/10.1145/1459359.1459558

[12] Y. Huang, O. Vinyals, G. Friedl, C. Mller, N. Mirghafori, and C. Woot-
ers, “A fast-match approach for robust, faster than real-time speaker
diarization,” in in ASRU, 2007.

[13] X. Anguera, S. Bozonnet, N. W. D. Evans, C. Fredouille, G. Friedland,
and O. Vinyals, “Speaker diarization : A review of recent research,”
Accepted for publication in ”IEEE Transactions On Acoustics Speech
and Language Processing” (TASLP), special issue on ”New Frontiers
in Rich Transcription”, 2011, 2011.

[14] X. Anguera and J.-F. Bonastre, “Fast Speaker Diarization based on
binary keys,” IEEE International Conference on Acoustics, Speech, and
Signal Processing, 2011.

[15] J. Chong, G. Friedland, A. Janin, N. Morgan, and C. Oei, “Opportunities
and challenges of parallelizing speech recognition,” in Proceedings of
the 2nd USENIX conference on Hot topics in parallelism, ser. HotPar’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 2–2. [Online].
Available: http://portal.acm.org/citation.cfm?id=1863086.1863088

[16] K. You, J. Chong, Y. Yi, E. Gonina, C. Hughes, Y. Chen, W. Sung, and
K. Keutzer, “Parallel scalability in speech recognition: Inference engine
in large voc abulary continuous speech recognition,” in IEEE Signal
Processing Magazine, no. 6, November 2009, pp. 124–135.

[17] J. Chong, E. Gonina, Y. Yi, and K. Keutzer, “A fully data parallel WFST-
based large vocabulary continuous speech recognition on a graphics
processing unit,” in 10th Annual Conference of the International Speech
Communication Association (InterSpeech), September 2009.

[18] K. You, Y. Lee, and W. Sung, “OpenMP-based parallel implementation
of a continous speech recognizer on a multi-core system,” in Proc.
IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing (ICASSP),
Taipei, Taiwan, 2009.

[19] J. Chong, Y. Yi, N. R. S. A. Faria, and K. Keutzer, “Data-parallel large
vocabulary continuous speech recognition on graphics processors,” in
Proc. Intl. Workshop on Emerging Applications and Manycore Archi-
tectures, 2008.

[20] B. Catanzaro, S. Kamil, Y. Lee, K. Asanović, J. Demmel, K. Keutzer,
J. Shalf, K. Yelick, and A. Fox, “SEJITS: Getting productivity and
performance with selective embedded JIT specialization,” in Workshop
on Programming Models for Emerging Architectures (PMEA 2009),
Raleigh, NC, October 2009.

[21] S. Kamil, D. Coetzee, and A. Fox, “Bringing parallel performance to
python with domain-specific selective embedded just-in-time specializa-
tion,” in Python for Scientific Computing Conference (SciPy), 2011.

[22] A. D. Pangborn, “Scalable data clustering using gpus,” Master’s thesis,
Rochester Institute of Technology, 2010.

[23] P. R. Dixon, T. Oonishi, and S. Furui, “Fast acoustic computations using
graphics processors,” in Proc. IEEE Intl. Conf. on Acoustics, Speech, and
Signal Processing (ICASSP), Taipei, Taiwan, 2009.

[24] N. Kumar, S. Satoor, and I. Buck, “Fast parallel expectation maxi-
mization for gaussian mixture models on gpus using cuda,” in 11th
IEEE International Conference on High Performance Computing and
Communications, 2009. HPCC’09, 2009, pp. 103–109.

[25] P. EhKan, T. Allen, and S. F. Quigley, “Fpga implementation
for gmm-based speaker identification,” Int. J. Reconfig. Comput.,
vol. 2011, pp. 3:1–3:8, January 2011. [Online]. Available:
http://dx.doi.org/10.1155/2011/420369

[26] G. Friedland, J. Chong, and A. Janin, “Parallelizing speaker-attributed
speech recognition for meeting browsing,” in Proceedings of the
2010 IEEE International Symposium on Multimedia, ser. ISM ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 121–128.
[Online]. Available: http://dx.doi.org/10.1109/ISM.2010.26

[27] Cilk 5.4.6 Reference Manual, version 5.4.6. [Online]. Available:
http://supertech.csail.mit.edu/cilk/manual-5.4.6.pdf

[28] H. Cook, E. Gonina, S. Kamil, G. Friedland, D. Patterson, and A. Fox,
“Cuda-level performance with python-level productivity for gaussian
mixture model applications,” in USENIX Workshop on Hot Topics in
Parallelism (HotPar), May 2011.

[29] D. Reynolds and P. Torres-Carrasquillo, “Approaches and applications
of audio diarization,” in Acoustics, Speech, and Signal Processing, 2005.
Proceedings. (ICASSP ’05). IEEE International Conference on, vol. 5,
march 2005, pp. v/953 – v/956 Vol. 5.

[30] “Ami corpus.” [Online]. Available: http://corpus.amiproject.org/
[31] G. Friedland, C. Yeo, and H. Hung, “Dialocalization: Acoustic

speaker diarization and visual localization as joint optimization
problem,” ACM Trans. Multimedia Comput. Commun. Appl.,
vol. 6, pp. 27:1–27:18, November 2010. [Online]. Available:
http://doi.acm.org/10.1145/1865106.1865111

[32] “National institute of standards and technologies: Rich
transcription spring 2004 evaluation.” [Online]. Available:
http://www.itl.nist.gov/iad/mig/tests/rt/2004-spring/index.html

558

