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Abstract—This paper describes a recurrent neural network
(RNN) based articulatory-phonetic inversion (API) model for
improved speech recognition. And a specialized optimization
algorithm is introduced to enable human-like heuristic learning
in an efficient data-driven manner to capture the dynamic nature
of English speech pronunciations. The API model demonstrates
superior pronunciation modeling ability and robustness against
noise contaminations in large-vocabulary speech recognition
experiments. Using a simple rescoring formula, it improves
the hidden Markov model (HMM) baseline speech recognizer
with consistent error rates reduction of 5.30% and 10.14% for
phoneme recognition tasks on clean and noisy speech respectively
on the selected TIMIT datasets. And an error rate reduction
of 3.35% is obtained for the SCRIBE-TIMIT word recognition
tasks. The proposed system qualifies as a competitive candidate
for profound pronunciation modeling with intrinsic salient fea-
tures such as generality and portability.

I. INTRODUCTION

Conventional automatic speech recognition (ASR) systems
treat the speech sound as a concatenation of acoustic observa-
tions during probabilistic modeling, e.g., the hidden Markov
models (HMMs). This “beads-on-the-string” approach proves
to be extremely problematic when dealing with the dynamic
nature of speech sounds in practical applications largely due to
its lack of intelligibility at phone-level and lack of robustness
in noisy conditions [1].

In recent years, the articulatory and the auditory based fea-
ture representations have gained particularly attention to solve
the problem in various applications with moderate success,
e.g., the acoustic landmark detection systems in [2]. There is
a rising body of ASR research which attempts to utilize the
knowledge of human speech production and perception so as
to better explain the dynamic nature of human speech [3]. This
prospect is also motivated by the neurological studies with the
discovery of “mirror” neurons that are potentially involved in
both the speech production and perception process [4]. In fact,
artificial neural networks (ANNs) based have already been
applied to utilize the articulatory with the acoustic knowledge
sources both in speech recognition as well as in speech
synthesis [5], [6].

However, when using fixed-structure ANNs to model the
nonlinearities of the correlated feature spaces: the articulatory
gestures and the acoustic cues, there are two major difficulties.

On the one hand, there exists multiple articulatory configura-
tions that could produce the same acoustic output, i.e., the
“many to one” problem. On the other hand, human perception
of speech is “categorical”, whereas acoustically variant sound
units are perceived with binary-like “yes or no” decisions [7].

In this work, a modest modeling method, namely the neural
network based articulatory-phonetic inversion (API) model,
is proposed to utilize the multi-dimensional feature repre-
sentations for improved ASR performance. Different from
the pseudo-articulatory features which are simply transcribed
by broad phonological classes, e.g., manner of articulation
(MOA) and place of articulation (POA), as used in [5], a
more reliable API procedure is proposed using recurrent neural
networks (RNNs). The neural networks are excellent univer-
sal approximators with simple topological structure, and fast
learning algorithms can be easily implemented because of the
locally tuned neurons, which have assured their suitability for
pattern classification problems [8]. In addition, the proposed
API model is supplied with a specialized adaptation algorithm
which embeds a set of heuristic learning rules to address the
many-to-one problems of articulation and to approximate the
categorical nature of audition.

What signifies the proposed method is that the two aspects
of human speech: articulation and audition, are exploited
collectively to form a unified explanation for the intrinsic
and extrinsic variations of speech pronunciations. And the
knowledge sources in the multi-dimensional spaces are utilized
in an extended system which is ready for use in practical ASR
applications.

The rest of the paper is arranged as follows. Section II ex-
plains the multi-dimensional pronunciation modeling method
in detail: the theoretical basis in Section II-A, the structure
of the API model in Section II-B, and the heuristic learning
algorithm in Section II-C. Speech recognition experiments
are presented in Section III, and results are summarized and
discussion in Section IV. The paper concludes in Section V.

II. MULTI-DIMENSIONAL PRONUNCIATION MODELING

A. Theoretical Basis

In general, human speech production involves four stages in
a top-down fashion: semantic conceptualization, phonological
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encoding, phonetic encoding, and articulation [4]. Of particular
interest is the articulatory-acoustic interface in the final three
stages, where the aerodynamic and myoelastic energy in the
articulatory space are transformed into acoustic sound waves.
On the other hand, human speech perception involves four
stages in a bottom-up fashion: peripheral perception, cochlear
filtering, transduction, and semantic abstraction [9]. Here the
acoustic-auditory interface in the first three stages witnesses
the transformation of acoustic energies into electrical poten-
tials across the inner hair cell (IHC) membranes.

Thus the speech sound can be treated as “the information
carrier” in certain transmission channel, e.g., the air, with artic-
ulatory gestures and auditory impressions at its two terminals.
The semantic aspects is omitted since the primary goal of ASR
is to act as a speech-to-text “court recorder” [1].

As Chomsky has noted, the normal use of language is in
many aspects a “ creative activity”, which is unique to human
and distinguishes itself from animal communication. There are
two ends on Chomsky’s notion of language usage in the con-
text of speech recognition: the “many-to-one” issue in articula-
tion and the categorical nature of perception. In the literature,
the “many-to-one” mapping between articulatory movements
and acoustic cues can be approximated using various target
approximation schemes which calculate “the minimum amount
of articulatory movements” required for audible sound change
[10]. And the categorical perception of phonemes can be
approximated through boundary conditions using decision-tree
based classifiers or through various Gaussian-mixture models
(GMMs), which aim for “the maximum amount of cross-class
phone discriminations” [11], [12].

It follows that the pronunciation variations of human speech
project non-linearly into the different feature spaces. Thus
we aim to implement a mapping and decoding method to
recover the underlying articulatory-phonetic features (APFs)
to improve feature representations of speech signal.

B. RNN-Based Articulatory-Phonetic Inversion

A schematic view of the neural network based API model
is demonstrated in Fig. 1. The API model aims to infer the
articulatory motor commands, e.g., muscular activities, from
the input acoustic parameters, e.g., discrete formant measures
or mel-frequency cepstral coefficients (MFCCs). In the pro-
posed system, RNNs with time-delay designed using the NICO
Toolkit [13] are employed to model the relation between
the acoustic and the articulatory information. Each network
consists of three layers: input, hidden and output layer, and
the networks are fully connected. A temporal context window
of ten frames was used to balance the trade-off between the
number of parameters and classification accuracy as suggested
in [14]. The activation function of the output layer is the
softmax function:

f(xi) =
exp(xi)∑K

k=1
exp(xk)

, (1)

where K is the number of units in the output layer.

Fig. 1. Overview of the RNN based API model with the specialized learning
algorithm.

The off-line inversion process is divided into two com-
putational blocks. Firstly the input acoustic feature vectors
are mapped into articulatory configurations, i.e., articulatory
inversion. Secondly the articulatory patterns are mapped into
phonemes, i.e., phonetic inversion. In particular, the connec-
tionist model is globally tuned using two parental datasets
before being used for on-line speech recognition. The first set
of training data for articulatory inversion is supplied by a bio-
mechanical articulatory synthesizer. Though there are various
collections of direct physiological measurements available,
e.g., the electromagnetic articulograph (EMA), and laryngo-
graph i.e., electroglottograph (EGG) [6], they are usually too
limited for ASR studies due to the difficulty of data collection.
Moreover, these corpora are generally “target-specific”, i.e.,
the speakers are well-learned, and the produced sound patterns
are subjectively designed, which render them too sparse for our
purposes.

Therefore, we exploited the existing sources of vastly
available speech recordings and speech synthesizers. The
bio-mechanical speech synthesizer used here consists of 28
muscular structures from 12 major groups with reference to
[15], [16]. The tube walls of each articulator are described by
width Δx, length Δy, and depth Δz. These muscular groups
assimilate the human anatomy both in physiological properties
and in functionality of speech production [15].

For our experiments, 10 critical muscles are closely moni-
tored for APF retrieval. The 30 channel articulatory gestures
consist of the (Δx,Δy,Δz) coordinate of the 8 muscles: two
intrinsic tongue muscles which change the shape of the tongue
body, i.e., verticalis (VS), and transversus (TS), three extrinsic
tongue muscles which change the position the tongue body,
i.e., genioglossus (GG), hyoglossus (HG), and styloglossus
(SG), three facial muscles, i.e., masseter (MS) which raises
or lowers the jaw, risorius (RO) and orbicularisoris (OO) the
combination of which constrict, round, or spread the lips, the
levatorpalatini (LP) which controls the velopharyngeal port,
or velum, the the lungs (LG) which control the pulmonic
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mechanism, and the interarytenoid (IA) which controls the
glottalic mechanism. The maximal and minimal moving ranges
of the muscle width are normalized to be in the [−1,+1]
interval. A value outside this range indicates extra compressive
or de-compressive myoelastic tension of the tissues but does
not introduce further vocal tract deformation. For the highly
elastic tongue muscles, the boundary values would result in
constriction at certain parts of the vocal tract walls, i.e., POA
[14]. While the LP only assumes two values for English
phones, 0 for nasals and 1 for the rest.

And 500, 000 configurations of phone-level articulatory
parameters are randomly selected from the synthesized 100
TIMIT SX sentences. One obvious advantage of this set of
data is that articulatory-acoustic pairings are more objectively
distributed due to the explicit control of the vocal apparatus
movements compared to human speakers.

The second set of training data for phonetic inversion is the
same 100 phonetically rich TIMIT SX sentences repeated by
10 human speakers, 5 male and 5 female, with the “Received
Pronunciation” (RP), extracted from the SCRIBE corpus [17].
There are two reasons that the SCRIBE corpus is chosen.
Firstly, the selected corpus gives detailed annotation by trained
linguists using about 290 detailed phonetic labels, where
TIMIT is annotated with 45 generalized IPA phonetic labels
of English phonemes. The latter have also been widely used as
the basic units of conventional HMM based acoustic models.
While they may be sufficient for experienced human listeners,
they are not optimal for pronunciation modeling in ASR.
Secondly, SCRIBE serves the purpose of balancing between
the perceptual invariance by multiple human listeners and
the articulatory effort by human speakers. These details are
not available in the TIMIT phone-set, and the representations
are more compact and ready for use than the physiological
data such as EMA measures. So it stands a better chance of
knowledge preservation and accurate phonetic representations
than the others.

C. Specialized API learning algorithm

To enhance the inversion processing during off-line train-
ing, a specialized API learning algorithm is implemented.
The algorithm is analogous to the human experiences of
speech acquisition through the language teachers, i.e., the bio-
mechanical synthesizer is taught by the 20 RP speakers. In the
forward learning mode, the algorithm iteratively updates the
network weights to minimize the Root Mean Square (RMS)
error at the output layer. The process is monitored by two
heuristic measures summarized as follows.

Rule 1: Listener oriented optimization of acoustic qualities
of the synthesized speech using the relative entropy, H(μ||σ).
Since not all of the synthesized acoustic sound result in audible
or meaningful outputs, a feature evaluation criterion is applied
to refine the raw space based on the relative entropy measure,
H(μ||σ), defined as:

H(μ||σ) = Hi −Hi
ref , (2)

where

Hi =

no.offrames∑

x

μi(x)log
μi(x)

σi(x)
, (3)

in which μi(x) & σi(x) are the centre values and the standard
deviation of acoustic feature vectors for all the frames of
the ith phone in the reduced target regions, and Hi

ref is the
reference value computed from the training dataset.

Rule 2: Speaker oriented minimization of articulatory cost,
CRAT , during regional target approximation.

In the synthesis model, the equilibrium positions and the
“regional articulatory target” (RAT) are defined to smooth
the dynamic articulatory transactions using the target ap-
proximation modeling methods, which have previously been
used to improve the performance of speech recognizers and
synthesizers in [6], [12]. The production cost in the API
model is calculated as the articulatory effort required or energy
consumed to move from the current place to the nearest point
in the target region, or to return to the equilibrium position.

CRAT =
∂W

∂E
=

2a

b
×

∂(exp(b(I1 − 3))− p(I3 − 1)2)

∂(FFT − I)
,

(4)

where W is the stored strain energy described by the seven
components of F , E is the Lagrangian strain tensor, I1 and I3
are the first and the third invariant of the deformation tensor
E: I1 = 3 + 2Tr(E), I3 = det(2E + I), a, b&p are tuning
variables, and the internal force F in the muscle is defined as:

F = [M ]
∂2�V

∂t2
+ [C]

∂�V

∂t
+ [K]�V , (5)

where [M] is the mass matrix, [C] the damping matrix, [K] the
elasticity matrix, and �V = [x(t), y(t), z(t)] is the displacement
vector. The minimization of this criterion keeps the variation
of the muscular activities as low as possible near the target
region, and it has a tendency of bringing the articulators back
to equilibrium position, which is in accordance with human
speech production [18].

In this manner, the two criterion iteratively spans or shrinks
the articulatory target, resulting in a distributed RAT for each
phone in the articulatory space. The process is demonstrated
in Fig. 2.

In the acoustic space, simple spectral measures, formants:
F1 and F2, are plotted for two monophones, /aa/ and /ao/,
100 utterances each by 5 speakers from the TIMIT database,
in Fig. 2(a). The entropy measure, H , for the two feature
vectors are [F1(622.2, 168.9), F2(1297.2, 220.7)] for /aa/, and
[F1(562.9, 51.4), F2(1054.4, 299.2)] for /ao/, all units in Herz
(Hz). For continuous speech, /aa/ is often in a reduced form
with a relatively large F2 variance that causes misclassification
errors as shown by the overlapped concentration ellipses in
Fig. 2(a). In the first articulatory inversion step, two APFs,
GG and SG, which are the principle controlling parameters
for tongue body forwarding and back-raising respectively, are
illustrated in Fig. 2(b). For clarity, 441 pairs of (GG, SG) con-
figurations are inverted from the bio-mechanical articulatory
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configurations using a singular width change Δx = 0.1 from
-1 to 1. In the second phonetic inversion step, the final RAT at
the RNNs output layer is computed as a regional distribution,
where the center-point is desirable to reach but not necessarily
compulsory to tolerate pronunciation variations within phone
classes, as shown in Fig. 2(c) . Using the APF representation,
/aa/ and /ao/ show clear distinction in the articulatory space.
The center-point of the RAT, (GGμ, HGμ, SGμ), is located
at the central-front position for /aa/:(0.55, 0.30, 0.0), and at a
back position for /ao/: (0.0, 0.71, 0.60), shown as the darkened
gradient in Fig. 2(c).

(a) Acoustic formant map

(b) Articulatory inversion

(c) Phonetic inversion

Fig. 2. Illustration of the articulatory-phonetic inversion process using
formant measures for two vowels: /aa/ and /ao/, uttered by 20 speakers from
the TIMIT database.

III. DESIGN OF SPEECH RECOGNITION EXPERIMENTS

A. Acoustic Features

The baseline acoustic feature stream is provided by the
standard ETSI Distributed Speech Recognition MFCCs, which
consist of 13 cepstral coefficients including the log energy
C0 [19]. MFCCs are calculated by taking the discrete cosine
transform (DCT) of the log powers at each of the mel fre-
quency bands. In this study, the 13 static cepstral coefficients
(C0 − C12) were augmented with the dynamic delta and
acceleration coefficients which are calculated using two frames
of past context and two frames of future context in the HTK
module, resulting in a 39-dimensional feature vector.

B. Recognizer Back End and Recognition Tasks

To test our hypothesis that the RNN based API module
has indeed “learned” the articulatory-phonetic mappings and
is capable of dealing with the intrinsic and extrinsic pronun-
ciation variations of speech, the API model is firstly used as
a stand-alone phoneme recognizer. Then it is integrated with
the conventional HMM baseline through phone rescoring for
both phoneme and word recognitions. For our experiments,
the weighted product rule based on the generalized confidence
score adapted from [20] is used:

p(ot|A) = C

N∏

i=1

p(ot|A
i)

γi

, (6)

where A is the resulting parameters in the combined system, C
is a normalization constant, Ai is the set of acoustic parameters
for the ith system, p(ot|Ai) is the likelihoods computed by
the ith classifier, and γi is the interpolation weight of the ith

knowledge source. This multiplication task becomes a simple
summation in the logarithmic domain. In the rescoring module,
the posterior phoneme log-likelihood are computed at each
state using the weighted scheme in (6). For the experiments
here, C is set to 1, and the sum of the interpolation weights,
γi, is forced to be 1 such as that used in [5], and [14].

The HMM recognizers are based on continuous density
left-to-right HMMs with multiple Gaussian mixture models
per state implemented using Cambridge’s HTK tools [21].
The HMM phone recognizer uses context independent (CI)
monophone models, while the word recognizer uses tied-state
tri-phone acoustic models and a tri-gram language model.
TIMIT dataset originally has 61 phonetic annotations, which
are mapped to 45 phones based on recommendations from
previous research. Details of this mapping can be found in [5]
and [1] The recognizers have 5 states per phone model and
15 diagonal covariance Gaussians per state. The parameters
of the state Gaussian mixture components were estimated by
maximum likelihood estimation (MLE). For both recognizers,
a 3-state silence model and a 1-state short pause model which
shares the middle state of the silence model are used. These
settings were used for easy side-by-side comparison.

Two sets of natural speech data are selected for the recog-
nition experiments. The first set is the identical 100 TIMIT
sentences recorded by the 10 RP speakers of SCRIBE, which
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provides a well-matched training and testing condition, de-
noted as SCRIBE-TIMIT. The second set is the commonly
used TIMIT database. The available 2342 sentences (SA, SI
and SX) produced by 497 speakers (155 female/342 male)
from six dialect regions (DR1 to DR6) are used for recog-
nition experiments to test the accuracy of API on unfamiliar
conditions. For ASR experiments, 80% of the dataset is used
for training, and the other 20% for testing. The recognition
performances in noisy conditions are also reported.

IV. RESULTS AND DISCUSSION

A. Effect of the Interpolation Weight

Since the interpolation weight γi determines the contribu-
tion of individual feature streams, we have, therefore, eval-
uated a range of weights for the rescoring scheme on the
well-matched training-testing set, i.e., the 100 SCRIBE-TIMIT
sentences. Fig. 3 plots the phone recognition results, i.e., the
phone error rate (PER), as a function of γ1 assigned to the
API baseline, for clean speech and for speech contaminated
by white Gaussian noise (WGN) at 15dB signal to noise ratio
(SNR). So during the rescoring process, the system is purely
APF at γ = 1, and purely HMM (with MFCCs front end)
at γ = 0. For clean testing, the best performance is obtained
with a weight of 0.3, but for noisy testing, SNR = 10dB, the
best result lies between 0.4 and 0.5. We, therefore, assigned
an interpolation weight of 0.35 to the APF baseline for all
other ASR experiments, which is slightly higher than the 0.2
suggested in [14].

Fig. 3. Phone error rate of the combined MFCC/APF recognizer as a function
of the interpolation weight assigned to the APF baseline.

B. Recognition Accuracy and Robustness

The results for the phone recognition performance as a
function of SNR on the TIMIT database of the HMM baseline,
the RNN based API module, and the combined system are
shown in Fig. 4. Phone recognition accuracy are measured
against SNR from 0 to 25 dB (clean speech) using added
WGN.

Both the API module and the rescored module outperformed
the HMM baseline in noisy and clean conditions. The API
module gave 3.38% PER improvement on clean speech and
an average 8.55% on noisy speech over plain MFCC. The

Fig. 4. Phone recognition accuracy in noise using MFCC baseline only, APF
baseline only, and the combined system (MFCC APF).

largest improvement occurred with the rescored system, which
gave 5.30% and an average 10.14% relative PER improvement
for clean and noisy speech respectively. It appears that not
only does the API module lower the probability of wrong
phone sequences, it also supplements the HMM baseline with
additional sources of information, which is evidenced by the
salience of the rescored system, i.e., robustness against noise
contamination. It thus confirms our initial hypothesis that the
phonetic information are better preserved in the API module.
In other words, the phone states are better represented using
the multi-dimensional features in the acoustic models. Thus we
further used the hybrid system to carry out word recognition
tasks to investigate the benefits of the API method. However,
large vocabulary word recognition is generally more dependent
on linguistic structures of the input speech, i.e., the language
model. Thus the HMM context dependent (CD) tri-phone
model and a simple bi-gram language model are applied for the
word recognition on the smaller SCRIBE-TIMIT dataset. The
API system is the same as used for phone recognition tasks.
Table I summarizes the word error rate (WER) of the MLE-
based HMM baseline and the rescored system. The largest
WER reduction is obtained by the rescored module over the
plain MFCC baseline 6.33%, which is observed for the CI
uni-gram shown in the first two rows in the left column in
Table I. And the smallest improvement is observed in the
well constrained CD bi-gram HMM recognizer, 0.7% by the
knowledge module. Average WER reduction using the API
model is 3.35%.

TABLE I
WER ON THE SCRIBE-TIMIT WORD RECOGNITION TASK USING THE

MFCC BASELINE AND THE MFCC BASELINE RESCORED WITH APF
(MFCC APF).

CI monophone (%) CD tri-phone (%)

MFCC (uni-gram) 22.35 14.54
MFCC APF (uni-gram) 16.02 10.36
MFCC (bi-gram) 17.79 9.75
MFCC APF (bi-gram) 15.62 9.05

The results on PER and WER generally agree with the
findings reported in previous studies. In [5] and [14], a set
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of phoneme classifiers were proposed to extract articulatory
features in hybrid HMM/ANN recognition systems, where
PER reduction of 5.92% on the TIMIT SA (dialectic) sen-
tences, and WER reduction of 3.1% on the German Verbmobil
corpus were achieved for clean speech. Similarly Kirchhoff
also obtained an average 5.4% PER reduction for noisy test-
ings on continuous digits recognition. In the literature, word
recognition accuracy as high as 73.6% has been reported on
large vocabulary conversational speech [5]. Our system is more
competitive in terms of error rate reduction. The result itself is
insignificant in terms of short-term ASR advances, nonetheless
it clearly implies that the presence of articulatory knowledge
in the front end feature space actually opens up new grounds
for future deployment. One of the drawbacks is the reliability
of the synthesizer, where the intrinsic physiological properties
of the speaker are possibly over-generalized, e.g., the elasticity
matrix [K] for the tongue muscles usually requires more
sophisticated modeling methods as suggested in [6] and [18].
This will be taken into consideration in our future studies.

V. CONCLUSION

In this paper, a novel RNN based system is presented
to retrieve and utilize articulatory-phonetic information from
multiple knowledge sources for improved speech recognition.
In particular, articulatory gestures are inferred using a explic-
itly controllable bio-mechanical speech synthesizer and a set of
TIMIT sentences with “received pronunciation” annotated by
professional linguists to deal with the incompetence of English
pronunciation modeling in conventional ASR systems. The
RNN based API model is monitored by a specialized learning
algorithm which assimilates the human experiences of speech
acquisition as a way to address the “many to one” problem
in speech production and to exploit the benefits of categorical
speech perception. It is clear from the phone recognition re-
sults that the API model are much more competent in modeling
highly variant phonetic features than the widely used HMM
based recognizers with the MFCC front end. Furthermore, the
API system is globally tuned with the same set of speech
data in an off-line learning mode, and then used for all on-
line testings. Thus portability and computational efficiency
are another two salient properties of the proposed framework.
These novel qualities are further evidenced by the fact that the
proposed model obtains consistent recognition improvements
for the word recognition tasks when compared to the HMM
recognizer with tri-phone and bi-gram language models. Yet
it is perceivable that the extracted articulatory features might
introduce redundancies when combined with acoustic features.
This can be dealt with by applying dimension reduction
procedures such as principle component analysis (PCA) or
discrete cosine transform (DCT) on the input features to
produce more compact articulatory-phonetic representations.
These aspects are included in our ongoing research.
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