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Abstract—In this paper we present a vectorial representation of
the HMM states that is inspired by the Subspace Gaussian Mix-
ture Models paradigm (SGMM). This vectorial representation of
states will make possible a large number of applications, such
as HMM-states clustering and graphical visualization. Thanks
to this representation, the Hidden Markov Model (HMM) states
can be seen as sets of points in multi-dimensional space and then
can be studied using statistical data analysis techniques. In this
paper, we show how this representation can be obtained and used
for tying states of an HHM-based automatic speech recognition
system without any use of linguistic or phonetic knowledge. In
experiments, this approach achieves significant and stable gain,
while conserving the classical approach based on decision trees.
We also show how it can be used for graphical visualization,
which can be useful in other domains like phonetics or clinical
phonetics.
Index Terms: HMM-state vector representation, Speech

recognition, Acoustic Modelling, HMM states clustering, Sub-

space Gaussian mixture.

I. INTRODUCTION

Hidden Markov Models are the dominant technology in

speech recognition systems; almost all automatic recognition

systems simulate acoustic-phonetic phenomena using HMM.

However, progress in HMM-based recognition systems has

slowed, and thus research in alternative speech recognition

methods has become more critical. Phonemic treatment and

classification may be one such supplemental approach.

Phoneme classification in continuous speech is a particular

pattern classification problem. Each phoneme in the phoneme

set is represented by a three-state left-to-right HMM. The

most common method uses a mixture of weighted Gaussian

probability density functions which characterize the distri-

bution of observations within each state. In the phonemes

classification, the scientific communities are tried to define of

a similarity distance between phonemes or allophones. This

distance can be used to reduce the number of models have

in a given context, to find the optimal set of phonemes in a

language or to establish a common phonetic set to several lan-

guages. Young [1] defined the similarity between allophones

by expressing the difference of two Gaussians according to

their mean and their variance. However, this approach is only

applicable to Markov models with one state and one Gaussian.

Replacing the concept of divergence from the Bhattacharyya

distance, Mak [2] proposed an alternative expression of the

similarity which depends on model parameters. This approach

is applicable to Markov models with Gaussian mixtures of

a single state. The comparison of two Markov models in

several states and Gaussian mixtures requires a measure of

similarity based on the likelihood of the acoustic data (cepstral

coefficients) compared to Markov models. In the same context,

Juang [3] et Khler [4] proposed a similarity distance defined

as the difference from acoustic likelihoods, this measure is

derived from divergence concept between Markov models.

In the previously cited works, the definition of similarity

distance between phonemes is based on Gaussian Mixture

Model parameters (means and variances) and the likelihood

of the acoustic data. However, the estimation of similarity

distance with proposed methods are complicated and time-

consuming, and requires good estimation of large parameters

(means, weights and covariance matrix).

In this paper we propose a new vectorial representation

of HMM states. A state is represented by a vector of low

dimension, called a factor state, which is obtained from recent

proposals based on SGMM [5]. We also propose using a

simple method to calculate the similarity distance, based on

factor states, in the procedure of states-tying [6]. This method

involves putting together all data frames corresponding to

states which are acoustically similar, and then estimating a

unique GMM to reduce the total number of states in the HMM.

The most popular approach used in literature is based on the

use of a decision tree algorithm, associated with phonetic

knowledge together with the training data to decide which

contexts are acoustically similar [5].

With the vectorial representation, we propose in this

work, clustering states becomes easier and faster, and no

longer requires phonetic or linguistic knowledge. Likelihood

computation is replaced by simple distance and state clustering

may be formulated as a classical classification problem in

Rd. This representation will also allow the use of scientific

results obtained during several years of research in pattern

classification and data analysis. Moreover, the state vector

representation could facilitate treatment of nuisance acoustic

variability, as it did in the speaker recognition domain [7].

The rest of the paper is organized as follows : Section 2

describes the SGMM approach and its ability to represent a

state as a low dimension vector. In Section 3, we present the

strategy to estimate the factor states. Section 4 details our new

approach for state clustering based on factor states and some

experimental results. Finally, discussion and conclusions are
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provided in Sections 6 and 7 respectively.

II. SGMM FOR A SIMPLE VECTORIAL REPRESENTATION

OF STATES

The Subspace Gaussian Mixture Model is a modeling

approach based on the Gaussian Mixture Model. In SGMM,

the HMM states share a common Gaussian Mixture Model,

called the Universal Background Model (UBM). The means

and mixture weights are allowed to vary in a subspace of the

full parameter space. Indeed, the means and the weights for

each state are derived from the GMM-UBM [8]. The global

GMM-UBM is defined as follows: UBM=(αg,mg,Σg), where

αg , mg and Σg are respectively the weight, the mean and the

covariance matrix of the gth Gaussian.

Let m be the mean super-vector obtained by concatenating all

Gaussian means. In the SGMM the mean super-vector random

variable of the state s is written as follows:

ms = m+ Uxs (1)

where ms is the state dependent mean super-vector (random

vector variable) and U represents the inter-state variability

matrix (a MD ×R matrix) of low rank R. M is the number

of Gaussians in the UBM and D the is cepstral feature

size. xs are the state factors (an R vector). The vector xs is

assumed to be normally distributed among N (0, I). In the

training phase, the U matrix is estimated using all training

data and the MAP point estimate x(s) of xs is obtained for

each state [9].

In the SGMM modeling [8], the specific Gaussian weights

are obtained from the UBM as follow :

ws
g =

exp wT
g xs

∑M
g′=1 exp wT

g′xs
(2)

where xs ∈ �R is the ”state vector” with R the subspace

dimention. wg is weight vector depending on the Gaussian

but not on the state.

This state specific weights estimation is difficult to perform.

Its derivation is based on a combination of Jensen-type in-

equalities, local second-order Taylor-series expansions, and

a modification to the resulting quadratic auxiliary function

which ensures stability while maintaining the same local gradi-

ent [8]. As an alternative, we proposed in [10] to re-estimate

the gaussian weights by simple iteration EM (Expectation-

maximization algorithm). Its derivation is further more sim-

plified and allows us to gain computing time. Let wg be the

weight of the Gaussian g in the UBM. The weight ws
g for that

Gaussian in the state s is calculated as follows:

ws
g =

∑
x∈s P (g|x)

Ns
(3)

where,

P (g|x) = wg ∗ f(x|g)∑
g′ wg ∗ f(x|g′) (4)

N(s) is the number of frames of the to HMM-state (s),
P (g|x) is the a posteriori probability of the Gaussian g given

the frame x and f(x|g) is the likelihood for the frame x
given the Gaussian g.

In a previous work [10], we demonstrated that acoustic

models using GMM states (which are estimated by Equation

1) result in similar performance when compared to a baseline

system (Sect IV.A.2). These results show that the state factors

xs, with their limited number of parameters, are sufficient to

allow us to characterize their states. Based on these results,

we propose the adoption of the factor state xs as a vecto-

rial representation of HMM states. The simplicity of vector

processing makes possible many new applications based on

factor states. In the rest of this article we present how we

calculate factor states. We also present our new approach for

clustering HMM-states based on their factor states without any

use of other linguistic information or phonetic knowledge. This

approach will be compared with the standard approach based

on decision trees.

III. ESTMATION OF U AND LATENT VARIABLE xs

In this section, we show a strategy to estimate the matrix

U and the state factors xs. The U matrix is estimated using

training data; the MAP point x(s) of x(s) is estimated using

state-dependent data frames.

Let N(s) and X(s) be two vectors containing the zero order

and first order state statistics respectively. The statics are

estimated against the UBM:

N(s)[g] =
∑

t∈s

γg(t); {X(s)}[g] =
∑

t∈(s)

γg(t) · t (5)

where γg(t) is the a posteriori probability of Gaussian g for

the observation t. In the equation,
∑

t∈s represents the sum

over all frames belonging to the state s.

Let X(s) be the state dependent statistics defined as follows:

{X(s)}[g] ={X(s)}[g] − m[g] ·
∑

s

N(s)[g] (6)

Let L(s) be a R × R matrix, and B(s) a vector of dimension

R, both defined as:

L(s) = I +
∑

g∈UBM

N(s)[g] · {U}t[g] ·Σ−1
[g] · {U}[g]

B(s) =
∑

g∈UBM

{U}t[g] ·Σ−1
g · {X(s)}[g],

(7)

By using L(s) and B(s), x(s) can be obtained using the

following equation:

x(s) = L−1
(s) · B(s) (8)

The matrix U can be estimated line by line, with {U}i[g]
being the ith line of {U}[g] then:

Ui
[g] = LU−1

g · RUi
g, (9)
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Algorithm 1: Estimation algorithm of U and latent vari-

able x.

For each state s : x(s) ← 0, U ← random ;

Estimate statistics: N(s), X(s) (eq.5);

for i = 1 to nb iterations do
for all s do

Center statistics: X(s) (eq.6);

Estimate L(s) and B(s) (eq.7);

Estimate x(s) (eq.8);

end
Estimate matrix U (eq. 9 and 10) ;

end

where RUi
g and LUg are given by:

LUg =
∑

s

L−1
(s) + x(s)x

t
(s) · N(s)[g]

RUi
g =

∑

s

{X(s)}[i][g] · x(s)

(10)

Algorithm 1 presents the method adopted to estimate the

state variability matrix with the above developments where

the standard likelihood function can be used to assess the

convergence.

IV. STATE TYING WITH STATE FACTORS

The most popular technique used for states-tying is

clustering using a decision-tree [11]. This technique is a

computationally heavy process where competing linguistic

questions are extensively evaluated. Moreover, it is based

on phonetic knowledge. Clustering can be performed either

using top-down [12] or bottom-up [13] procedures. However,

top-down procedures suffer from two major drawbacks: they

require linguistic knowledge, which may be unavailable for

certain languages, and they have slow runtime due to the

exhaustive evaluation of probabilities for each question at

each node in the tree structure. In bottom-up approaches, a

large number of context-dependent GMMs are estimated and

then they are iteratively merged, according to a minimum

likelihood-loss criterion. Only small mixtures are used at

the leaf-level (typically from 1 or 4 gaussian components)

according to the limited amount of state-dependent training

data. Reported results are relatively close to the one obtained

with the decision tree approach.

Here we present our new approach of states-tying to reduce

the number of states in the acoustic model. The clustering

is only based on the information carried by the state factor

xs obtained using the SGMM paradigm, without any use of

phonetic rules related to the context. We first estimate the

factor vectors of all states of the context-dependent phonemes

that exist in the training corpus. Then, we search for the states

that are acoustically similar by using a standard clustering

algorithm k-means.

We start by conducting a context-independent phoneme

segmentation from our training corpus ESTER1&2 [15]. The

context-independent HMM models are utilized during this

procedure. Then, we expand the segmentation to a context-

dependent phoneme segmentation: a translation between

context-independent and context-dependent phonemes. The

number of context dependent phonemes that have been found

in the corpus is 21,889, corresponding to 65,667 states before

clustering.

We estimate the factor states xs for each state s using the

method described in the previous section. A good estimation

of xs requires a minimum number of frames, thus we process

only the states having more than 50 frames.

In the classification step, which involves grouping the states

of the context-dependent HMM phonemes into acoustically

homogeneous classes, called class-states. We use the well

known unsupervised classification algorithm k−means. This

algorithm achieves non-hierarchical clustering by minimizing

intra-cluster variance based on Euclidean distance; this process

is a simple way to classify a given data set into a certain

number of clusters (denoted k) fixed beforehand.

With this vectorial representation we can visualize the re-

sults of our Clustering algorithm in two dimensional space by

using the mathematical procedure called Principal Component

Analysis (PCA). This procedure allows for the size reduction

of the initial space into a smaller dimension with minimal

loss of information. In our case we project the factor states

of one hundred parameters into two space. We determine the

principal components using PCA procedure. figure 1 shows

the projection of nine different groups of factor-states.

centroids
class15
class22
class30
class53
class64
class77
class84
class107
class134

Fig. 1. Projection showing different classes of factor-states

After Clustering, we model the states belonging to the

same class as a GMM. The class-state GMMs are derived

from the GMM-UBM. This derivation is obtained by using

a MAP adaptation on data belonging to the single class-
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states. We associate the unclassified states to the class-state

which appears to have the maximum association with the

unclassified state based on the already obtained GMMs.

To obtain the final class-state GMMs, we adapt the former

class-state GMMs from data that belongs to these class-states

(included the new states classified).

In order to further reduce the number of parameters in a

GMM for a state s, we select the N -best Gaussians with the

largest weights and ignore the others. N is chosen in such

a way that the sum of the weights of the selected Gaussians

reaches a predefined threshold (defined 0.9).

The class-state GMMs become the GMMs for the HMM-

state of our acoustic model. Finally, to improve the perfor-

mance of our HMM the standard recursion of re-alignment

and parameter re-estimation is performed.

Through this classification, we can reduce the total number

of modeled states and solve the problem of infrequent context

modeling. The advantages of this clustering are its simplicity,

low complexity and speed, it is based only on the state

factors that do not use linguistic or phonetic knowledge as a

decision-tree.

A. Experimental framework and Results

1) The LIA broadcast system: Experiments are carried out

using the Laboratoire Informatique d’Avignon (LIA) broadcast

news (BN) system which was used in the ESTER evaluation

campaign. This system relies on the HMM-based decoder

developed at the LIA, Speeral [14], and is based on an A*

decoder using a state-dependent HMM for acoustic modeling.

The language models are classical trigrams estimated using

about 200M words from the French newspaper Le Monde and

about 1M words from the ESTER1&2 broadcast news corpus.

The lexicon contains 67K words. In these experiments, only

one decoding pass is performed in 3x Real Time. The training

parts of the data set are based on the training corpus provided

for the ESTER1&2 evaluation campaign with 190 hours. The

ESTER1&2 corpus consists of French radio broadcasts from

the Radio-France group . We test our approach on 9.5 hours

of speech extracted from the ESTER2 test set.

2) Baseline : decision tree based system: The baseline

system adopted in this work is based on Hidden Markov

Models. The state-level probabilities are estimated by using

Gaussian Mixture Models. Our baseline uses a left-to-right

HMM architecture of 13,316 context-dependent phonemes. To

reduce the size of the acoustic models, we used a states-tying

technique based on decision-tree top-down context clustering

approache. This technique allows one to model 13,316 context-

dependent phonemes with only 5080 states instead of 39,948,

with 64 Gaussians per state and 39 PLP (Perceptual Linear

Predictive) coefficients per frame (13 static with first and

second order derivatives).

3) Results: In our experiment, we created acoustic models

using the new proposed approach. The performance of our

new models are rated by comparison with models which

accomplish states-tying using the standard technique based

on a decision-tree. We evaluate the system’s performance

according to the full state number (i.e. the number of states

in the HMM set), and the number of parameters in the factors

state. The obtained results are presented in the following

tables. Table I shows the results in terms of Word Error Rates

(WER) on our test corpus. The first column contains the titles

of the radio stations from which the samples were collected.

The second column shows the WER of the baseline system.

In the last three columns, we find the WER of three different

models, each with a different number of states: 2672, 3730

and 4932. The number of parameters in a state factor x(s)

is 60. The last line indicates the percentage of absolute gain

compared to the baseline system.

Station Baseline (5079) 2672 3730 4932
Inter (5h40mn) 34.88 33.32 32.85 32.49
RFI (1h10mn) 18.62 18.06 17.39 17.29
tvme (1h) 28.74 26.45 26.02 26.03
africa(1h30mn) 32.42 31.16 30.90 30.69
Total (9h30) 30.92 29.46 29.03 28.8
absolute gain - 1.46 1.89 2.12

TABLE I
Word Error Rates in % for different radio stations.

The results obtained show an improvement in performance

even though the new models use a smaller number of states

than does the baseline. We obtained an absolute gain of 2.12

when running the new model with almost the same number of

states as the baseline. These results confirm that the clustering

of states based on factors x(s) allows the model to be more

independent of the linguistics in the acoustic modeling.

Table II reports the results obtained by three new models

with the same number of states (4932). For each one, the

classification is based on state factors of 40, 60 and 100

parameters, respectively.

Stations 4932-40 4932-60 4932-100
Inter (5h40mn) 32.74 32.49 32.85
RFI (1h10mn) 17.31 17.29 17.63
tvme (1h) 26.11 26.03 25.98
africa(1h30mn) 30.75 30.69 30.43
Total (9h30) 28.89 28.80 28.91

TABLE II
Word Error Rates in % for different stations.

Word Error Rates for the three models are very close. This

demonstrates that a vector of 40 parameters is enough to

characterize the state. This result encourages the use of this

vector representation of states for other applications, such as

analysis of variability that can affect the phoneme and graphic

visualization.

V. DISCUSSION

The new characterization of HMM states using vector

representations improves the treatment of states. We have
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shown in this article an interesting use of factor states and

the clustering of HMM states in the tying procedure. In

our approach from states-tying we do not need to linguistic

knowledge, That this facilitates the processing of languages

which have no such knowledge

The results confirm that the factor states representations are

good characterizations of HMM states, which supports the

choice to base other works on factor states.

One interesting possible application of the vectorial rep-

resentation is graphical visualization; using factor states the

graphical visualization of phonemes becomes much simpler.

To do this, ones needs only to move from the dimension

of the N factor states to the dimension of a given visual

medium (3D or 2D) by using the mathematical procedure

Principal Component Analysis. This visualization allows us to

observe several phenomena such as the influence of speaker

variability on phonemes, the variability of pronunciation of

a single speaker and the other variable may be affected the

phoneme. To illustrate this we choose, at random, three states

pronounced by several speakers. We calculate the factors states

xsp for each state s pronounced by the speaker p, and after

the calculation of the PCA, we project the factor states onto

two dimensional space. We observe three clouds of points for

the three different states. The dispersion of the points of each

state around their center is due to the pronunciation variability

of the different speakers.

centroids
stat3
stat5
stat8

Fig. 2. Projection showing the speaker variability of the three different states

VI. CONCLUSIONS

In this paper, we highlighted the value of representing states

as vectors in a low-dimensionality subspace. This represen-

tation is based on the subspace GMM paradigm. Once the

states are transformed into vectors, analysis, visualization and

comparison of states becomes easier. The application of state

clustering demonstrates the accuracy and efficiency of the pro-

posed vectorial representation. Without any use of linguistic or

phonetic knowledge, the vectorial state representation achieves

significant and stable gains in comparison to the standard

decision tree based technique. Future works will analyze the

different kinds of variability that may affect the states. We also

plan to evaluate new methods of integrating state factors into

the decoding procedure.
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