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Abstract—This paper presents methods and results for opti-
mizing subword detectors in continuous speech. Speech detectors
are useful within areas like detection-based ASR, pronunciation
training, phonetic analysis, word spotting, etc. We propose a new
discriminative training criterion for subword unit detectors that
is based on the Minimum Phone Error framework. The criterion
can optimize the F-score or any other detection performance
metric. The method is applied to the optimization of HMMs and
MFCC filterbanks in phone detectors. The resulting filterbanks
differ from each other and reflect acoustic properties of the
corresponding detection classes. For the experiments in TIMIT,
the best optimized detectors had a relative accuracy improvement
of 31.3% over baseline and 18.2% over our previous MCE-based
method.

Index Terms—Detection, discriminative training, MPE, filter-
bank.

I. INTRODUCTION

Detection of phonetic events such as phones and articulatory
features has applications within phonetic analysis, word spot-
ting, computer aided pronunciation training [1] and specially
in detection-based ASR [2] [3] [4] [5]. In the latter accurate
detectors are decisive for the performance of the system. A
detector is a binary classifier that discerns between patterns
that share a specific quality (the class) and the rest (the anti-
class). A possible approach to continuous speech detection
is to adapt the standard ASR framework for the two-class
problem.

A standard ASR system extracts acoustic features from the
frequency content and the time dynamics of the speech signal.
In Mel-frequency cepstral coefficients (MFCCs), the dominant
speech representation in ASR, the short-term spectrum is
processed with a filterbank (FB) that imitates two important
properties of human audition: critical bands and a logarithmic
frequency scale. Note that this feature extraction is common
to all classes, i.e. a single MFCC extraction is performed for
every time frame. The frequency content variation over classes
is modeled by the class-specific MFCC-densities in the HMM-
based classifier.

In the detector case, the parameters of the feature extractor
and the decoder can be improved for each detector. The HMM
state-density parameters are good candidates for detector-
specific optimization. In the feature extractor an obvious

choice is to keep the MFCC structure, as this has shown
to be state-of-the-art preprocessing for many years in ASR.
However, the structure parameters should be optimized for
each specific detection problem.

Discriminative training techniques have been success-
fully applied to ASR, e.g. Maximum Mutual Information
(MMI) [6], Minimum Phone Error (MPE) [7] and Minimum
Classification Error (MCE) [8]. Moreover, in [9] it was shown
that these methods are closely related. MCE training of models
improved detection performance in [10]. However, they found
that the standard method did not guarantee an error decrease
for the target class and argued for a modified version of MCE-
training for detection.

In [11] we modified standard string-based MCE to train
subword detectors. FB and means in a HMM-based structure
were optimized with this method for the task of phone and
articulatory feature detection. We showed that the shape of
the standard FB can be modified to extract information that is
relevant to the specific detection task. In addition, we included
a brief analysis of the resulting FBs with respect to phonetic
knowledge of the detection classes. As far as we know, those
are the only published experiments on data-driven FB opti-
mization for detection. However, the performance function that
we used in this MCE-based training method was not directly
related to the evaluation criterion applied to the detectors in
the test phase.

Previous work in data-driven FB optimization for speech
recognizers includes a joint training of FB and a prototype-
based distance classifier [12], optimization of robust features
[13] [14], FB design using MPE [15], Linear Discriminant
Analysis [16] or minimum entropic distance [17], etc. In ad-
dition, MPE has also been applied to other feature optimization
methods, e.g. MPE-trained feature transforms were studied in
[18] and [19].

The main contributions of this paper are as follows. First, we
propose a novel discriminative training for subword detectors
capable of directly optimizing the F-score or any other perfor-
mance measure for detection. We call this method Minimum
Detection Error (MDE) training because it is based on the
MPE framework. Secondly, we apply MDE to optimize the
HMM parameters and FB of the detector structure proposed
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in [11]. Finally, we analyze the optimized FBs and compare
MDE to our previous training method.

The paper is organized as follows: Section II describes
the structure of our detectors and discusses their evaluation.
Section III presents MDE-training of the FB and HMMs
in the detectors. Section IV describes the phone detection
experiments, results and analysis of the optimized FBs. Finally,
Section V presents the conclusions and plans for future work.

II. DETECTORS

We focus on HMM-based detectors for phonemes in contin-
uous speech. The class was modeled by the HMM of the phone
to detect. The anti-class was modeled with all the other phone
HMMs in parallel. Therefore, any detector can be regarded as
a standard HMM-based phone recognition system optimized
to improve the accuracy of a specific phone. This structure is
also suitable to build detectors for articulatory features, as it
was shown in [11].

Fig. 1. MFCC feature extraction.

A. MFCC feature extraction

This module should extract information that discriminates
between the class and the anti-class. Fig. 1 shows the block
diagram for a MFCC preprocessor. First, the input speech
signal is windowed and the magnitude of the FFT is computed
for each frame (the resulting vector is referred to as z). Then
a FB performs the linear mapping y = H z, where H is the FB
matrix. Each component yi = hT

i z represents the energy in the
band of the i-th filter. This block is different in each detector.
The following block is a logarithmic transformation to imitate
loudness sensitivity. Then a DCT maps the log-energies to the
cepstral domain and decorrelates the components. The cepstral
vector c keeps only the first Ncep components, which have
most of the discriminative information. The last module adds
the first and second order time derivatives to c and outputs the
observation vector x.

B. Evaluation of detectors

In continuous speech recognition the segment sequence
is aligned with a reference to find hits (H), substitutions
(S), deletions (D) and insertions (I). In detection the rele-
vant outcomes are hits (Hc), misses (Sc and Dc) and false
alarms (Sac and Ic), where the subindexes “c” and “ac”
refer to the class and the anti-class, respectively. In practice
we must accept a trade off between hits, false alarms and
misses. Precision (P) and recall (R) are commonly used to
score detectors, where P = hits/(hits+ false alarms) and
R = hits/(hits+misses). In addition, F-score is a measure
that combines precision and recall:

F =
2PR

P +R
=

2Hc

2Hc + Sc +Dc + Ic + Sac

. (1)

It is important to consider that most patterns belong to the
anti-class (unbalanced data problem). This means that Sac

can be high compared to the other terms. In addition, in the
context of detection-based ASR it is important not to miss
candidates and recall is usually prioritized over precision [5].
We proposed in [11] to use the accuracy of the detector as
evaluation criterion:

Ac =
Hc − Ic

Nc

= R−
Ic
Nc

, (2)

where Nc = Hc + Sc +Dc. This is the commonly used ASR
accuracy, however modified for detection as it is limited to
include only class segments. Both recall, R, and the detector
accuracy, Ac, solve the unbalanced data problem by not
considering Sac. However, Ac is more restrictive than R
because it counts the inserted class segments Ic.

III. MINIMUM DETECTION ERROR TRAINING

Minimum Phone Error (MPE) optimizes the parameters of
a recognizer to improve the overall phone accuracy. In this
method, a performance function is built that estimates the
expected phone accuracy on the training set as a function of the
model parameters. The MPE-optimized parameters are those
that maximize the performance function. This section presents
Minimum Detection Error (MDE) training, the application of
the MPE framework to detection.

The training data is a set of sentences X = {X1, . . . ,XK}
and their phone labels. A sentence has a number of frames:
Xk = {x1, . . . , xT (k)}. The key idea is that we want to train
the detector structure to optimize a detector evaluation mea-
sure, see Section II-B. Therefore, the performance function J
in MDE estimates the expected detector score on the training
set as a function of the detector structure parameters Λ:

J(Λ) =
1

K

∑

k

S̄k(Λ) , (3)

where S̄k(Λ) is the expected detection score of sentence k
given the current set of parameters Λ and K is the total
number of sentences. We estimate this expectation using a set
a set of transcriptions {Lkj}

N
j=0, where Lk0 is ground truth

and the rest are generated with an N-best algorithm. These
transcriptions label each frame x at the model and state level
with Viterbi alignment. Then we have that

S̄k(Λ) =
∑

j

P (Lkj/Xk,Λ)Skj , (4)

where Skj is the detection score (e.g. F-score or Ac) of
transcription Lkj and it is independent of Λ. This score is
computed as follows: first Lkj is string aligned against Lk0

(ground truth) based on the phone labels. Then these phone
labels are mapped to detection labels, i.e. ”class” and “anti-
class”, to compute Hc, Dc, etc. The last step is to evaluate
with, e.g. Eq. 1 or 2.

The performance function J is maximized by updating the
parameters Λ iteratively with the Rprop (resilient backprop-
agation) algorithm. In the following we discard the constant
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Fig. 2. Selected examples of filterbanks.

1
K

in J for simplicity. Applying the chain rule of differential
calculus:

∂J(Λ)

∂Λ
=

∑

k,j

Skj

∂P (Lkj/Xk,Λ)

∂Λ
. (5)

The posterior P (Lkj/Xk,Λ) can be expressed in terms of
likelihoods applying Bayes’ theorem:

P (Lkj/Xk,Λ) =
p(Xk/Lkj ,Λ)P (Lkj)∑
u p(Xk/Lku,Λ)P (Lku)

. (6)

In addition we can consider that
∂p(Xk/Lkj ,Λ)

∂Λ
= p(Xk/Lkj ,Λ)

∂ log p(Xk/Lkj ,Λ)

∂Λ
, (7)

where log p(Xk/Lkj ,Λ) is the loglikelihood of sentence k and
transcription j. Then it can be verified that

∂J(Λ)

∂Λ
=

∑

k,j

(Skj − S̄k)P (Lkj/Xk,Λ)
∂ log p(Xk/Lkj ,Λ)

∂Λ
.

(8)
In this paper we focus on the optimization of means and

FB matrices. The Viterbi loglikelihood is given by

log p(Xk/Lkj ,Λ) = log akj +

T (k)∑

t=1

log[bitst(xt)] , (9)

where it and st are the model and state that segmentation
j assigns to frame xt in sentence k, akj is a segmentation
dependent constant independent of Λ, and bis(x) is the state
probability density function given by a Gaussian mixture
model. Then it can verified that the derivatives of the means
and the FB matrix are given by

∂ log p(Xk/Lkj ,Λ)

∂μi
sm

=

∑

t,m

δjtis
cism · bism(xt)

bis(xt)
Σ

i
sm

−1
(xt − μ

i
sm) (10)

and

∂ log p(Xk/Lkj ,Λ)

∂H
=

∑

t,m

citstm · bitstm(xt)

bitst(xt)

∂xt
∂H

Σ
it
stm

−1
(μit

stm
− xt) , (11)

where δjtis is an indicator function for the event {Lj la-
bels xt as (i, s)} and the index k has been omitted for
clarity. As in in [11], the term ∂xt

∂H is computed using the
complete observation vector, i.e. static cepstrum and deriva-
tives. Considering xt = [cTt ,d

T
t , a

T
t ]

T , μ = [μT
c ,μ

T
d ,μ

T
a ]

T

and Σ
−1 = diag(Σ−1

c ,Σ−1
d ,Σ−1

a ), where model, state and
mixture indices are omitted for clarity, dt = ct+2 − ct−2,
at = dt+2−dt−2 and the chain rule applied, it can be verified
that

∂xt
∂H

Σ
−1(μ− xt) = (wc

t ./yt)z
T
t + (wd

t ./yt+2)z
T
t+2

− (wd
t ./yt−2)z

T
t−2 + (wa

t ./yt+4)z
T
t+4

− (wa
t ./yt−4)z

T
t−4 − 2(wa

t ./yt)z
T
t , (12)

where the notation of Fig. 1 is followed, “./” is elementwise
division, wc

t = DT
Σ

−1
c (μc − ct), wd

t = DT
Σ

−1
d (μd − dt)

and wa
t = DT

Σ
−1
a (μa − at). To ensure that the FB co-

efficients remain positive, the parameter transformation in
[8, Eq. 32] is applied.

Each iteration n of our MDE algorithm can be summarized
in the following steps:

1) Extract MFCCs using Hn

2) Generate N-best transcriptions with present phone
HMMs: μn.

3) Compute detection scores Skj , ∀k, j.
4) Generate Viterbi state alignment of the N+1 transcrip-

tions.
5) Compute Eq. 8 for H and μ (use Eq. 10 and 11).
6) Find Hn+1 and μ

n+1 with Rprop.
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IV. EXPERIMENTS

To evaluate the MDE training algorithm experiments have
been performed on the TIMIT acoustic-phonetic continuous
speech corpus. The basic setup is the same as used for the
MCE-based experiments reported in [11].

A. Task

Detectors with optimized FBs and models were applied to
the task of phone detection on TIMIT. We chose this database
because it is a well-known standard reference and it is labeled
at the phoneme level. We used the designated training set of
462 speakers (3696 sentences), that is excluding SA-sentences.
A development set of 50 speakers (400 sentences) was used
for intermediate experiments. Results are reported on the NIST
defined core test set of 24 speakers (192 sentences).

The experiments were based on a set of 39 phonemes. The
manual TIMIT labeling consists of 61 acoustic-phonetic sym-
bols. We merged plosive closures and bursts and applied the
standard mapping to 39 phones. The acoustic parameterization
consisted of 13 static MFCCs (including C0) with their first
and second order derivatives. The sampling frequency was 16
kHz, and frames were extracted every 10 ms with 25 ms
Hamming window. The FB was specific to each optimized
detector.

B. Experimental settings

Baseline (BL) phone detectors were built using the standard
FB (see Fig. 2(a)) and a set of 39 maximum likelihood trained
HMMs. The phonemic transcription of TIMIT was used to
train monophone HMMs with 3 states and 10 mixtures. In
the MDE optimization, BL detectors were used as the starting
point.

Two MDE training experiments were performed: F-score
and class accuracy optimization. In each experiment two
implementations of MDE were tested: 1) only means were
trained, referred to as (μ) and 2) only H was trained,
referred to as (H). We can refer to these experiments as
score-MDE(Implementation), e.g. A-MDE(H) denotes class
accuracy optimization through MDE-training of the FB matrix
H in the detector.

In our MDE implementation the number of competing
hypothesis N was set to 10. In each detector, we selected
the iteration corresponding to the best score in the develop-
ment set. The HTK Toolkit was used for standard maximum
likelihood embedded training of HMMs. The standard FB had
26 triangular shaped filters with 201 points, where the center
frequencies and bandwidths were uniformly spaced according
to the Mel-scale. The grammar was an unconstrained phone
loop and the language model used under training and testing
was a 0-gram (uniform model).

C. Results and discussion

This section presents the performance and FBs for the
detectors. First, we discuss the test results for the F-score and
accuracy optimization experiments, which are presented in Ta-
bles I(a) and I(b), respectively. The large number of detectors

TABLE I
CLASS AVERAGED PERFORMANCE AFTER OPTIMIZATION

(a) F-scores optimization.

Score BL F-MDE(H) F-MDE(μ)

F̄ 67.0 69.1 71.9
Āc 60.7 63.9 66.6

(b) Class accuracy optimization.

Score BL A-MDE(H) A-MDE(μ)

F̄ 67.0 67.2 69.9
Āc 60.7 70.2 73.0

prevents us from presenting a thorough analysis of each case;
instead we present a weighted average detector performance.
For the F-score we computed F̄ =

∑
c (Nc · Fc)/

∑
c Nc, and

similarly for the class accuracy. In each experiment, we present
the averages for both the F-score and the class accuracy of the
optimized detectors. However, we present also some specific
examples of detectors: Table II shows the class accuracy, F-
score, precision and recall for the detectors of /ih/, /n/ and /sh/.
We chose these detectors because they were used as specific
examples in [11]. Secondly, we make a brief analysis of the
optimized FBs, focusing on those shown in Fig. 2.

As expected, discriminative training improved the average
detector performance in both experiments. In the first exper-
iment, the relative improvements with respect to BL were
6.4% for F-MDE(H) and 14.8% for F-MDE(μ). In the second
experiment, the corresponding improvements were 24.2% for
A-MDE(H) and 31.3% for A-MDE(μ). The average F-score
in F-MDE experiments was higher than the corresponding F-
score in A-MDE experiments, and vice versa. This is reason-
able because increased recall usually comes at the expense of
decreased precision. In addition, this shows that MDE-training
focused on the optimization of the chosen performance cri-
terion, F-score in the first experiment and class accuracy in
the second. In both experiments, the average performance of
MDE(μ) was higher than that of MDE(H). This can probably
be explained by the fact that the total number of parameters
in the HMM means was much higher than in the FB matrix
(45630 vs. 5226). However, in some detectors we found the
opposite, e.g. Table II(a) shows that A-MDE(H) improved the
result of A-MDE(μ) for the /ih/ detector.

We are also interested in comparing MDE with our previous
MCE-based training method. In principle, an advantage of
MDE is that it can be used to optimize directly the chosen
detection performance measure. In our previous method the
performance function J was not directly related to any detec-
tion evaluation criterion. Our approach was then to use the
chosen performance metric in the cross validation, but this
was at best suboptimal. In addition, while recall is prioritized
in detection-based ASR, other applications could prefer an
optimized F-score. Therefore, MDE is also more flexible
than our previous method because it can optimize detectors

509



focusing on the specific figure-or-merit of the application. The
cross validation stop criterion for the experiment presented in
[11] was class accuracy. Following the notation introduced
earlier, it can be referred to as A-MCE. For convenience, we
have adapted and reproduced the results from [11, Tables 1, 2
and 3] in Table III. The results in Table III(a) can be compared
with those in Table I(b). However, we have to consider that
the previous best results were with A-MDE(H,μ), where the
FB matrix and the model means where optimized jointly.

First, the average performance of A-MDE(H) is higher than
that of A-MCE(μ) (70.2% vs 67.0%) even if the number of
optimized parameters was much smaller. In addition, in some
cases detectors optimized with A-MDE(H) performed even
better than those trained with A-MCE(H,μ), e.g. comparing
Table II and III(b), we find 90.5% vs 72.9% for /ih/ and
74.8% vs 73.5% for /n/. Second, the average performance of
A-MDE(μ) is higher than that of A-MCE(μ) (73.0% vs 67.0%,
a relative improvement of 18.1%), and close to A-MCE(H,μ)
(73.0% vs 73.7%). Also in this case some detectors optimized
with A-MDE(μ) performed better than those trained with
A-MCE(H,μ), e.g. /ih/ and /n/ as well. All this seems to
indicate that MDE training is more powerful than our previous
MCE-based training for detectors. We have not implemented
MDE(H,μ) yet, but it is reasonable to expect improvements
over MDE(μ), as we saw in A-MCE(H,μ) vs. A-MCE(μ).

Some phone detectors for infrequent classes did not improve
their performance in the development set after MDE-training,
specially with MDE(H). For those detectors, the initial BL
score was considered when computing the average score. We
assume this was a problem of training data availability. In
addition, some detectors improved their performance with
respect to BL both for the training and development sets, while
the corresponding test performances decreased, e.g. this was
the case for the detector of /sh/ trained with A−MDE(μ). It is
possible that this lack of generalization could be explained by
the low number of class segments in the test set for the affected
detectors. For example, the number of class segments in the
training, development and test sets for /sh/ are, respectively,
1466, 153 and 77. In fact, the test size of /sh/ is probably
too small for the test results to be statistically significant at
conventional levels. This issues were also found in [11]

In the FB optimization experiments, F-MDE(H) and
A-MDE(H), the only changes in the detection structure with
respect to BL was the FB matrix H. Therefore, the increase in
performance brought by the new features can be explained
by the fact that the FB in each detector was modified to
extract discriminative information for the specific detection
task. The FBs were clearly different from each other, specially
for classes with different acoustical properties, e.g. see FBs for
/ih/ and /sh/ in Figs. 2(d) and 2(f).

In our previous work we analyzed FBs optimized with
A-MCE(H,μ). Most of the changes in the FBs were due
to scaling of the filter amplitudes and partly also different
filter shapes. However, in MDE(H) detectors we found that
optimized filters had often expanded in new frequencies. Since
this cannot be appreciated when all FBs are plotted together,

TABLE II
PERFORMANCE OF SELECTED DETECTORS

(a) /ih/
OPT Ac F P R

BL 45.0 57.6 77.9 45.7
F-MDE(H) 60.7 63.9 64.8 63.1
A-MDE(H) 90.5 47.6 31.5 97.8
F-MDE(μ) 64.1 69.0 70.3 67.8
A-MDE(μ) 84.1 62.1 47.4 89.8

(b) /n/
OPT Ac F P R

BL 57.7 69.5 84.7 59.0
F-MDE(H) 70.4 73.6 73.7 73.5
A-MDE(H) 74.8 70.6 63.9 79.0
F-MDE(μ) 73.5 76.4 77.5 75.3
A-MDE(μ) 80.0 72.8 64.0 84.4

(c) /sh/
OPT Ac F P R

BL 76.6 76.4 75.0 77.9
F-MDE(H) 68.8 77.5 84.6 71.4
A-MDE(H) 74.0 78.7 80.8 76.6
F-MDE(μ) 74.0 81.9 88.1 76.6
A-MDE(μ) 74.0 81.1 84.5 77.9

Fig. 2(e) isolates the 18th filter from Fig. 2(d) as an example,
and the initial filter is displayed as well as a reference. We
can see 1) modified shape in the initial area (2.8, 3.5) kHz,
2) smaller new values near 2.5 kHz, 3) significant new shape
in the interval (3.8, 4.4) kHz, with maximum near 4 kHz. This
means that, in contrast to standard filters, this optimized filter
outputs energy information from different critical bands.

Analyzing the changes in the frequency shape of the FBs
resulted in some logical conclusions. The resulting FBs for the
same detector in MDE(H) had some similarities in shape when
optimizing for accuracy or F-score, e.g. compare Figs. 2(b) and
2(c). Some FBs reflected properties that were found in FBs
optimized with A-MCE(H,μ), e.g. the FB in /n/ had a high
amplitude in the second filter probably because nasals have a
low first formant, see Figs. 2(b) and 2(c). In addition, some
of the changes in vowels seemed to be related to the position
of the formants as well. However, some of the properties that
we found previously in A-MCE(H,μ) were not present in
FBs optimized with MDE(H), e.g. the shape of filters in the
high frequencies in some vowel detectors was clearly different
from the corresponding standard filters, see Fig. 2(d). These
differences can probably be explained by 1) FBs were trained
keeping the BL models, while in our previous method both
FBs and models were optimized and 2) MDE differs from
MCE both with respect to algorithm and performance.

V. CONCLUSIONS AND FUTURE WORK

In this paper we described a novel approach to design of
subword detectors with optimized feature extractor and mod-
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TABLE III
A-MCE RESULTS FROM [11]

(a) Class averaged performance after optimization.

Score BL A-MCE(μ) A-MCE(H,μ)

Āc 60.7 67.0 73.7
F̄ 67.0 68.4 66.1

(b) Performance of selected detectors.
BL A-MCE(H,μ)

DET Ac P R Ac P R

ih 45.0 77.9 45.7 72.9 52.8 79.5
n 57.7 84.7 59.0 73.5 62.3 79.0
sh 76.6 75.0 77.9 85.7 52.6 90.9

els. We discussed the evaluation of detectors and described our
Minimum Detection Error (MDE) training of MFCC filterbank
and HMMs. In the experiments we built detectors of phones
in continuous speech. We found that MDE-training succeeded
in optimizing detectors for the chosen evaluation criteria;
detectors optimized for F-score had a relative improvement
of 14.8% over baseline, and accuracy optimization led to a
relative improvement of 31.3% over baseline and 18.2% over
an equivalent implementation with our previous MCE-based
method. The optimized filterbanks were significantly different
than the standard filterbank and reflected acoustic properties,
e.g. formant positions, of the class to detect.

For future work, we want to study HMM-state specific filter-
banks, which would model some of the short time dynamic of
the signal that is relevant for the detection task. In addition,
we want to design filterbanks based on phonetic knowledge
of the target classes, optimize them and compare the results.
Further, we will use our detectors in a pronunciation training
system that focuses on vowel quality, plosive confusion, etc.
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