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Abstract—Narrative recall tasks are commonly included in
neurological examinations, as deficits in narrative memory are
associated with disorders such as Alzheimer’s dementia. We
explore methods for automatically scoring narrative retellings via
alignment to a source narrative. Standard alignment methods,
designed for large bilingual corpora for machine translation,
yield high alignment error rates (AER) on our small monolingual
corpora. We present modifications to these methods that obtain
a decrease in AER, an increase in scoring accuracy, and diag-
nostic classification performance comparable to that of manual
methods, thus demonstrating the utility of these techniques for
this task and other tasks relying on monolingual alignments.

I. INTRODUCTION

In this paper, we investigate the automation of the existing

manual method for narrative recall scoring in the context of

diagnosing Mild Cognitive Impairment (MCI), the earliest

observable precursor to dementia. We focus on the Logical

Memory Scale narrative recall subtest of the Wechsler Memory

Scale [1], a widely used instrument for evaluating memory

function in adults. In this task, the subject listens to a brief

narrative and then verbally retells the narrative to the examiner.

The examiner then scores the retelling by counting the number

of recalled story elements, each of which typically corresponds

to a short phrase in the narrative. The final score is simply the

total number of items recalled by the subject. We propose to

automatically determine which story elements were recalled by

establishing an alignment between substrings in the retelling

and substrings in the original narrative.

Although alignment methods have been widely explored for

a range of NLP tasks, aligning retellings for clinical assess-

ment is a novel task with unique obstacles. Existing word and

phrase alignment-learning algorithms are typically developed

to train on bilingual parallel corpora, a very different type of

data from the small monolingual parallel corpora of narrative

retellings analyzed here. In previous work, we showed that

strong automatic scoring and diagnostic classification results

could be obtained using an off-the-shelf word alignment pack-

age with no customization [2]. We now compare the output of

this standard alignment approach with that achieved using two

novel methods designed to take advantage of certain features

of our corpus of retellings, and we evaluate whether these

alignments provide sufficient accuracy for automated scoring.

We then demonstrate the utility of these scores for performing

diagnostic classification of MCI.

We show that, despite somewhat high alignment error rates,

all of the automatically-generated alignments, in particular the

alignments generated with our new alignment strategies, are

acceptable substitutes for manual alignments for scoring pur-

poses. In addition, scores derived from automatic alignments

yield diagnostic classification comparable to that achieved

using the manual scoring procedure.

The robustness of scoring and classification to poor align-

ment, however, should not obscure the need for further im-

provements of alignment in this domain in order to ade-

quately measure common phenomena such as long-distance

reordering, omission, embellishment, and repetition. Given

that these phenomena are frequently observed in the retellings

of impaired subjects, they are likely to provide significant

discriminative power. The dual message of this work seems

to be that scoring of narrative recall for diagnostic purposes

is a very promising task for automation, but it is relatively

poorly served by existing alignment algorithms. The simple

but intuitive changes described here demonstrate that tailor-

ing alignment for this task can yield improvements in both

monolingual alignment itself as well as automatic scoring and

diagnostic classification.

II. BACKGROUND

Many neuropsychological protocols include a narrative re-

call or narrative generation task [3], [1], [4]. Poor performance

on such tasks has been associated with of a number of cogni-

tive and developmental problems such as language impairment

[5], [6], autism [7], and dementia [8].

The earliest observable precursor of dementia, Mild Cog-

nitive Impairment (MCI), is characterized by cognitive and

memory symptoms that are clinically significant but do not

necessarily interfere with daily living activities [9]. These

symptoms are often difficult to detect using the common

screening tests for dementia. As a result, MCI frequently goes

undetected, delaying the introduction of appropriate treatment

and remediation.

Most previous work in applying NLP-based analysis to

spoken language and narratives for diagnostic purposes has

focused not on evaluating coherence but rather on using lan-

guage samples as a data source from which to extract speech

and language features, such as pause duration or language

complexity [10], [11]. Such features can be used to evaluate
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Anna / Thompson / of South / Boston / employed / as
a cook / in a school / cafeteria / reported / at the police
/ station / that she had been held up / on State Street /
the night before / and robbed of / fifty-six dollars. / She
had four / small children / the rent was due / and they
hadn’t eaten / for two days. / The police / touched by the
woman’s story / took up a collection / for her.

Fig. 1. Text of Wechsler narrative, segmented into 25 story elements

Ann Taylor worked in Boston as a cook. And she was
robbed of sixty-seven dollars. Is that right? And she had
four children and reported at the some kind of station. The
fellow was sympathetic and made a collection for her so
that she can feed the children.

Fig. 2. Sample retelling of the Wechsler narrative.

language development [12], [13], the validity of diagnostic

instruments [14], and the presence of MCI [15] and language

disorders [16].

Alignments of parallel texts are commonly used for NLP

tasks such as paraphrase extraction [17], [18], word-sense

disambiguation [19], and bilingual lexicon induction [20], but

our work on leveraging alignments to automate scoring of

a neuropsychological examination and to provide diagnostic

information is the first of its kind to our knowledge.

III. DATA

A. Subjects

The data used in this study was collected as part of a

longitudinal study on brain aging at the Layton Aging and

Alzheimer’s Disease Center at the Oregon Health and Science

University (OHSU). From the large number of participants in

this study, we selected 72 subjects with MCI and 52 healthy

seniors roughly matched for age and years of education.

Following [21], we defined our MCI and non-MCI groups

according to the Clinical Dementia Rating (CDR) [22]. A

diagnosis of MCI was defined as a CDR of 0.5, while the

absence of MCI was defined as a CDR of zero. The CDR

is calculated from a set of scores in key areas of cognitive

function generated from clinical assessment via interview and

the Neurobehavioral Cognitive Status Examination. Since we

are investigating the utility of different methods of deriving

information from a particular neuropsychological test, it is

important to define MCI in ways that provide an independent

unconfounded reference objective for evaluation. The CDR

has been shown to have high expert inter-annotator reliabil-

ity [22] and, importantly, is assigned independently of the

neuropsychological test that we investigate in this paper. We

refer readers to the above cited papers for a full definition.

B. Wechsler Logical Memory Test

The Wechsler Logical Memory task is one of several

subtests of the Wechsler Memory Scale [1], a diagnostic

instrument commonly used in assessment of memory and

cognition in the adult population. In this test, the subject

listens to a brief story, shown in Figure 1. The subject must

then retell the story twice: once immediately after hearing

it (Logical Memory I, LM-I) and again after a 30-minute

delay (Logical Memory II, LM-II). The text of the narrative

is divided into 25 story elements. The slashes in Figure 1

denote the boundaries between story elements. As the subject

is speaking, the examiner notes which story elements were

used. The final score reported, or summary score, is simply

the raw number of story elements used. Story elements do

not need to be produced in order or word-for-word. There

are specific guidelines for each element that describe the

permissible substitutions; for instance, the first story element,

Anna, can be replaced in the retelling with Annie or Ann; the

16th story element, fifty-six dollars, can be replaced with any

number of dollars between fifty and sixty.

Figure 2 shows an example LM-I retelling. The elements

used in this retelling are Anna, employed, Boston, as a cook,
was robbed of, she had four, small children, reported, station,
touched by the woman’s story, took up a collection, and for
her, yielding a summary score of 12 according to published

guidelines for manual scoring.

C. Training and testing data

Audio recordings of the Wechsler Logical Memory immedi-

ate and delayed retellings for the 124 subjects were transcribed

at the word level, then tokenized and downcased. Partial

words, punctuation, and pause-fillers were excluded from the

transcriptions used for this study.

Most word alignment algorithms designed for machine

translation take as input a parallel corpus aligned by sentence,

in which a sentence on one side of the corpus is a translation

of the corresponding sentence on the other side of the corpus.

Thus, in order for us to be able to use these alignment

algorithms to align retellings to the original narrative, we need

to create parallel corpora consisting of retellings on one side

and the original narrative on the other.

Due to the nature of these retellings, which contain omis-

sions, reorderings, and embellishments, any part of the multi-

sentence narrative can occur anywhere within the retelling;

thus, the best coarse alignment would be the full original

narrative to the full retelling. We therefore start by considering

each entire retelling to be a single sentence corresponding

to the single sentence of the entire original narrative. Recall

that we currently have 72 subjects with MCI and 52 subjects

without, for a total of 124 subjects. This means that for

each subject, there are only 246 retellings (2 retellings for

each of the remaining 123 subjects) available as training

data. A word alignment algorithm is unlikely to learn many

meaningful translation relationships from such impoverished

data. In order to supplement the training data, we perform

additional pre-processing to supply the alignment algorithms

with more information from which to learn their models. In

addition to full retelling-to-narrative parallel alignments, we

provide phrase-to-phrase parallel alignments for phrases in

the retelling that are associated with specific story elements,

as shown in Figure 3. Each subject’s retellings are aligned

using a separate model built on these two kinds of high-

level alignments derived from the retellings of the other 123

subjects.
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Original Narrative Retelling
anna ann
employed worked
boston in boston
as a cook as a cook
and robbed of she was robbed of
she had four she had four
reported reported
station station
small children children
touched by the woman’s story was sympathetic
took up a collection and made a collection
for her for her

Fig. 3. Alignment of phrases to story elements.

[A anna1] [B thompson2] [C of3 south4] [D boston5]
[E employed6] [F as7 a8 cook9] [G in10 a11 school12]
[H cafeteria13] [I reported14] [J at15 the16 police17]
[K station18] [L that19 she20 had21 been22 held23 up24]
[M on25 state26 street27] [N the28 night29 before30] [O
and31 robbed32 of33] [P fifty-six34 dollars35] [Q she36
had37 four38] [R small39 children40] [S the41 rent42
was43 due44] [T and45 they46 had47 n’t48 eaten49] [U
for50 two51 days52] [V the53 police54] [W touched55

by56 the57 woman’s58 story59] [X took60 up61 a62
collection63] [Y for64 her65]

Fig. 4. Text of Wechsler Logical Memory narrative with story-element
labeled bracketing and word IDs.

Given the clear boundaries between story elements provided

in the scoring guidelines, we know exactly which words in

the original narrative together make up each story element.

Figure 4 shows the original narrative labeled with element IDs

(A−Y ) and word IDs (1−65). Story element F, for instance,

is composed of words 7, 8, and 9, as a cook. These mappings

from words to elements will be used for automatic scoring, as

described in Section VI.

In the next section, we present the details of the new

alignment approaches we propose. In the subsequent sections,

we present experiments conducted to examine the accuracy

of several well-known methods and our novel methods for

learning word alignment models for this task; the utility of

these alignments for automated scoring; and the utility of

automated scores for diagnostic classification.

IV. METHODS

For this task of aligning a small monolingual parallel corpus,

we explore two alignment strategies that exploit the fact that

our corpus is monolingual. Specifically, we know that the

identity alignment (i.e., when a word in the source is aligned

with that same word in the target) – something that is typically

ignored in standard word alignment algorithms – will play

an important role in alignment of this data. Both of our ap-

proaches use an IBM Model 1 mixture model to derive initial

translation probabilities for an HMM. We perform Viterbi

decoding to extract the alignments using the translation and

distortion probabilities estimated using the forward-backward

algorithm in the HMM.

In our first approach, we include in our training data explicit

parallel alignments of word identities to promote the likelihood

that a word on one side of the corpus will be aligned to an

instance of that same word on the other side of the corpus.

Every word that appears in the original narrative and in every

retelling other than the one being tested is included once in

this additional training data. We train both the IBM Model 1

mixture model and the HMM with this additional data. The

advantage of this method is that it can be incorporated trivially

into existing word alignment frameworks.

In our second approach, we begin, as in the first approach,

with the standard IBM Model 1 mixture model for estimating

initial translation probabilities, but we do not train on word

identities. Rather, we train only on the narrative- and phrase-

level alignments, but we include a prior probability, λ, that

an alignment is between two orthographically identical words.

The value of this prior probability was estimated via relative

frequency estimation (identical word alignments divided by

total number of alignments) on a small held-out set of manual

alignments. Given a source word, fj , that is aligned with an

target word, eaj , let

ω(aj , j) =

{
λ if fj and eaj are identical

1− λ otherwise

In our held-out data, the value of λ was determined to be 0.69.

The ω probabilities are used as a prior on translation proba-

bility during the expectation phase of parameter estimation,

rendering the standard equation as the following:

Pr(fJ
1 |eI1) =

J∏
j=1

I∑
i=1

[p(i|j, I) · p(fj |ei) · ω(i, j)]

The translation probabilities estimated in this first step are

then used as the initial translation probabilities in the second

step, an HMM.

As is typical in the HMM approach to word alignment,

transition (distortion) probabilities are modeled as “jump

widths” from position to position on the target side of the

alignment. Since our data is likely to contain very large jumps

in alignment (e.g., when a speaker remembers only that the

police gave Anna some money), we model all jumps from

0 to the largest possible jump width individually rather than

collapsing jump widths greater than 5 into a single parameter,

as is sometimes done in bilingual alignment.

In both approaches, we build models independently in both

directions (retelling to original and original to retelling), and

extract alignments in both directions using Viterbi decoding.

We then take the intersection of these two sets of alignments

to produce the final set of alignments for each retelling.

In order to select the best translation probabilities to feed

into the HMM step, we first compare the initial alignments

generated using these two methods with alignments produced

by the same procedure but without the word identity prob-

ability, ω, or the additional word identity training data. We

then compare the output of our HMM trained on these initial

probabilities with the output of two commonly used and

publicly available alignment systems: 1) the Berkeley aligner

[23] with default parameterizations (IBM Model 1 feeding
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ann(1) : anna(1)
taylor(2) : thompson(2)

worked(3) : employed(6)
boston(5) : boston(5)

as(6) : as(7)
a(7) : a(8)

cook(8) : cook(9)
and(9) : and(31)

robbed(12) : robbed(32)

of(13) : of(33)
dollars(15) : fifty-six(34)

right(18) : due(44)
and(19) : and(45)
she(20) : she(36)
had(21) : had(37)
four(22) : four(38)

children(23) : small(39)

reported(25) : reported(14)
at(26) : at(15)

the(27) : the(16)
some(28) : on(25)
kind(29) : night(29)

station(31) : station(18)
sympathetic(35) : story(59)

made(37) : took(60)

a(38) : a(62)
collection(39) : collection(63)

for(40) : for(64)
her(41) : her(65)
that(43) : that(19)
she(44) : she(20)
can(45) : been(22)
feed(46) : eaten(49)

Fig. 5. Word-alignment generated by the Berkeley aligner with retelling words italicized.

into an HMM with joint training and posterior decoding); and

2) Giza++ [24] with default parameterizations. We test these

two existing aligners both with the phrase- and sentence-level

training data alone and with the full set of training data that

includes word identity alignments.

V. EXPERIMENT 1: WORD ALIGNMENT

Each word alignment algorithm yielded for each retelling

a sequence of pairs of words, in which one word from the

original narrative is paired with one word from the retelling.

Figure 5 shows the results of aligning the retelling presented

in Figure 2 using the Berkeley aligner. The alignments for

the subset of subjects with available manual gold-standard

word-level alignments were evaluated against the alignments

produced. In the following tables we report the precision,

recall, F1 measure, and word alignment error rate (AER) [24]

for the various alignment algorithms.

Table I compares the results of standard IBM Model 1

alignment with that of our two strategies to encourage align-

ment of identical words: the model trained on explicit word

identity training data and the model using the lexical identity

weight, ω. We report the alignment results for the forward

direction (aligning the retelling to the original: f-AER), the

backward direction (aligning the original to the retelling: b-

AER), and the intersection of the two directions (i-AER).

Including additional training data consisting of word identity

mappings does decrease word AER a great deal but primarily

in the forward (retelling to original) direction. Weighting the

translation probabilities during estimation improves both the

forward and backwards alignments over the baseline, resulting

in a large decrease in word alignment error rate of the

intersection of the two directions.

Table II shows the performance of our HMM aligner

under the three IBM Model 1 initialization conditions: 1)

no word identity coercion (CSLU aligner); 2) word identity

training data (CSLU+ID train); and 3) word identity weighting

(CSLU+ID weight). As expected, the lexical identity weight-

ing produces the lowest AER of the three CSLU aligners.

In addition, Table II shows the performance of the Berkeley

aligner f-AER b-AER i-AER
IBM1 66.2 67.2 64.5
IBM1+ID train 55.4 64.5 51.9
IBM1+ID weight 54.8 56.8 47.2

TABLE I
IBM MODEL 1 INITIAL WORD ALIGNMENT RESULTS.

aligner and Giza trained with and without the word identity

alignments. We observe that both the Berkeley aligner and

Giza benefit from training on explicit identity alignments.

Finally, we take the intersection of outputs of the best

CSLU aligner and the best existing aligner, which in this

case is the Berkeley aligner trained on data including explicit

word identities. This produces the lowest AER and highest F1

measure of all of the approaches.

The slight edge the Berkeley aligner holds over our aligner

may be due to its use of joint training and posterior decoding,

which the authors report are responsible for large improve-

ments in AER over the independent training and Viterbi

decoding used in the CSLU aligner [23]. We note, however,

that the CSLU aligner occupies a different operating point

on the precision/recall tradeoff continuum from that of either

the Berkeley aligner or Giza++. This indicates that these two

aligners are overgenerating alignments, which will have an

impact on scoring accuracy.

There are a number of unexpected incorrect alignments in

the sample Berkeley alignment shown in Figure 5. Some of

these misalignments seem to have no obvious explanation,

such as kind(29)–night(29). Others, such as dollars(15)–fifty-

six(34) and children(23)–small(39), intuitively make more

sense, given the way that our training data is structured. The

aligner is presented with many alignment pairs in which the

original narrative phrase is small children and the retelling

phrase contains the word children but not necessarily the word

small, which is frequently excluded in the retellings. It is

thus not surprising that the aligner learns that there is some

non-zero probability that it is the original word small, rather

than the original word children, that aligns with the retelling

word children. We have informally observed that this happens

less frequently in the alignments produced using word identity

coercion, and we expect that the preference for alignment of

identical words could account for the superior AER observed

aligner prec. rec. F1 AER
CSLU 77.3 46.0 57.7 42.3
CSLU+ID train 79.9 52.9 63.6 36.4
CSLU+ID weight 79.2 59.6 68.0 32.0
Berkeley 62.3 69.9 65.9 34.1
Berkeley+ID train 63.8 73.8 68.4 31.6
Giza 46.7 71.9 56.6 43.4
Giza+ID train 47.0 72.8 57.2 42.8
Best CSLU∩Best Berk. 89.1 57.0 69.5 30.5

TABLE II
OVERALL WORD ALIGNMENT RESULTS.
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anna(1) : A
thompson(2) : B
employed(6) : E

boston(5) : D
cook(9) : F

robbed(32) : O

fifty-six(34) : P
due(44) : S
four(38) : Q

small(39) : R
reported(14) : I

night(29) : N

station(18) : K
story(59) : W
took(60) : X

collection(63) : X
for(64) : Y
her(65) : Y

eaten(49) : T

Fig. 6. Words from original narrative from the alignment in Figure 5,
excluding function words, with corresponding story element IDs.

using those techniques.

VI. EXPERIMENT 2: AUTOMATED SCORING

A. Method

Alignments between the words of the original narrative and

those used in each retelling were produced using the four best

performing word alignment algorithms: 1) the CSLU aligner

with word identity training; 2) the CSLU aligner with word

identity weighting; 3) the Berkeley aligner with word identity

training; and 4) the intersection of the latter two. For each

retelling, we determined the identities of the story elements

used from the word alignments using the following algorithm.

Recall that every word in the original narrative is associated

with a particular story element ID, as shown in Figure 4. For

each word in the original narrative, if the word is aligned to a

word in the retelling, the story element ID that it is associated

with is considered to be recalled. In Figure 6, we see the

list of story elements identified from the word alignments in

Figure 5.

Note that with this algorithm to convert from words to story

elements, it is possible to generate a story element from a

single word-alignment pair, even for function words such as

the and of which are not reliable indicators that the content

associated with that story element has been recalled. For this

reason, we discarded any word-alignment pair in which a word

in the retelling mapped to a function word in the original

narrative. The only eligible function words from the original

narrative were the final two words, for her, which are both

function words but together make a single story element.

Examples of these restrictions can be observed in Figure 6.

B. Evaluation and Results

The story element identities induced from the automatically

derived word alignments for all 124 subjects were evaluated

against the manually derived per-element scores. In Table III

we report the precision, recall, and F1 measure for the four

best alignment strategies. In addition, we evaluate a baseline

scoring strategy relying on exact match of the verbatim story

elements using grep. The CSLU aligner yields the highest

F1 measure and a balance between recall and precision, while

the Berkeley aligner achieves a lower F1 measure and favors

recall at the expense of precision. These results are significant

at p < 0.0001 using the stratified shuffling test [25].

In Table IV, we report scoring accuracy in terms the

mean difference, mean absolute difference, and the median

difference between the summary score generated from the

alignments and the reference summary score. We see again

that the CSLU aligner with word identity weighting yields

aligner prec. recall F1
verbatim 92.0 47.4 62.6
CSLU+ID train 81.6 83.6 82.6
CSLU+ID weights 82.2 87.2 84.6
Berkeley+ID train 66.8 96.9 79.1
Best CSLU ∩ Best Berk. 88.3 75.9 81.6

TABLE III
SCORING ACCURACY RESULTS.

more accurate scoring than the Berkeley aligner, which very

consistently overestimates the number elements recalled.

Although the word AER for all alignment algorithms was

quite high compared to the AER typically reported for large

data sets (e.g., 4.9% AER on the Hansards English-French

task) [23], the scoring accuracy is remarkably robust, demon-

strating the utility of applying these algorithms to this task.

VII. EXPERIMENT 3: CLASSIFICATION

A. Method

In order to demonstrate the utility of automatic scoring,

we now use these scores as features within a support vector

machine (SVM) for classification of subjects into the two

diagnostic groups: individuals with and without MCI. Previous

work [21] has shown that the Wechsler Logical Memory

summary scores provide significant classification power.

From the scores for all 124 subjects extracted as described

in Section VI, we generated two summary scores per subject,

one each for LM-I and LM-II, ranging from 0 (when no

items were recalled) to 25 (when all items were recalled).

LibSVM [26], the SVM class available in the WEKA data

mining package API [27], was then used to train support vector

machine classifiers.

B. Evaluation

To evaluate the SVMs, we chose to use a leave-pair-out

validation scheme [28], [29] in which every possible pair

consisting of a negative example and a positive example is

tested against an SVM classifier trained on the remaining

122 subjects. The resulting pairs of scores can be used to

calculate the area under the receiver operating characteristic

(ROC) curve [30], a commonly used estimate of classification

accuracy. The receiver operating characteristic curve is a plot

of the false positive rate of a classifier against its true positive

rate. The area under this curve (AUC) can range from 0.5,

when the classifier performs no better or worse than chance,

to 1.0, when the classifier has perfect accuracy.

Table V shows that the classification accuracy of the SVMs

trained on automatically derived scores was strong and com-

parable to that of an SVM trained on manually derived scores.

We note, however, that superior accuracy in automatic scoring

aligner mean mean abs. median
Berkeley -5.32 5.41 -5
CSLU -0.71 1.69 -1
Intersection 1.65 2.47 1

TABLE IV
MEAN AND MEDIAN SCORING DIFFERENCES.
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(see Tables III and IV) does not necessarily lead to better

classification accuracy.

alignment AUC s.d.
Manual 0.822 0.036
Berkeley+ID train 0.795 0.039
CSLU+ID weight 0.784 0.040
Berk+CSLU 0.767 0.042

TABLE V
CLASSIFICATION ACCURACY RESULTS.

VIII. DISCUSSION AND FUTURE DIRECTIONS

In this paper, we presented a novel application of automatic

word alignment: the alignment of narrative retellings for the

purposes of scoring a narrative memory task widely used in

clinical neurological assessment. We also offer new alignment

strategies designed specifically for the alignment of small

monolingual parallel corpora that yield better alignment and

scoring performance than the most commonly used alignment

algorithms.

The alignments thus produced can also be a source of addi-

tional language and memory features. The retellings analyzed

here contain numerous repetitions, reorderings, omissions

(when the subject fails to recall one of the story elements),

and insertions (when the subject produces off-topic phrases

or embellishments). Phenomena such as these, which are

likely to provide significant diagnostic information, can be

automatically induced from word alignments. In future work,

we will investigate methods for extracting these features and

using them to improve diagnostic classification. We also plan

to adapt our techniques to other narrative tasks.

Although the results presented here are promising, there

is considerable room for improvement in the word alignment

itself. We plan to improve spoken retelling alignments both by

adding new measures that capture orthographic and semantic

similarity and by developing different methods of training the

alignment models, including discriminative approaches that

will allow us to easily incorporate these new features.
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