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Abstract—The scoring model used in automated speaking
assessment systems is critical for achieving accurate and robust
scoring of speaking skills automatically. In the automated speak-
ing assessment research field, using a single classifier model is
still a dominant approach. However, ensemble learning, which
relies on a committee of classifiers to predict jointly (to overcome
each individual classifier’s weakness) has been actively advocated
by the machine learning researchers and widely used in many
machine learning tasks. In this paper, we investigated applying a
special ensemble learning method, feature-bagging, on the task
of automatically scoring non-native spontaneous speech. Our
experiments show that this method is superior to the method
of using a single classifier in terms of scoring accuracy and the
robustness to cope with possible feature variations.
Index Terms: speech assessment, ensemble learning, feature

bagging, speech recognition

I. INTRODUCTION

In the last decade, a large number of studies have been

conducted using automated speech recognition (ASR) technol-

ogy to automatically score speech or evaluate pronunciation (

refer a comprehensive review [1]). In these automated speech

assessment systems, different speech features were computed

using various methods, e.g., signal processing, prosody anal-

ysis, and natural language processing (NLP). The extracted

features were fed into a statistical model to automatically

predict human speaking proficiency levels. Several types of

classifiers from the machine learning research were used.

Some of the typical models will be briefly summarized and

described in Section II. A scoring model is just a single

classifier, such as a decision tree, which has a fixed set of input

speech features and is trained in a supervised learning way

from the instances containing these speech features and human

judged scores. However, this type of modeling approach has

both theoretical and practical limitations in achieving accurate

and robust score ratings.

Many years of research on the human rating process shows

ample evidence for a considerable degree of variability among

human raters. Milanovic et al. [2] assembled a heterogeneous

list of elements human raters focused on when scoring written

essays, such as the length of writing, accuracy of grammar,

richness of vocabulary, etc. They found that the weight at-

tributed to any particular element varied widely among raters

during the rating process. Eckes [3] classified a group of

human essay raters in a essay rating task into several distinct

groups according to the features they used for scoring. He

obtained several groups of raters and noted that each group had

its own scoring profile (which focused on specific elements of

writing during scoring). Therefore, given the fact that human

raters may focus on varied writing/speaking elements, using

a fixed set of features when building an automated scoring

model may bring mismatches to human scoring results.

In addition, among the features extracted for use in building

scoring models, some are highly predictive of human scores

while others are “weak”. “A few highly indicative features

can swamp the contribution of many individually weaker

features, even if the weaker features, taken together, are just

as indicative of the output. Such a model is less robust, for

the few strong features may be noisy or missing in the test

data [4].” This issue may impact automated speech assessment

since there is a gap between obtaining training data and

applying the trained scoring model on real test data. In general,

the data used to train a scoring model is from either pilot

studies (or pretests) previous to the operational test or old test

data obtained several months prior. Therefore, one issue to be

expected is that the data used to build scoring models will

be somewhat different to the data from the operational test.

For example, test questions may be updated between the pilot

studies and the operational test. Therefore, making it important

to build a robust scoring model that can handle such variations.

In this paper, we will describe research to cope with the

impact of scoring accuracy and robustness in automated speech

assessment systems by applying a feature-bagging learning

approach. The paper is organized as follows: Section II reviews

the previous research on the application of a variety of

classifiers to automatically score speech data and on using

feature subsets to improve discriminative learning; Section III

describes the basic automated speech scoring system and two

approaches to build scoring models (using a single model vs.

using feature-bagging); Section IV reports on our experiment
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results on the three research questions; and finally, Section V

discusses the experimental results and plans for future research

works.

II. PREVIOUS RESEARCH

Several types of classifiers have been used to build scoring

models for automated speech assessment or pronunciation

verification systems. For example, SRI’s EduSpeak system [5]

used a decision-tree model to automatically produce a score

from a set of discrete score labels. Pearson’s Versant speaking

test [6] used a non-liner model but did not disclose the

details of their model. Educational Testing Service (ETS)

has been working in the speaking assessment area and used

both Support Vector Machine (SVM) and Classification and

Regression Tree (CART) models in their initial trial [7] on

scoring spontaneous speech. Recently, they have been using

a Multiple Regression (MR) model in their systems given

its simplicity in implementation and in explaining the rating

process to the public [8]. In addition, other learning models,

such as the Gaussian Mixture Model (GMM) [9] and the

Linear Discrimination Analysis (LDA) [10] have been used

in others’ past research of pronunciation evaluation. From this

brief summary, we can find that using a single classifier as

the scoring model is still dominant in the automated speaking

assessment research field.

In contrast, there has also been a trend of adopting ensemble

learning in the machine learning research field to cope with

classifier variances to further improve the classification accu-

racy and robustness. Ho [11] used an ensemble of decision

trees trained on different feature subsets. Breiman [12] pro-

posed the random forest method to use random decision trees

by using a random feature at each decision tree building node.

O’Sullivan et al. [13] proposed the FeatureBoost algorithm,

which is analogous to AdaBoost. Their method dynamically

adjusts the weights on features instead of on instances in

order to fully utilize all available features. They showed that

FeatureBoost is more robust than AdaBoost on synthetically

corrupted UCI datasets. Bryll et al. [14] presented an attribute

bagging (AB) technique for improving the accuracy and sta-

bility of induced classifier ensembles using random subsets of

features. On a hand-pose recognition dataset, they compared

the proposed AB method with conventional ensemble learning

methods, such as bagging. Their results showed that AB gives

consistently better results than bagging, both in accuracy and

stability. Sutton et al. [4] introduced the concept of “under-

fitting” (see the quotation in Section I). To better utilize the

rich features from NLP tasks, they applied the feature bagging

in sequence-labeling tasks to prevent the issue of under-

training the weights. Compared to using a single model, their

feature-bagging learning method showed improved accuracy

and robustness.

Given the issues that impact the scoring model in automated

speaking assessment systems and the success of using feature

bagging on many different machine learning tasks, we expect

that applying the feature-bagging approach can help to im-

prove the accuracy and robustness of the scoring model.

III. METHODS

A. Speaking Tests

TOEFL is a large-scale English test for assessing test-takers’

ability to use English to study in colleges, using English as its

primary teaching language. The TOEFL dataset was collected

during operational testing. All responses were produced by real

test takers and recorded in test centers in which certified stan-

dard equipments such as microphones, were used according to

the test-delivery protocol. In each test session, test-takers were

required to respond to six speaking test items, in which they

were required to provide information or opinions on familiar

topics, based on their personal experience or background

knowledge. For example, the test-takers were asked to describe

their opinions about living on- or off-campus.

To facilitate students’ preparation for the TOEFL test, an

online practice test, TOEFL Practice, was set up. Audio

responses from the practice test (which used retired testing

material from the TOEFL test) were also collected. How-

ever, some noticeable differences appeared between the two

datasets. For example, test-takers for the TOEFL Practice took

the practice test at home and used their own computers and

audio input devices.

Each spoken response was assigned a score in the range of 1
to 4, or 0 if the candidate either made no attempt to answer the

item or produces a few words totally unrelated to the topic.

Each spoken response could also be labeled as a “technical

difficulty” (TD) when technical issues may have degraded the

audio quality so that a fair evaluation was not possible. Note

that in the experiments reported in this paper, we excluded

both 0 and TD responses from our analyses. In both datasets,

the human scoring process used scoring rules in accordance

with the scoring of the operational TOEFL test.

Table I describes the size and distribution of item scores

for each dataset mentioned above. We can find that the scores

were more evenly distributed on the TOEFL data than on the

TOEFL Practice dataset. We expected that test-takers who had

a sufficiently high skill level (the speaking score was more than

1) considered using the practice test.

Set N NSC1 NSC2 NSC3 NSC4

TOEFL 5651 458 2098 2384 711
TOEFL Practice 1777 76 564 892 245

TABLE I
HUMAN SCORE DISTRIBUTION STATISTIC OF THE TOEFL AND TOEFL

PRACTICE TEST DATASETS

B. Speech Recognition

To automatically score spontaneous speech, we used the

method proposed in [15]. In this case, a speech recognizer

is used to recognize non-native speech whereby a forced

alignment is conducted based on the obtained recognition

hypotheses. From recognition and alignment outputs, a num-

ber of features are extracted from multiple aspects, such as

the timing profiles, recognition confidence scores, alignment

likelihoods, an so on.
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For speech recognition and forced alignment, we used a

gender-independent fully continuous Hidden Markov Model

(HMM) speech recognizer. Two different Acoustic Models

(AM) were used in the recognition and forced alignment steps

respectively. The AM used in the recognition was trained

on approximately 30 hours of non-native speech from the

TOEFL Practice test. For language model training, a large

corpus of non-native speech (approximately 100 hours) was

used and mixed with a large general-domain language model

(trained from the Broadcast News (BN) corpus [16] of the

Linguistic Data Consortium (LDC)). The AM used in the

forced alignment was trained on native speech and high-

scoring non-native speech. It was trained as follows: starting

from a generic recognizer, which was trained on a large and

varied native speech corpus, we adapted the AM using a

batch-mode MAP adaptation. The adaptation corpus contained

approximately 2, 000 responses with high scores in previous

TOEFL Practice tests and the data from native English speak-

ers who participated in a study related to the TOEFL test.

C. Assessment features extraction

A construct is a set of knowledge, skills, and abilities that

are measured by a test. The construct of the speaking test is

embodied in the rubrics that human raters use to score the

test. The rubrics used in the TOEFL generally consist of three

key categories: delivery, language use, and topic development.
Language use refers to the range, complexity, and precision

of vocabulary and grammar use. Topic development refers to

the coherence and fullness of the response. In practice, given

the challenges in achieving adequate recognition accuracy on

non-native spontaneous speech inputs, most of ASR-based

speech assessment systems focus on the delivery aspect. The

delivery in turn can be measured on four dimensions: fluency,

intonation, rhythm, and pronunciation.

We extracted the following two types of features, including

(1) speech features based on the speech recognition output as

described in [8] and (2) pronunciation features that indicated

the quality of phonemes and phoneme durations [15]. Among

all extracted features, we selected 11 features that were found

to be useful to indicate speaking proficiency levels. Table II

lists the names, dimensions, and categories in the assessment

construct, as well as the descriptions of these features. Details

of computing these features can be found in [8], [15].

Table III reports Pearson correlation coefficients r between

each feature and human-judged scores on the two datasets used

in this paper. We can find that some features, such as L6 shows

a quite high correlation (more than 0.5) while some features

have much lower correlations (such as wdpchk and longpmn).

In addition, in general, most of features’ rs are higher on the

TOEFL dataset than on the TOEFL Practice dataset.

D. Scoring models

We treated all scoring as a classification task, i.e., to learn

a statistical model via a supervised learning method from a

training dataset containing an input of speech features and

an output of human-judged scores. Then, for each incoming

spoken response, the learned model was applied on the features

extracted from the audio file to obtain a score from 1 to 4. In

our experiment, we used CART to create the classifiers. We

compared the two approaches to build CART-based scoring

models.

The first approach used a single CART tree. In contrast,

for the second approach, we applied the feature bagging (or

attribute bagging) method. The algorithm is shown as follows:

Algorithm 1 the feature bagging ensemble learning using

CART trees
Given a training data set, Y = X,C, where Y represents

the training instances containing features X and scores C.

for i = 1→ T do
Randomly selecting m features from M available features

to generate a new training set, Yi, with the reduced

features

Training a CART tree Hi using Yi

i← i+ 1
end for
Using all T CART trees (H1 to HT ) to classify a new

instance and outputting the final prediction by majority

voting among T outputs.

IV. EXPERIMENTS

A. Setup

In this paper, the following three questions need to be

answered regarding the feature-bagging learning method:

• does its application improve the scoring performance?

• does its application help to cope with the variaions of

features we face in the testing stage?

• does its application help to apply the automated assess-

ment system to new test data?

When comparing the two learning methods, single-CART

vs. feature-bagging, we repeated 20 iterations of model build-

ing and testing on a given dataset. In our experiments, we

used two metrics which have been widely used to evaluate

the performance of automated scoring systems, including the

TOEFL Practice TOEFL
wdpchk 0.15 0.19

wpsec 0.44 0.56
silpwd -0.23 -0.20

silmean -0.24 -0.25
longpmn -0.13 -0.12

longpfreq -0.28 -0.30
tpsec 0.26 0.49

tpsecutt 0.38 0.56
lmscore 0.30 0.27

L6 0.51 0.60
vowel shift 0.28 0.39

TABLE III
THE PEARSON CORRELATION COEFFICIENTS (rS) BETWEEN THE

FEATURES AND HUMAN SCORES ON TWO DATASETS
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feature dimension category description
wdpchk fluency delivery word per chunk (speaking rate)
wpsec fluency delivery word per second (speaking rate)
silpwd fluency delivery silence per word
silmean fluency delivery mean of silence durations
longpmn fluency delivery mean of long pauses durations
longpfreq fluency delivery long pause frequency
tpsec fluency & vocabulary diversity delivery & language use unique words normalized by total word duration
tpsecutt fluency & vocabulary diversity delivery & language use unique words normalized by utterance durations
lmscore grammatical accuracy language use language model score
L6 pronunciation delivery average likelihood per second normalized by the rate of speech
S̄n pronunciation delivery average normalized vowel duration shifts

TABLE II
A LIST OF SPEECH FEATURES USED IN OUR EXPERIMENTS

exact-agreement between the scores predicted by the scoring

model and the scores judged by human raters as well as

the Pearson correlation coefficient (r) between these two sets

of scores. Among the measurement results from these 20
iterations, we used a t-test with a p value of 0.05 to decide

which method is significantly better statistically.

For the first research question, using the TOEFL data, we

ran 20 iterations of model building/evaluations using both

learning methods. In each iteration, using stratified sampling

based on a human-score distribution, 60% of the instances

were used for training and the remaining 40% of the instances

were used for evalution. For the second research question, we

added noise on the instances in our testing set. Since the L6

feature is highly indicative of predicting human scores (with

a Pearson r about 0.5), for each instance in the testing set, we

randomly added noise ranging from −SD(L6) to SD(L6).
Similar to our experiment in the first research question, we

conducted model building/evaluation on 20 iterations of the

TOEFL dataset. For the third research question, we trained

the scoring models using the two learning methods from the

TOEFL dataset and then applied the models on the other

dataset (TOEFL Practice). From our brief description of the

differences between the operational test and the practice test

in Section III-A, we know that these two tests have different

participants, data collection infrastructures, and varied score

distributions. Similar to the two experiments above, we re-

peated 20 iterations of the model building/evaluations. For

each iteration, we randomly selected 40% of the instances

from the TOEFL data and tested on the entire TOEFL Practice

data set.

In our experiments, we used the J48 CART tree, an im-

plementation of C4.5 tree in Java, in the Weka [17] machine

learning toolkit. We only enabled the pruning option to further

improve the classification accuracy but used all of the remain-

ing default parameters. The feature bagging was implemented

in R statistical software using the RWeka package [18]. We

selected T to be 20 and m to be 5 based on our initial pilot

study. The t-test statistics were also conducted in R.

B. Experimental Results

Table IV reports the results of the three experiments de-

scribed above. For the first research question (exp-1), we found

that compared to the single-CART method, the application

of the feature-bagging method increased the averaged exact-

agreement from 54.69% to 56.71% and the Pearson r from

0.526 to 0.546. Both of these performance improvements

are statistically significant. A comparison of agreement and

correlation results among 20 iterations for the exp-1 can

be found in Figure 1, which shows the boxplots of exact-

agreement and Pearson r conditioned on these two learning

methods. The feature-bagging method clearly shows a superior

performance in the figure.

Exp. ¯Agr.CART
¯Agr.FB t-test p

exp-1 54.69 56.71 p < 0.001
exp-2 53.59 56.98 p < 0.001
exp-3 49.77 52.20 p < 0.001
Exp. ¯Corr.CART

¯Corr.FB t-test p
exp-1 0.526 0.546 p = 0.003
exp-2 0.482 0.529 p < 0.001
exp-3 0.384 0.401 p < 0.038

TABLE IV
EXPERIMENTAL RESULTS COMPARING THE SINGLE-CART (DENOTED AS

CART) AND THE FEATURE-BAGGING (DENOTED AS FB) ON THE THREE

RESEARCH QUESTIONS. BOTH EXACT-AGREEMENT (AGR.) AND PEARSON

CORRELATION r (CORR.) WERE REPORTED AS WELL AS p VALUE FROM

THE t− test BETWEEN THESE TWO LEARNING METHODS. BOLD FONTS

INDICATE THAT THE EVALUATION METRIC WAS STATISTICALLY HIGHER

THAN THE ONE FROM USING SINGLE CART MODEL.

For the second research question (exp-2), when the most

useful feature, L6, was smeared during testing, we found

that the feature-bagging method was impacted less than the

single-CART method. Since an ensemble of CART trees with

heterogeneous feature sets was used, for some CART trees

in the ensemble, L6 was excluded in the model training so

that other weak features could have the opportunity to be

used. As a result, when the dominant feature was smeared,

the feature-bagging learning approach still worked by relying

on other weak features. In addition, the results from the third

experiment (exp-3) showed that the application of the feature-

bagging method helped when using the trained model on a new

test dataset. Consistent with the findings for the exp-2, using an

ensemble of classifiers with heterogeneous feature sets allows

all features, strong or weak, to be fully trained. Therefore,

when some features drift on a new test dataset, the ability of

using all the features help to keep scoring performance.
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Fig. 1. Boxplots showing agreement and correlation r obtained on two
learning methods.

V. DISCUSSIONS

An increasing amount of research has been using ASR

technology to build automated-speaking assessment systems.

In these systems, the scoring model is a critical part, which

converts the extracted speech features reflecting many aspects

of speaking skills to scores, which are expected to be con-

sistent and close to human-judged scores. However, for the

scoring model built in a supervised learning model, some

issues impact the model’s performance, including the fact

that human raters use heterogeneous features in their rating

tasks and the variations across the datasets used in model

training and testing. Although ensemble learning approaches

(including bagging and boosting on instances and features)

have been widely used in machine learning and ample evi-

dence has shown improved performance in terms of accuracy

and robustness, this new model-building methodology has not

been adopted in the automated-speaking assessment research

domain. To cope with the issues impacting the rating of

human speech by machines, in this paper we conducted the

first research applying feature-bagging to automated-speaking

assessment research.

From our experiments, we clearly demonstrated the use-

fulness of the feature-bagging ensemble learning method.

Compared to the traditional single-CART method, the feature-

bagging method demonstrates statistically significant improved

performance (measured by exact-agreement and Pearson r)

from operational test data, TOEFL). We have also shown that

the feature-bagging method can cope with feature variations

that occur in the the test data (including noises and feature

changes applied to new tests). Another attraction of feature-

bagging is that it is easy to implement and embed in the current

speaking assessment systems. This method can be used as a

wrapper on the existing scoring models.

In future work, we will investigate how to optimize the

process of generating an ensemble of classifiers. For example,

we will use some feature-selection methods to optimize in-

dividual classifiers. In addition, instead of using the majority

voting method to aggregate predictions from individual classi-

fiers, we will investigate more sophisticated approaches such

as considering the confidence of predicting each individual

model.
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