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Abstract—Individual words are not powerful enough for many
complex language classification problems. N -gram features in-
clude word context information, but are limited to contiguous
word sequences. In this paper, we propose to use phrase patterns
to extend n-grams for analyzing conversations, using a discrimi-
native approach to learning patterns with a combination of words
and word classes to address data sparsity issues. Improvements
in performance are reported for two conversation analysis tasks:
speaker role recognition and alignment classification.

I. INTRODUCTION

Much work in language processing has focused on un-

derstanding the meaning of individual utterances, but recent

work is considering conversations as a whole, in both spoken

and online written forms. Analysis of conversation dynamics

reveals information about the participants’ social positioning

and their relations to each other. In this paper, we explore novel

lexical feature extraction methods in the context of detection

of social phenomena in multi-party conversations.

Previous work shows the effectiveness of word features

in text topic categorization [1], for which the bag-of-words

model works well [2]. Recent work in sentiment analysis [3],

[4], [5], [6] also use word features to classify positive and

negative sentiment, although heuristics are typically introduced

to handle phenomena such as negation [3]. For many higher-

level tasks, single words are not powerful enough, since the

meaning of a word can change based on its context. One

simple way to capture local word context is by using higher-

order n-gram features. Phrase patterns further generalize n-

grams by allowing gaps between words, thus capturing longer-

range context. Previous research has found a benefit in using

phrase patterns as features in various applications, including

subjectivity sentence detection [7], grammatical errors in texts

written by second language learners [8], speaker role recogni-

tion [9], and recognition of sarcastic sentences in Twitter and

Amazon product reviews [10], [11].

Prior work using phrase patterns uses either high frequency

or hand-crafted rules to select the patterns, including the use

of linguistically motivated word classes. Two advances in

learning phrase patterns are introduced here, both motivated

by problems of sparse training data. Phrase patterns (like n-

grams) lead to high-dimensional feature spaces, which can re-

sult in overtraining for most learning algorithms. The problem

can be mitigated with regularization, to an extent; however,

even regularization has its limits when the number of features

is large relative to the training set size. Therefore, we develop

a method for replacing frequency-based pruning of phrase

patterns with mutual information-based pruning, filtering out

non-discriminative features. Another mechanism for dealing

with sparse data is to use word classes. By grouping words

into classes, we can not only obtain better estimation of word

counts, but also make the features extend to unseen data,

when the classes are matched to the task. Of course, word

classes alone have reduced discriminative power compared to

words. The challenge is in picking the right word classes,

including when to use words vs. classes. Thus, our second

contribution is in extending the phrase selection algorithm

to automatically learn when to use word classes in phrase

patterns, by embedding the classes in the word sequences

provided to the learning algorithm. To assess the utility of this

approach, the phrase pattern learning method is applied with

a variety of word classes to two conversation analysis tasks,

namely speaker role recognition and alignment classification.

Speaker role recognition assigns labels to each conversation

participant. For example, our work on broadcast conversations

(talk shows), with conversation participants labeled as one of

five categories: host, guest participant, audience participant,

reporting participant, and other. Previous work on radio/TV

broadcasts has investigated the use of both acoustic and lexical

cues for speaker role recognition, by supervised learning [12]

and unsupervised clustering [13]. Liu [14] used only lexical

cues, e.g. n-gram features, to tag the roles in the sequence of

turns. Garg et al. [15] combined lexical and social network

analysis for role recognition in meetings. Wang et al. [16]

employed both lexical and structural features to tag speaker

roles in broadcast conversations. Our previous work [9] exam-

ined the use of phrase patterns in unsupervised speaker role

clustering, showing superior performance compared to n-gram

features. The present work shows that phrase pattern features

are also helpful in a supervised setting and suggests a method

for mining discriminative phrase patterns.

Our second task, alignment classification, involves detect-

ing supporting or dissenting moves with regard to another

discussion participant. Previous work has investigated agree-

ment/disagreement classification in meeting speech [17], [18],

[19] and broadcast conversations [16], [20]. We consider

online conversations in Wikipedia discussion pages, which

are discussion forums associated with individual Wikipedia

articles where editors discuss changes to an article. This paper

shows that alignment classification can also be improved by

the use of phrase patterns.

II. PHRASE PATTERNS WITH WORDS AND WORD CLASSES

We define phrase patterns by expanding upon the concept

of sequential patterns used in data mining, which have been
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applied to areas such as customer buying strategy extraction

[21]. A sentence contains an ordered list of words. Associated

with each word there are a number of attributes, such as the

part-of-speech (POS) and polarity of the word. For a given

word in the sentence, we create an itemset s as a set that

contains the word identity and various attributes for this word;

a sentence can then be considered as a sequence of itemsets

(s1, s2, . . . , sL), with each itemset containing a word and all

its attributes. A phrase pattern is a subsequence of itemsets

(t1, t2, . . . , tM ), and it is matched to a sentence if there exist

1 ≤ i1 < i2 < · · · < iL ≤ L

such that itemsets tj ⊆ sij , j = 1, 2, . . . ,M . An example of a

phrase pattern matched by two different sentences is illustrated

in figure 1, with the matching subsequence indicated by boxed

words and classes.

Phrase pattern: ({you}, {NEGATIVE POLARITY}, {right, JJ POS})

Sentence 1

Words: You are not right .

POS: PRP VBP RB JJ

Polarity: NEGATIVE

Sentence 2

Words: You were hardly right .

POS: PRP VBD RB JJ

Polarity: NEGATIVE

Fig. 1. Example of a phrase pattern matched by two sentences. We expand
the words in sentences by word classes (POS and word polarity shown). Boxed
elements are matches to the phrase pattern.

Phrase patterns are potentially helpful for natural language

processing for several reasons. First, they extend n-grams

by allowing gaps between words, therefore being able to

model long-span behavior by skipping disfluencies and in-

frequent named entities. Second, richer information can be

encapsulated in phrase patterns, by using a variety of word

attributes. In particular, using word classes as word attributes

allows us to produce discriminative but generic phrase pat-

terns. For example, in figure 1, the phrase pattern ({you},
{NEGATIVE POLARITY}, {right, JJ POS}) matches many

sentences with dissent. However, that pattern would not match

the sentence you don’t have the right which is not necessarily

expressing dissent, since the word “right” would have a

different POS tag (NN). The flexibility given by the use of

words, word classes, or mixtures of words and word classes

as itemsets enables us to create discriminative features targeted

for specific tasks and data conditions.

III. MINING DISCRIMINATIVE PHRASE PATTERNS

There has been extensive work in mining frequent sequential

patterns, where the objective is to find the sequential patterns

that are contained in more than a predefined number of

sequences in a database. We can adapt these methods to mine

phrase patterns, if we consider phrase patterns as sequential

patterns, sentences as sequences, and text corpora as sequence

databases. Efficient frequent pattern mining algorithms have

been proposed, including PrefixSpan [22] (algorithm 1) and

CloSpan [23]. These algorithms are based on recursive pattern

growing, and efficiency is achieved by utilizing the fact that

when the frequency of a sequential pattern is below the

threshold, there is no need to continue searching for extending

patterns as they have even lower frequency.

Algorithm 1: PrefixSpan(D, ρ, f )

Input: A sequence database D, a prefix pattern ρ, the

minimum frequency threshold f
Output: The complete set of sequential patterns P in D

with frequency greater than f
Initialize P ← ∅;
Scan all the sequences in D once, find a set of items A
with frequencies of its elements no less than f , such that

a) its element can be appended to ρ to form a new

sequential pattern; or

b) its element can be assembled to the last itemset of ρ to

form a new sequential pattern;

for a ∈ A do
Create a new pattern ρ′ by appending a to ρ;

P ← P ∪ {ρ′};
Create the ρ′-projected database D′ from D;

Call PrefixSpan(D′, ρ′, f ) to obtain a set of patterns

B;

P ← P ∪B;
end
return P

The algorithm uses a subroutine to create a ρ′-projected

database D′ from D, where D′ is the subset of D with only the

sequences that match ρ′. Since PrefixSpan(D, ρ, f ) is called

recursively, this projection is crucial in reducing the number

of sequences to be scanned in the following recursions.

Frequent sequential pattern mining algorithms are efficient

for practical use, but they are not optimal for our conversation

analysis tasks. Because not all frequent phrase patterns are

discriminative, many phrase patterns mined using algorithm 1

are irrelevant to the task. On the other hand, we may miss some

phrase patterns that do not appear frequently but are indeed

discriminative. As a result, we need supervision in sequential

pattern mining. The ConSGapMiner algorithm, introduced

in [24], extends PrefixSpan and addresses the problem of

discriminative sequential pattern mining to some extent. Let

us assume that there are two databases, one containing only

sequences with positive labels and the other only sequences

with negative labels. ConSGapMiner mines the sequential

patterns with frequency greater than δ in the positive database

and less than α in the negative database, where δ and α
are predefined thresholds. However, the drawback of this

algorithm is that it does not easily extend to a multi-class

setting. To overcome this, we propose to use an information
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theoretic criterion for discriminative sequential pattern mining.

A. The Mutual Information Criterion

Mutual information (MI) is the reduction of uncertainty in

a random variable after observing another random variable.

MI (which includes information gain) has been shown to

be superior to many other feature selection criteria in text

categorization tasks [25]. Suppose we have a data set with

K classes, the MI between feature X and the class variable

Y can be computed by

I(X; Y ) =
∑

x=0,1

K∑
y=1

p(x, y) log
p(x, y)

p(x)p(y)
,

where X is 1 if the associated word or phrase is present and

0 if absent, and the probabilities are estimated from the data

using maximum likelihood estimation. Features with I(X; Y )
greater than a fixed threshold are selected.

Different from the frequency criterion, the MI criterion is

not prefix-monotonic, i.e., if a sequential pattern satisfies the

MI criterion, its prefixes do not necessarily satisfy the criterion

as well. Being unable to terminate the search preemptively, we

lose the efficiency of the PrefixSpan algorithm. To overcome

this, we rewrite the mutual information in the following form,

I(X; Y ) =
∑
x,y

p(x|y)p(y) log
p(x|y)∑

y′ p(x|y′)p(y′)
,

where p(y) is the prior class distribution, which is constant

given the data. Given p(y), I(X; Y ) is a convex function

of p(x|y) [26]. Let XE be the binary feature indicator of

a pattern that extends X . Suppose we have already collected

the statistics in the contingency table for estimating p(x|y)
and hence I(X; Y ), what can we infer about the mutual

information of the extended pattern XE? Since the frequency

of an extended pattern is always no greater than that of its

prefix,

p(XE = 1|y) ≤ p(X = 1|y),

we can derive an upperbound for the mutual information of

all possible extended patterns

max
p(XE=1|y)≤p(X=1|y)

I(XE; Y ). (1)

This quantity can then be used to determine if we should

terminate the search for extended patterns: for a sequential

pattern, if the upper bound computed by (1) is below the

threshold θ, then the extended patterns will not be searched.

The maximizer of (1) satisfies

p(XE = 1|Y = i) =
{

0, or

p(X = 1|Y = i) , i = 1, 2, . . . ,K.

This follows from the fact that maximization of a convex

function on a compact convex set is always attained on the

boundary of the constraints. For small K, (1) can be efficiently

calculated.

B. Extended PrefixSpan

In this section, we propose an extended PrefixSpan algo-

rithm to mine discriminative sequential patterns using the MI

criterion. We use the MI criterion to filter sequential patterns,

and use the upperbound (1) to decide whether to terminate.

The procedure is outlined in algorithm 2. It is different from

algorithm 1 in that, in the scanning of database, it finds

not only the qualified patterns that satisfy Θ, but also the

promising patterns for further mining. Algorithm 1 is a special

case of algorithm 2, in which the qualified patterns are the

same as the promising patterns. Algorithm 2 can be applied

to a wider range of criteria Θ than mutual information. It

does not require the criterion to be prefix-monotonic, as long

as there is a way to efficiently compute the bounds.

Algorithm 2: ExtendedPrefixSpan(D, ρ, Θ)

Input: A sequence database D, a prefix pattern ρ, a

criterion Θ
Output: The complete set of sequential patterns P in D

satisfying criterion Θ
Initialize P ← ∅;
Scan all the sequences in D once, find a set of items A
satisfying criterion Θ, and a set of items B which have

promising extensions, such that either condition (a) or

condition (b) in algorithm 1 is satisfied;

for a ∈ A do
Create a new pattern ρ′ by appending a to ρ;

P ← P ∪ {ρ′};
end
for b ∈ B do

Create a new pattern ρ′ by appending b to ρ;

Create the ρ′-projected database D′ from D;

Call ExtendedPrefixSpan(D′, ρ′, Θ) to obtain a set of

patterns C;

P ← P ∪ C;
end
return P

When using criteria that are not prefix-monotonic, algorithm

2 needs to search more patterns than it outputs. However, it

is more efficient than enumerating all sequential patterns and

then apply post-filtering using Θ. In many cases, the enumer-

ation of all sequential patterns is computationally prohibitive.

C. Phrase Pattern Implementation Notes

When a sequential pattern is matched against a sequence,

gaps are allowed between itemsets, and the size of the gaps

is unrestricted. This is counter-intuitive for text sequences, as

for example a gap that spans a dozen words rarely makes

sense. To address this problem, we enforce constraints such

as ij+1 − ij ≤ g, where g is the maximum size gap allowed

between the indices. The introduction of the gap size restric-

tion complicates phrase pattern matching, which we address

with an efficient algorithm based on bitset operations [24].

Intuitively, the matching of phrase patterns should be limited

to a certain range, such as a sentence. The phrase pattern
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learning algorithms introduced above do not enforce that,

unless each instance contains only one sentence, which may

not be the case for many applications. Therefore, we explicitly

use delimiters in the instances to limit the range of matching.

A delimiter is a special token which does not take any room

in the sequence. However, a phrase pattern can never skip or

contain a delimiter when matched against a sequence. In our

experiments, we use periods as delimiters, but the algorithm

allows for any delimiters to be used.

In natural languages, there are many n-gram phrases that

act as single units, with meaning distinct from that of each

individual word contained in the phrase. Creating phrase

patterns with such n-gram phrases (and, therefore, allowing

gaps between their words) may alter their meanings. Because

the gap size restriction mentioned above applies globally to all

phrase patterns, we introduce a flag to disable gaps in certain

positions. When an itemset is flagged, no gap is permitted

between it and the preceding itemset. To implement this

process, in addition to checking for condition (a) and (b) in the

scanning process of algorithm 2, we also scan for extension

items that can be appended to the prefix without any gap –

condition (c). The item is marked differently and its containing

itemset is subsequently flagged.

D. Word Classes

Choosing the proper word classes is crucial in dealing with

sparse data. There are many options to generate word classes;

we explore a mixture of data-driven and linguistic or human

knowledge-driven methods, as described below.

Domain-dependent word classes can be learned automat-

ically from unlabeled text data using word clustering algo-

rithms, such as the one introduced by Brown et al. [27].

This algorithm was designed to estimate class-based language

models, and the word clustering objective function is the log

likelihood of the training data computed using a first-order

Markov model. In our experiments, we use the implementation

of the algorithm in SRILM [28] to generate two sets of data-

driven word classes derived from two different text sources,

broadcast conversation (BC) and Wikipedia discussions (intro-

duced below), which will be denoted by BC auto word classes
and Wikipedia auto word classes, respectively.

Linguistic knowledge-driven word classes are constructed

based on linguistic knowledge. For example, POS tags can

be used as word classes. In this paper, we use the MXPOST

English tagger [29] to generate POS word classes for the data.

These word classes will be denoted by POS word classes.

Hand-constructed word classes are manually designed by

experts. Pennebaker et al. created a software program named

Linguistic Inquiry and Word Count (LIWC) [30], [31], which

identifies word classes in text based on a dictionary. The

classes were initially designed to capture various psychometric

statistics, from basic linguistic categories such as articles, to

more subjective classes, such as words indicative of causal

thinking or emotion words. The word classes derived from

the LIWC dictionary will be denoted by LIWC word classes.

Word classes can also be specifically designed for a par-

ticular task or application. In our experiments on alignment

classification in Wikipedia discussions, we used 32 word lists

constructed by linguists who authored the annotation guide-

lines for our task. Many word lists contain words frequently

used in Wikipedia discussions in contexts relevant to the

task, such as words indicating agreement or disagreement,

swear words, or modals. The average number of words in

these word lists is 22. We also used six word lists that are

aggregations of related lists, resulting in additional coarser

level word classes. Together, these different lists give 38 word

classes (with overlapping membership of words), which will

be denoted by heuristic word classes.

IV. EXPERIMENTS

In the paper, we evaluate the performance of phrase pattern

features in two tasks, speaker role recognition and align-

ment classification. The classification performance of n-gram

features and phrase pattern features is compared. In initial

experiments, we found that phrase pattern features alone do

not perform well. Thus, we report only the performance of

n-gram features alone or in combination with phrase pattern

features. We limit the length of n-grams and phrase patterns

to three for a fair comparison. We use the maximum entropy

classifier implemented in MALLET [32]. We use binary

features, with a value of one to indicate the presence of the

feature in an instance, and zero to indicate absence. We use L2

regularization, after obtaining slightly inferior results using L1

regularization in our pilot experiments. The threshold θ used

in the mutual information criterion for discriminative phrase

pattern mining and the optimal maximum gap size are tuned

on development sets for each task.

A. Speaker Role Recognition

In this task, we investigate methods that automatically

recognize speaker role in talk shows, based on only lexical

cues. Five speaker roles are defined: host, guest participant, au-

dience participant, reporting participant, and a blanket category

“other”. Invited speakers are considered guest participants, and

journalists are labeled as reporting participants.

The dataset consists of 48 English talk shows with human

transcripts and speaker segmentation. The speakers in each

talk show are labeled by trained annotators with one of the

five aforementioned roles. The inter-annotator agreement is

κ = 0.67. We treat the problem of speaker role recognition as a

turn-level sequence tagging problem, where a turn is defined as

a sequence of uninterrupted speech from a particular speaker

(ignoring short backchannel utterances). There are 9009 turns

in these talk shows overall.

For consistency of results, we add a global speaker con-

straint, which forces the turns from the same speaker to

have the same role label. Incorporating this constraint in

a maximum entropy classifier is relatively straightforward.

Suppose that ti, i = 1, 2, . . . , n are all the turns of a particular

speaker, and p(r|ti) is the posterior probability of role r for
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turn ti predicted by the maximum entropy model. Then the

final speaker roles for these turns are

r̂ = argmax
r

n∏
i=1

p(r|ti).

In preliminary experiments, we have found that maximum

entropy models with the global speaker constraint outperform

both hidden Markov models and conditional random fields.

Although hidden Markov models and conditional random

fields model sequential behavior between turns, the global

speaker constraint cannot be easily incorporated in these

models, resulting in inferior performance compared to the

maximum entropy models with the global speaker constraint.

All experiments are carried out using 5-fold cross validation,

and the performance is evaluated using turn-level accuracy.

The experimental results are listed in table I, and accuracy

differences greater than 0.9% are significant with p ≤ 0.05
(z-test). The addition of word-only phrase pattern features

improves over n-gram features. Only the automatically learned

BC word classes lead to additional improvement. If we remove

the n-gram features and use phrase pattern features only, the

performance can decrease by up to 1% absolute.

Features besides n-grams Word class type Accuracy
none none 85.5%

phrase patterns none 86.9%
phrase patterns BC auto 87.3%
phrase patterns Wikipedia auto 85.9%
phrase patterns POS 85.7%
phrase patterns LIWC 86.3%

TABLE I
SPEAKER ROLE RECOGNITION RESULTS

While not directly comparable, we can contrast our results

with those obtained by other researchers on similar tasks. Liu

[26] obtained an accuracy of 82.0% on broadcast news data.

Garg et al. [15] reported an accuracy of 78% on the AMI

meeting corpus. All these genres have a similar number of

participants in each conversation and the conversations are of

similar length and degree of complexity, so it is not surprising

that the results are also similar.

B. Alignment Classification

Bender et al. [33] introduced the Authority and Alignment

in Wikipedia Discussions corpus, containing Wikipedia discus-

sions annotated with various post-level social acts. Previous

work on detecting social acts in this corpus has focused on

the authority aspect, including detection of turn-level forum

authority claims [34] and speaker-level classification of par-

ticipants in terms of their bids for authority [35]. In this paper,

we focus on classification of alignment moves, i.e. expressions

of targeted support or dissent between participants.

In this data set, there are 102 discussions for training, 54 for

development, and 55 for evaluation. Annotation of alignment

moves is a difficult task even for human annotators, with post-

level inter-annotator agreement of κ = 0.50, which roughly

corresponds to a post-level F-score of 0.6. Because a single

post often contains more than one alignment move, in our

experiment, we further segment the posts into sentences, using

an English automatic sentence segmenter MXTERMINATOR

[36]. The annotations from multiple annotators are consoli-

dated and merged into a single annotation as described in [33].

The classification performance is evaluated using sentence-

level recall at the precision-recall break-even point (the operat-

ing point at which the system precision is equal to recall). The

F-score at this operating point is equivalent to the precision and

recall. Since some sentences still contain a mixture of support

and dissent, we treat alignment classification as a multi-label

classification problem. We build two binary classifiers, one

for positive alignment and another for negative alignment, and

report the combined performance.
In the experiments, we compare our phrase pattern approach

to a heuristic method for taking into account negations used

in sentiment analysis [3], where the words in a sentence are

marked as negated if they are proceeded by an odd number of

negation words selected from a predefined list. Phrase patterns

that are built on these negation-marked words are also used as

an experimental option. The experimental results are shown in

table II. The performance of positive alignment is improved by

adding phrase patterns with heuristic word classes, and that of

negative alignment is increased after including phrase patterns

with Wikipedia word classes. Negation markers benefit n-

grams but not phrase patterns. The negation phenomena seem

to be better captured through phrase patterns with the original

words (vs. the negation-augmented vocabulary). Compared to

the n-gram baseline, the best positive alignment performance

is significant with p = 0.10, and the best negative alignment

performance is significant with p = 0.012 (paired t-test).

Positive NegativeFeatures besides n-grams Word class type
alignment alignment

none none 0.47 0.43
negation markers none 0.48 0.43
phrase patterns none 0.49 0.44

phrase ptn. w/ neg. markers none 0.48 0.43
phrase patterns BC auto 0.45 0.44
phrase patterns Wikipedia auto 0.48 0.46
phrase patterns POS 0.45 0.43
phrase patterns LIWC 0.42 0.41
phrase patterns heuristic 0.50 0.44

TABLE II
ALIGNMENT CLASSIFICATION RESULTS

Previously reported results are based on different genres.

Wang et al. [20] report F-scores of 61.7% for agreement and

55.9% for disagreement detection in broadcast conversations.

Hahn et al. [18] report an accuracy of 85.5% for the three-way

agreement/disagreement classification task on the ICSI meet-

ings corpus. We note that the performance on the meetings data

is substantially higher than on Wikipedia or broadcast speech.

We conjecture that this is primarily due to the task definition

itself. The task definition used for the broadcast speech data

is more closely aligned with our own; here, we hypothesize

that the difference is primarily due to genre characteristics.

C. Discussion
From the experimental results for both tasks, we observe

some improvements by adding phrase patterns as features. The
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largest improvements are achieved using phrase patterns with

word classes induced from in-domain data or knowledge. On

the contrary, generic word classes based on POS and LIWC

do not help as much. We conjecture that the reason is because

such generic word classes generally have large word clusters,

either by virtue of the choice of classes (as in the case of POS-

based) or for coverage (for LIWC classes). Large word clusters

will likely cause a reduction in the discriminative power of the

features, by overly smoothing out the features.

V. CONCLUSIONS

We have presented an algorithm to learn discriminative

phrase patterns with words and word classes for conversation

analysis. The mutual information of phrase patterns with

respect to the labels is computed and used as the criterion to

filter the phrase patterns in a recursive way. We have looked

at the use of these phrase patterns in speaker role recognition

and alignment classification, and have reported classification

performance improvements.

For future work, we will investigate semi-supervised meth-

ods to learning discriminative phrase patterns from both la-

beled and unlabeled data, where large amount of unlabeled

data may be useful in learning phrase patterns that reveal

typical language usage.
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