
Applying Multiclass Bandit algorithms to call-type
classification

Liva Ralaivola1, Benoit Favre1, Pierre Gotab2, Frederic Bechet1, Geraldine Damnati3

1Aix Marseille Universite - LIF/CNRS - Marseille, France
{liva.ralaivola,benoit.favre,frederic.bechet}@lif.univ-mrs.fr

2Universite d’Avignon - LIA/CERI - Avignon, France
pierre.gotab@univ-avignon.fr

3France Telecom - Orange Labs, Lannion, France
geraldine.damnati@orange-ftgroup.com

Abstract—We analyze the problem of call-type classification
using data that is weakly labelled. The training data is not
systematically annotated, but we consider we have a weak or
lazy oracle able to answer the question “Is sample x of class q?”
by a simple ‘yes’ or ‘no’ answer. This situation of learning might
be encountered in many real-world problems where the cost of
labelling data is very high. We prove that it is possible to learn
linear classifiers in this setting, by estimating adequate expecta-
tions inspired by the Multiclass Bandit paradgim. We propose a
learning strategy that builds on Kessler’s construction to learn
multiclass perceptrons. We test our learning procedure against
two real-world datasets from spoken langage understanding and
provide compelling results.

I. INTRODUCTION

Multiclass Bandit algorithms correspond to online classifi-

cation algorithms with bandit or partial feedback: only a binary

feedback (positive or negative) is given at each trial of online

learning. The true class label for a given instance remains

unknown if the feedback is negative. This problem is related to

the multi-armed bandit problem originally proposed by [1]: a

gambler plays with a slot-machine with K arms. At each time

step, he has to choose one arm to pull and he receives a reward

corresponding to the arm chosen. The gambler’s purpose is

to maximize his return over a sequence of pulls. Each arm

delivers rewards that are independently drawn from a fixed

and unknown distribution so the goal of the gambler is to find

the arm with the highest expected reward as early as possible.

At each step in the game the player must decide if he wants to

explore a new arm or exploit the knowledge acquired to choose

the best arm known so far. This problem is an illustration of the

exploration vs. exploitation trade-off studied in reinforcement

learning algorithms.

Multi-armed bandit algorithms have been widely studied

in the Machine Learning community and recently applied to

multiclass online learning (see, e.g., [2], [3], [4], [5], [6]).

In multiclass bandit algorithms the feature vectors of the

training examples are considered as side information given

to the gambler to help him choose the next arm to pull —

these bandit algorithms using side information may as well be

termed contextual bandits.

The goal of this paper is to apply the multiclass bandit

paradigm to Spoken Dialog Systems (SDS) through the online

adaptation of Call-Routing classification models. In this setting

the whole dialog system is considered as a slot machine with

K arms, each arm corresponding to a call-type to predict.

For each spoken request expressed by a caller (the side
information), the system (considered here as the gambler) will

pull one arm by proposing a call-type to the caller and asking

him for a confirmation. The answer to this confirmation can

be positive or negative and corresponds here to the bandit or

partial feedback. For each request the system can choose a

random call-type (exploration) or the most probable call-type

estimated by the current classification models on the caller’s

request (exploitation).

Two algorithms are compared in this study on two call-

routing tasks developed at Orange Labs: firstly the online

learning Banditron algorithm proposed by [4]; secondly a

novel batch learning algorithm, closely related to the Ban-

ditron, that we believe is more adequate for the rapid adapta-

tion of Spoken Dialog systems.

More formally, this new algorithm is a linear multiclass

perceptron-based classification algorithm that is capable of

learning from lazily labelled data. Lazy labels are obtained

thanks to a lazy oracle which, given a query pair of the form

(x, q) where x is an input data and q is from a set of predefined

labels Q = {1, . . . , Q} merely answers yes or no depending

on whether q is the correct label for x or not. In other words,

when hypothesizing a label q for the example x, it is possible

to query the lazy oracle ỹq(x) ∈ {0, 1} which will say yes

(1) if q is indeed the correct label or no (0) if it is not. In

the case its answer is no, the real label of x is still unknown,

the only thing we learn is that the correct label is not q. In

this work, each example can only be queried once but one

could imagine multiple queries on the same example leading

eventually to the full labeling, at the cost of calling the oracle

several times.

In the following, we will take advantage of a uniform
random query scheme that, given x, issues the query (x, q)
with probability 1/Q, for all q ∈ Q. The learning algorithms

that we propose extend multiclass Perceptron algorithms that

431978-1-4673-0367-5/11/$26.00 ©2011 IEEE ASRU 2011

have been analyzed by [7]. The strategy that we develop

exploits the peculiarity of the random query scheme that is

implemented and it relies on computing empirical estimates of

update vectors whose expectations are known to correspond

to misclassified data.

The paper is organized as follows. In the following section,

we describe some related work done on reducing the need for

human supervision in the training of SDS models. Section III

presents more formally the problem and introduce the nota-

tions that are going to be used to present our approach in

section IV. Finally section V presents experiments and results

performed on two call-type classification corpora collected at

Orange Labs.

II. RELATED WORK

Reducing the need for manual transcription and annotation

data is the key for the rapid deployment of statistical SDS on

a large scale. From a machine learning point of view, this can

be seen as studying weakly or partially supervised methods

for training and updating ASR and SLU models. Most of the

weakly supervised methods applied to SLU are based on the

active learning paradigm [8].

Regardless of the method used, the active learning paradigm

always needs a Full Oracle to obtain the true labels on the

portion of the raw data selected. In the context of SDS a weak
supervision can be provided by the caller using the system:

by analyzing the dialog structure and detecting implicit or

explicit confirmations and corrections, by analyzing system

logs, we can collect clues about the correctness of the semantic

hypotheses proposed by the system. Such a process has been

proposed in [9] and was named Implicitly-supervised Learning
by the authors. It was used in order to automatically train

a confidence annotation process. In [10] the confirmation

prompts of the users of a call-routing spoken dialog system

are used as a partial Oracle for directly improving the classi-

fication accuracy of a set of n binary classifiers (one for each

call-type).

In all these previous studies a bootstrap corpus, fully anno-

tated, containing examples of all the expected labels is needed

in order to train a first classifier producing the hypotheses

given to the partial oracle. The online adaptation process only

performs exploitation using the current classification models.

The goal of this study is to adapt the Multiclass Bandit

paradigm to call-type classification in order to perform explo-
ration as well as exploitation during the adaptation process.

We will first use the Banditron algorithm proposed by [4].

This algorithm is based on a perceptron adapted to handle the

case of partial feedback where it is possible to manually set

the tradeoff between exploration and exploitation.

In this study, we want to push forward this paradigm, both

from a theoretical and practical point of view, by implementing

an exploration strategy based on a uniform random query

scheme that does not need any bootstrap corpus and which

can learn only from this weak supervision.

III. LEARNING FROM LAZY LABELS

This section provides a formal description of the problem

we are interested in.

A. General

From here on, the notation we introduce holds throughout

the paper. As already mentioned, we are addressing a mul-

ticlass learning task. This task is defined over the product

space R
d × Q, where d < ∞ is the number of features that

describe our data x ∈ X and Q = {1, . . . , Q} is the set of Q
categories or classes of interest. We assume that there exists a

(deterministic) labelling function y : Rd → Q such that y(x)
denotes the class of x. We also assume that there exists a fixed
but unknown distribution D over Rd such that every vector x
or xn is an independent random vector with distribution D.

We consider three different settings: the usual multiclass

learning setting (full oracle), the online bandit setting in which

each prediction of a classifier is revealed as correct or incorrect

in sequence by a lazy oracle and a batch derivative of the

bandit setting in which a batch of examples is randomly

queried to the lazy oracle. In the following, we explain more

formally how this batch bandit setting is derived.

B. Partial or Lazy Label Information

Our goal is to propose a learning procedure capable of

building a classifier from weakly or lazily labelled data

Contrarily to what is commonly encountered in supervised

learning scenarios, lazily labelled data are not of the form

S = {(xn, y(xn))}Nn=1 but of the form S̃ = {(xn, ỹn)}Nn=1,

where ỹn = (ỹnq)q∈Q is a Q-dimensional vector with ỹnq ∈
{1, 0,⊥}, for q ∈ Q; ỹn carries the following information:

• if ỹnq = 1, then xn is of class q;

• if ỹnq = 0, then xn is not of class q;

• if ỹnq =⊥, then we do not know whether xn is of class

q or not.

The label information carried by ỹn is only partial whenever

none of the ỹnq ’s is equal to 1. In the following, we show how

such partial or lazy label ỹn can be obtained from what we

call a lazy oracle.

Remark 1 (Positive and negative data). In the following, we

will refer to positive data for all pairs (xn, ỹn) such that there

is some q ∈ Q such that ỹnq = 1. All other pairs, i.e. those

(xn, ỹn) such that ỹnq �= 1, ∀q ∈ Q, are termed negative data.

C. Building S̃ with Uniform Queries

We now describe a scenario that labels the unlabelled

training sequence {xn}Nn=1 of vectors to give rise to the lazily

labelled set S̃ = {(xn, ỹn)}Nn=1. As already pointed out in

the introduction, we do not have access to an oracle that may

provide us with the correct labels {y(xn)}Nn=1. Instead, we

consider a lazy oracle that, when queried whether q is the

correct class for some example x, only answers yes or no.

To build S̃ , we rely on this lazy oracle by generating a

specific type of queries, namely uniform queries: for each

example xn, we uniformly pick at random one class q among

432

the Q possible categories from Q and ask the oracle whether

q is the correct label of xn. The lazy label ỹn is obtained as

follows: if q is indeed the correct label of xn, then ỹnq is set to

1 and the ỹnr ’s for r �= q are all set to 0; if q is not the correct

label of xn then ỹnq is set to 0 and the ỹnr ’s for r �= q are

all set to ⊥. The following property characterizes the random

labels ỹn produced by the uniform querying scheme.

Property 1. Given the uniform querying scheme, the following
holds (we drop the superscript n).

∀q ∈ Q, P(ỹq = 1|y(x) = q) =
1

Q
(1)

∀q ∈ Q, P(ỹq = 0|y(x) = q) = 0, (2)

and

∀q, r ∈ Q, r �= q, P(ỹr = 1|y(x) = q) = 0 (3)

∀q, r ∈ Q, r �= q, P(ỹr = 0|y(x) = q) =
2

Q
. (4)

In a more compact way, we may write:

∀q ∈ Q, P(ỹq = 1|y(x)) = 1

Q
I{y(x) = q} (5)

∀q ∈ Q, P(ỹq = 0|y(x)) = 2

Q
I{y(x) �= q}. (6)

Proof: (2) and (3) are straightforward. For (1) it suffices

to see that ỹq = 0 only if the queried label is indeed q, which

happens with probability 1/Q.

For (4) we use the fact that we are in a single-label scenario.

The situations that imply ỹr = 0 are the following: either the

queried label is r or the queried label is q, in which case ỹq = 1
and ỹr = 0 for all r �= q. Both events have a probability of

1/Q to occur, which gives the expected result.

D. Goal: Learning a Linear Classifier from S̃
Our goal is to propose a strategy for learning a classifier

from the set S̃ obtained using the uniform querying procedure.

Note that the majority of the results we provide may be

extended to the case of more elaborate query schemes.

More precisely, we are interested in producing multiclass

linear predictors fW : S → Q parameterized by a family of

vectors W = {w1, ...,wQ} such that fW predicts the class of

x according to:

fW (x) = argmax
q∈Q

〈wq,x〉. (7)

To achieve our goal, we build upon the multiclass perceptron

learning procedures described by [7] and extend their learning

strategy so as to take advantage of the lazily labelled data.

IV. PROPOSED APPROACH

This section presents the learning algorithms capable of

dealing with lazily labelled data. As a first step, we recall

the multiclass perceptron learning schemes proposed by [7].

TABLE I
GENERIC MULTICLASS PERCEPTRON LEARNING SCHEME.

input: S = {(xn, yn)}Nn=1
output: W = {w1, . . . ,wQ}

initialization: w1 = . . . = wQ = 0
repeat T times

• get a labelled pair (x, y) from S
• set E := {q : q �= y ∧ 〈wq ,x〉 ≥ 〈wy ,x〉}
• if E �= ∅, then choose τ1, . . . , τQ such that

1) τq ≤ 0 for q �= y,
2)

∑
q∈Q τq = 0,

3) τq = 0 for q �∈ E ∪{y},
4) τy = 1,

and, for q = 1, . . . , Q: wq ← wq + τqx, (update)
endif

endrepeat

TABLE II
BANDITRON LEARNING SCHEME.

input: γ ∈ [0, 0.5]
output: W = {w1, . . . ,wQ}

initialization: w1 = . . . = wQ = 0
repeat T times

• get instance x ∈ X
• set p̂ = argmaxq∈Q〈wq ,x〉
• ∀q ∈ Q, set P (q) = (1− γ)I{q = p̂}+ γ

Q
• randomly sample p̃ from P
• predict p̃ and recieve ỹp̃ ∈ {0, 1}
• let τ1 = . . . = τQ = 0,

τp̂ ← τp̂ − 1,

τp̃ ← τp̃ +
ỹp̃

P (p̃)

• and, for q = 1, . . . , Q: wq ← wq + τqx, (update)

endrepeat

A. Full-information Multiclass Perceptron

For a multiclass linear predictor fW , a generic learning

scheme suggested by [7] to learn W from a (regularly) labelled

training set S = {(xn, yn)}Nn=1, with yn ∈ Q, is provided

in Table I. It is interesting to note that [7] have proved the

convergence properties of the generic learning algorithm for

any choice of τ = (τ1, . . . , τQ) fulfilling conditions 1, 2, 3

and 4 of Table I whenever the training set S is actually linearly

separable, i.e. whenever there exists W ∗ = [w∗
1, . . . ,w

∗
Q] such

that

yn = argmax
q∈Q

〈w∗
q ,x〉, for n = 1, . . . , N.

This generic algorithm is the cornerstone of the learning

algorithms we develop and, in order to fully apprehend their

philosophy, it is critical to understand the following fact. The

perceptron does not use examples for which it performs correct

predictions: it needs misclassified examples to build its model,

examples for which we do not necessarily know the actual

label in the bandit setting.

B. The online bandit perceptron (Banditron)

The Banditron is an online algorithm derived from the

perceptron for learning in the bandit setting [4]. It operates in

433

two modes: exploration and exploitation. In exploitation mode,

the model is used as in a regular perceptron. In exploration

mode, predictions are randomly performed regardless of the

model in order to gather misclassified examples for which the

label is known. At each round, the banditron randomly outputs

a label, by drawing from a distribution biased towards the

predicted label. It then uses the information from the oracle

to update its model. The γ parameter is used to trade off

between exploration and exploitation. Details of the algorithm

are given in Table II. Contrarily to the algorithms that we will

present in the following section, the banditron works in a fully

online setting and does not memorize examples for later use.

Interested readers are advised to refer to the original paper for

the spectific properties of the Banditron.

C. Misclassified Examples from Positive Data Only
We then consider the batch bandit setting where a training

set S̃ is first gathered using a uniform query and then a

classifier is trained using this (lazily-labelled) data. The most

naive approach is to learn a regular perceptron on the positive

data only and completely ignore examples for which we do

not know the label. In this setting, it might be observed that

the probability for a vector x to get a positive label is given

by ∑
q∈Q

Pỹq
(ỹq = 1) =

∑
q,r∈Q

Pỹq,x(ỹq = 1, y(x) = r)

=
∑

q,r∈Q
Pỹq (ỹq = 1|y(x) = r)Px(y(x) = r)

=
∑
q

1

Q
Px(y(x) = q) =

1

Q
, (using (1))

This means that if learning is based on positive data, only

a 1/Q fraction of the whole dataset is actually considered,

which obviously is suboptimal.
In what follows, we show how to make a more efficient use

of the lazily labelled data, and, in particular, how to make use

of the negative data.

D. Misclassified Examples from Positive and Negative Data
As mentioned earlier, the perceptron procedure only re-

quires examples of known class that are misclassified by the

current model W = {w1, . . . ,wQ}. Our learning approach

is precisely to iteratively create such examples and the orig-

inality of our method is that both positive and negative data

may be used to this end. Namely, given a lazy training set

S̃ = {(xn, ỹn)}Nn=1, a current model W = {w1, . . . ,wQ}
and two labels p and q, the following proposition provides

statistical estimates μ̂1
pq and μ̂2

pq of a vector μpq that i) is of

class q and ii) is such that 〈wp,μpq〉 ≥ 〈wq,μpq〉. We make

use of these vectors μ̂1
pq and μ̂2

pq to learn from S̃; the resulting

multiclass Lazy Perceptron algorithm is depicted in Table III.

Proposition 1 (Expected Misclassified Data). Let S̃ =
{(xn, ỹn)}Nn=1, W = {w1, . . . ,wQ} and p, q ∈ Q. In
addition, let Apq be the subspace

Apq :=
{
x : 〈wp,x〉 ≥ 〈wq,x〉, x ∈ R

d
}
.

Fig. 1. Illustration of the generation of misclassified examples μ̂1
pq and μ̂2

pq
from lazily labelled examples; p̄ (resp. q̄) means that the lazy label associated
with the location of the point is such that ỹp = 0 (resp. ỹq = 0). Here
spq := 〈wq −wp,x〉.

Let α ∈ R and let μ̂1
pq and μ̂2

pq be the random vectors

μ̂1
pq :=

Q

N

N∑
n=1

I{ỹnq = 1}I{xn ∈ Apq}xn (8)

μ̂2
pq :=

1

2N

N∑
n=1

(
2−QI{ỹnq = 0}) I{xn ∈ Apq}xn (9)

μ̂α
pq := (1− α)μ̂1

pq + αμ̂2
pq. (10)

The following holds

E
˜Sμ̂

1
pq = E

˜Sμ̂
2
pq = E

˜Sμ̂
α
pq =: μpq (11)

q = argmax
r∈Q

〈w∗
r ,μpq〉 (12)

〈wp,μpq〉 ≥ 〈wq,μpq〉. (13)

Proof: Calculating the expectation of μ̂1
pq . Using the lin-

earity of the expectation, it is sufficient to study the following

expectation:

Exỹq
I{ỹq = 1}I{x ∈ Apq}x,

where we have dropped the superscript n. We may rewrite the

latter expectation as

Ex

[
Eỹq|x [I{ỹq = 1}I{x ∈ Apq}x]

]
,

= Ex

[
I{x ∈ Apq}xEỹq|xI{ỹq = 1}] ,

and use (5) to get

Eỹq|xI{ỹq = 1} =
∑

v∈{1,0,⊥}
I{v = 1}P(ỹq = v|y(x))

=
1

Q
I{y(x) = q}.

As the xn’s are distributed identically (and independently) as

x (see section III), we obtain that

E
˜Sμ̂

1
pq = Ex [I{y(x) = q}I{x ∈ Apq}x]

= Ex[x|x ∈ Hpq]Px(x ∈ Hpq)

where Hpq is defined as

Hpq :=
{
x : y(x) = q ∧ x ∈ Apq, x ∈ R

d
}
.

434

TABLE III
MULTICLASS LAZY PERCEPTRON.

input: S̃ = {(xn, ỹn)}Nn=1
output: W = {w1, . . . ,wQ}

initialization: w1 = . . . = wQ = 0
repeat T times

• randomly pick a label q (correct label)
• for each label p �= q (incorrect prediction)

compute a misclassified example μα
pq using either:

- Lazy I: equation (8)
- Lazy II: equation (9)
- Lazy III: equation (10) with α empirically fixed on the

training corpus

and, update the model:

wq ← wq + μα
pq ,

wp ← wp − μα
pq ,

endrepeat

Calculating the expectation of μ̂2
pq is achieved by following

a similar reasoning. It suffices to focus on Eỹq|xI{ỹq = 0} to

get (using (6)):

Eỹq|xI{ỹq = 0} =
2

Q
I{y(x) �= q},

and to use 1− I{y(x) �= q} = I{y(x) = q} to show that μ̂1
pq

and μ̂2
pq have the same expectation.

Let us now consider

μpq := Ex[x|x ∈ Hpq]Px(x ∈ Hpq).

By construction, the expectation is computed on vectors of

class q (see the definition of Hpq): this directly gives (12).

At the same time, Hpq only contains vectors x such that

〈wp,x〉 ≥ 〈wq,x〉: this directly gives (13).

Again, this result provides us with a way to approximately

construct misclassified data (where ‘approximately’ refers to

the fact that we compute estimates on a finite sample). Figure 1

graphically represents (a scaled version of) μ̂1
pq and μ̂2

pq .

The learning algorithm that we have implemented and that

makes use of the various estimates presented above is given

in Table III. We call our algorithm Lazy Perceptron.

V. EXPERIMENTS ON CALL-CLASSIFICATION TASKS

We carry out a set of experiments on two real-world datasets

collected from deployed spoken language understanding ser-

vices at Orange Labs. We chose two datasets corresponding to

two different call-routing services in order to check the rele-

vance of our methods within different experimental conditions.

However, in these experiments, the lazy oracle process can be

simulated since both datasets contain the true labels for each

example. The parameter α (see Table III) is computed at each

update so that it minimizes the variance of the estimate μα
pq .

A. The call-routing corpora

Two corpora have been extracted from two different

customer-care services exploiting a natural language call-

routing system. The first level in the Spoken Language Un-

derstanding (SLU) module of these systems is a call-routing

classification module leading to around 10 targets for both

applications. All the experiments reported in this paper are

made at the call-routing classification step.

The first application (A1) has been designed for a general

public customer-sale service while the second one (A2) is a

technical assistance application. The corpora have different

complexities and class distributions. A1 contains 8 targets.

It has a dominant target which covers nearly 67% of the

utterances. The second most frequent target represents 16% of

the utterances. A2 is composed of 10 targets and has a more

balanced target distribution, with the dominant target covering

49% of the utterances and the second most represented cover-

ing 14% of the data. All these experiments have been carried

out on the Automatic Speech Recognition transcriptions of

the customers requests. On overall the word error rate for the

A1 application is around 45% and around 30% for the A2
application. Each corpus has been split between a training and

a test set, sorted by the date of collection. The training corpus

of A1 contains 17,000 requests collected between 03/2008 and

05/2009. The A1 test corpus contains 3,800 requests collected

after the traininig set in 05/2009. Similarly the training corpus

of A2 contains 23,968 requests collected between 10/2010 and

03/2011 and the test corpus contains 1,000 requests collected

in 03/2011.

B. Evaluation protocol

Each experiment is run with an increasing number N of

training examples, and for each size 20 runs are performed to

be able to plot means and standard deviations. Six algorithms

are compared:

• Banditron: this corresponds to the online Bandit algo-

rithm with an exploration vs. exploitation ratio fixed to

0.15

• Regular: only the examples for which the class is known

— i.e. the positive examples from the oracle — are used

to train a Classical Perceptron (as described in Table I)

• Lazy I, II, III: given an unlabeled training set S̃ of N
examples, each example is submitted to the Lazy Oracle
with one of the Q random classes according to the

uniform query scheme. The resulting Lazy Labels are

used to train a Lazy Perceptron in modes I, II and III

• Full: acting as a reference, the Full experiment leverages

the hypothetic data set S to learn a Classical Perceptron
on all fully-labeled examples. This is a topmost result we

strive to reach.

C. Results

The results are presented in Table IV.

As expected, the classifier of the Full experiment outper-

forms all the other classifiers, and is a topline for them. The

Regular experiment uses roughly 1
Q examples and therefore

behaves like the Full perceptron at that amount of data.

Regular and Lazy I start with similar results for corpora up

to 2,000 examples. After 2,000 examples Lazy I gives better

results than Regular while using the same quantity of positive

examples. Even if the gain is small, this shows that Lazy I

435

TABLE IV
CLASSIFICATION ERROR RATE FOR THE A1 AND A2 CORPORA

Corpus A1
#added examples Banditron Regular Lazy I Lazy II Lazy III Full
200 29.2 31,5 31.0 47.7 29.3 26.7
500 28.3 31.0 29.5 47.5 29.2 22.8
1000 26.9 28.0 28.0 46.4 27.7 23.4
2000 24.5 25.1 24.7 40.1 24.4 23.1
5000 23.5 22.4 21.6 35.1 21.0 15.4
10000 22.1 19.6 18.4 32.4 18.2 14.4

Corpus A2
#added examples Banditron Regular Lazy I Lazy II Lazy III Full
200 27.4 45.8 48.0 71.8 46.7 25.4
500 23.0 38.7 38.3 58.0 37.5 17.9
1000 20.8 30.2 28.9 51.6 29.2 16.7
2000 20.9 24.6 24.9 48.4 23.9 13.6
5000 19.2 19.7 18.1 41.1 18.2 12.7
10000 18.8 16.4 14.8 37.0 14.7 9.7

can take advantage of the generated examples to improve its

performance. Lazy II which uses only negative examples (the

oracle always said “no”) starts poorly but manage to reduce

significantly its error rates on large corpora. This shows that

with sufficient data, our Lazy Perceptron can learn from the
Q−1
Q N negative examples without information on their real

class label. The Lazy III experiment combines positively and

negatively labeled examples to create virtual examples as a

linear interpolation between the Lazy I and Lazy II examples.

The Banditron algorithm performs very well for small size

of data but provides worse results than the Bandit batch

algorithms Lazy I and Lazy III when using the whole training

corpus.

All these results have been obtained with automatic tran-

scriptions with a relatively high Word Error Rate (over 30%),

both for training the classifiers and testing them. This means

that our learning algorithms are robust to the noise generated

by Automatic Recognition Systems.

VI. CONCLUSION

We have explored in this paper a lazy labeling method

as a cheap way to train classification models in the context

of call-routing spoken dialog systems. In such a labeling

process, examples are presented to annotators with a label

which they either validate or invalidate. Such lazy labels can be

obtained through customer feedback, agent annotations or call

log analysis. We have proven that it is possible to learn linear

classifiers in this setting, by estimating adequate expectations.

A set of experiment was run on two call center routing

tasks. We have shown that under a uniform query, the Lazy
Perceptron algorithm performs better than a regular perceptron

only using the small proportion of positively labeled data.

An interesting outcome is that even when relying solely on

negative instances, for which we know that they are not of

a given label, the perceptron can learn a model. The uniform

query setting is an interesting exploration strategy that doesn’t

need any bootstrap corpus and which can learn new events

only from this weak supervision.

As for future work, we plan to extend this setting with more

query types, including data truly lazily labeled by humans. The

idea of generating surrogates of misclassifed examples is also

appealing and might be beneficial to other learning algorithms

than the perceptron. We plan on trying more elaborate example

generation techniques and eventually we hope to be able

to extend this setting to structured predictions which power

most of machine learning applications in natural language

processing.

VII. ACKNOWLEDGMENT

This work is supported by the French agency ANR, Project

DECODA, contract no 2009-CORD-005-01.

REFERENCES

[1] H. Robbins, “Some aspects of the sequential design of experiments,”
Bulletin of the American Mathematical Society, vol. 58, no. 5, pp. 527–
535, 1952.

[2] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire, “The nonstochas-
tic multiarmed bandit problem,” SIAM Journal on Computing, vol. 32,
no. 1, pp. 48–77, 2003.

[3] L. Li, W. Chu, J. Langford, and R. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in Proceedings
of the 19th international conference on WWW. ACM, 2010, pp. 661–
670.

[4] S. M. Kakade, S. S. Shwartz, and A. Tewari, “Efficient bandit algorithms
for online multiclass prediction,” in ICML ’08: Proc. of the 25th Int.
Conference on Machine learning, 2008, pp. 440–447.

[5] H. Valizadegan, R. Jin, and S. Wang, “Learning to trade off between
exploration and exploitation in multiclass bandit prediction,” in ACM
Conference on Knowledge Discovery and Data Mining (KDD 2011),
2011.

[6] J. Langford and T. Zhang, “The epoch-greedy algorithm for contextual
multi-armed bandits,” in Adv. in Neural Information Processing Systems
20 (NIPS 2008), 2008.

[7] K. Crammer and Y. Singer, “Ultraconservative Online Algorithms for
Multiclass Problems,” Journal of Machine Learning Research, vol. 3,
pp. 951–991, January 2003.

[8] G. Riccardi and D. Hakkani-Tur, “Active learning: theory and applica-
tions to automatic speech recognition,” Speech and Audio Processing,
IEEE Transactions on, vol. 13, no. 4, pp. 504–511, July 2005.

[9] D. Bohus and A. Rudnicky, “Implicitly-supervised learning in spoken
language interfaces: an application to the confidence annotation prob-
lem,” in Proceedings of SigDial, 2007, pp. 256–264.

[10] P. Gotab, F. Béchet, G. Damnati, and L. Delphinpoulat, “Online SLU
model adaptation with a partial Oracle,” in Proceedings of Inter-
speech’10, Makuhari, Japan, 2010.

436

