
Estimating Document Frequencies
in a Speech Corpus

Damianos Karakos #∗1, Mark Dredze #†2, Ken Church #†3, Aren Jansen #∗4, Sanjeev Khudanpur #∗5

Human Language Technology Center of Excellence
∗ Department of Electrical and Computer Engineering

† Department of Computer Science
Johns Hopkins University, Baltimore, MD

{1 damianos, 2 mdredze, 3 Kenneth.Church, 4 aren, 5 khudanpur}@jhu.edu

Abstract—Inverse Document Frequency (IDF) is an important
quantity in many applications, including Information Retrieval.
IDF is defined in terms of document frequency, df(w), the
number of documents that mention w at least once. This quantity
is relatively easy to compute over textual documents, but spoken
documents are more challenging. This paper considers two
baselines: (1) an estimate based on the 1-best ASR output and (2)
an estimate based on expected term frequencies computed from
the lattice. We improve over these baselines by taking advantage
of repetition. Whatever the document is about is likely to be
repeated, unlike ASR errors, which tend to be more random
(Poisson). In addition, we find it helpful to consider an ensemble
of language models. There is an opportunity for the ensemble to
reduce noise, assuming that the errors across language models
are relatively uncorrelated. The opportunity for improvement is
larger when WER is high. This paper considers a pairing task
application that could benefit from improved estimates of df . The
pairing task inputs conversational sides from the English Fisher
corpus and outputs estimates of which sides were from the same
conversation. Better estimates of df lead to better performance
on this task.

I. INTRODUCTION

Inverse Document Frequency, IDF(w) = − log2 df(w)/D,

depends on the number of documents D and the document

frequency df(w), the number of documents that mention

w one or more times. Computing IDF is critical for many

downstream applications in information retrieval. It is easy

to compute document frequency over textual documents, but

spoken documents are challenging. Two standard methods for

doing so serve as baselines in this paper: (1) an estimate

based on the 1-best ASR output and (2) an estimate based on

expected term frequencies computed from the lattice. Baseline

(1) is easy to implement and works well if the word error rate

(WER) is low. Baseline (2) is inspired by the literature on

spoken document retrieval [1].

Despite the general acceptance of these baselines as suffi-

cient, Figure 1 shows that there is plenty of room to improve

over the 1-best baseline as compared to using the transcript.

The plot highlights some words with large residual errors

between the baseline estimates of df and the gold standard

reference, the true df as computed from the transcript. Table I

shows that many of these words are acoustically short and

difficult to recognize. In addition, some of them such as

“TV” (television) and “cat” are highly associated with certain

topics in the Fisher corpus, which can cause trouble, especially

when the testing and training data are limited and not well

matched (discuss different content). The columns labeled 3hr

and 20hr in Table I are computed from the 1-best ASR output

with 3 hours and 20 hours of training data, respectively.

Not surprisingly, there is “no data like more data” (Mercer,

personal communication); we also find the training set should

be large and well matched to the test set. However, this may

not be realistic in many applications of interest.

Consider the effectiveness of these methods for a single

word: “work.” Table II and Figure 2 compare the 20hr and

3hr baselines to the reference for this word. Of the D = 284
documents (conversational sides), there were 143 sides with

no instances of “work” (k = 0) in the reference gold standard,

and 58 sides with k = 1 and so on. The next two lines are

the two baselines mentioned above (we again see that more

training data leads to better estimates) and the bottom line

shows estimates from a Poisson with θ = 1.36. The Poisson

is even worse than the 1-best baselines because documents are

not random bags of words. Whatever the document is about

is likely to be repeated, unlike ASR errors, which tend to be

more random (Poisson). Chapter 14 of [2] describes a number

of adaptive language models such as cache models that exploit

this fact; repetition can be viewed as self-triggering [3]. Thus,

repetition provides a clear opportunity for achieving improved

document frequency estimates.

In this work, we consider new approaches to IDF for spoken

documents by taking advantage of repetition. We use multiple

language models and a log-linear model to create new df
estimators, and show that these lead to improvements on an

information retrieval task (document pairing).

II. FEATURE EXTRACTION AND MODEL TRAINING

The discussion above makes it clear that one should be able

to do better at estimating document frequencies using a variety

of cues, such as probability of repetition. In this section we

describe how we compute our various features from speech

lattices, and how they are used in a log-linear framework in

order to estimate the df statistics.

407978-1-4673-0367-5/11/$26.00 ©2011 IEEE ASRU 2011

0 50 100 150 200 250

−
10

0
−

50
0

50
10

0

gold standard df

re
si

du
al

s
fr

om
 p

oo
r

es
tim

at
es

 o
f d

f

UH

ASWHO ATHIM

T.

POINT

V.

DIDN.T

SHE

T..V.

CAT

THEIRHAS

KINDA WORK

YOU.VE US

CALL

THANTHOUGHTY. THOUGH I.VE

Fig. 1. There is considerable opportunity to improve over the baseline
estimates of df . Each point shows the reference along the x-axis and the
residual between the estimate and the reference along the y-axis. The reference
is computed from the transcript, and the estimate is computed from the 1-best
ASR output with just 3 hours of training data. Words with large errors are
highlighted, and described in Table I.

TABLE I
WORDS WITH LARGE ERRORS

residual 3hr 20hr reference word
-78 107 140 185 AS
-77 73 112 150 WHO
-74 178 208 252 AT
-73 45 64 118 HIM
-72 13 61 85 POINT
-68 115 148 183 DIDN’T
-62 86 121 148 THEIR
-61 78 97 139 HAS
57 127 112 70 CALL
59 128 144 69 KINDA
59 200 176 141 WORK
62 94 78 32 CAT
67 192 188 125 SHE
71 72 79 1 V.
72 78 86 6 T.
83 265 262 182 UH

A. Expected counts

The most well-known features extracted from lattices are

expected counts of words. Simply put, for each word w and

utterance utt, the expected count of w (we call it tfutt(w) in the

rest of this paper, to signify the connection between the notion

of expected counts and term frequencies from clean text—

the former equals the latter when there are no probabilities

TABLE II
HOW MANY DOCUMENTS MENTION “WORK” EXACTLY k TIMES?

k 0 1 2 3 4 5 6 7
reference 143 58 35 17 15 9 3 3

ASR 1-best (20hr) 108 63 42 29 13 11 8 5
ASR 1-best (3hr) 84 74 43 32 14 16 5 10

Poisson 73 99 67 31 10 2.8 0.64 0.12

R

R

R

R R

R

R R

R

0 2 4 6 8 10

0.
1

0.
5

5.
0

50
.0

tf

do
cu

m
en

ts

t t

t
t

t t

t

t

t

t

T

T
T

T

T T
T

T T

Fig. 2. How many documents mention “work” exactly k times? Values are
shown in Table II. “R” is the reference. “T” is 1-best baseline with more
training data (20 hours), and “t” is 1-best baseline with less training data
(3 hours). In general, estimates based on more training data are closer to
the reference than estimates based on less data. It is common practice to
introduce various Poisson/independence assumptions but such assumptions
can be disastrous because the Poisson (line) is even farther from the reference
than the baseline estimates.

involved) is given by

tfutt(w) =
∞∑

n=1

nPutt(w, n),

where Putt(w, n) is the probability that w appears exactly n
times in utt. This probability can be computed by summing

together the probabilities of all paths in a lattice that have the

same number n of occurrences of w. (See Figure 3 for an

automaton which selects only those paths with 2 occurrences

of w.) These expected counts can be computed efficiently with

the grm library [4], assuming that the lattices are in the log-
semiring.

The above notion of expected count can be extended to

the case of multiple utterances in a conversation by summing

together the individual terms. Thus, for a conversation c,

tfc(w) =
∑
utt∈c

tfutt(w).

Note that the above formula is applicable no matter whether

the existence of w in an utterance is independent of other

utterances; this is a consequence of the additivity of expec-

tation: E[X1 + · · · + Xn] = E[X1] + · · · + E[Xn], which

holds irrespective of whether the random variables X1, . . . , Xn

are independent or not. As a way of quantizing the term

frequencies (and because it results in better performance in

our experiments) we further cap the term frequencies at 1:

t̃fc(w) = min{1, tfc(w)}. (1)

B. Probabilities of multiple occurrences

For each word w, this is the probability that w occurs

at least k times in an utterance or conversation. For each

408

0

V\{w}

1
w

V\{w}

2
w

V\{w}

Fig. 3. An example of a finite-state-machine which accepts all strings of the
lattice which contain exactly 2 occurrences of w. V represents the vocabulary,
and V \ {w} represents all the words except w.

utterance, it can be computed by summing together the prob-

abilities of all paths in the lattice which contain w at least k
times. In practice, it is computed efficiently using the formula

poutt(w, k) = 1 −
k−1∑
j=0

Putt(w, j), (2)

where Putt(w, j) was defined above. To compute Putt(w, j), an

efficient implementation using finite-state machines was used:

the lattice was composed1 with a simple “filtering” machine,

such as the one shown in Figure 3. This machine simply

“accepts” all paths which contain w exactly j times; the total

probability of these paths can then be computed easily with

the operations of projection and ε-removal.

To extend this formula to the case of a whole conversation,

simple summation of poutt is not the right approach (for one

thing, it can return a number greater than one). Instead, one

can use the well-known formula for computing the distribution

of a sum of independent random variables, which is given

by a convolution [5] of the probability mass functions of the

individual variables. Thus, for a conversation c,

Pc(w, ·) = Putt1(w, ·) � · · · � PuttN (w, ·).
where utt1, . . . , uttN are the utterances of c. Similar to (2),

the probability of occurrence of w at least k times in a

conversation c can be calculated by

poc(w, k) = 1 −
k−1∑
j=0

Pc(w, j), (3)

which makes it unnecessary to compute Pc(w, j) for any j >
k − 1.

C. Other features

The above features can get thresholded, giving rise to

“quantized” binary versions. In a log-linear framework, such

binary features are usually very effective, as they provide

a way of obtaining non-linear behavior. For example, for a

word w and probability of at least k occurrences poc(w, k), T
new features p̂o(t1)

c (w, k), . . . , p̂o(tT)
c (w, k) can be generated

by setting

p̂o(ti)
c (w, k) � 1(poc(w, k) ≥ ti).

1We have used OpenFst, the open-source library by Google. Its tutorial can
be found at http://www.openfst.org/twiki/bin/view/FST/FstHltTutorial

where {t1, . . . , tT } is a set of user-defined thresholds.

The 1-best output from the lattice (the minimum-cost path)

can also be used to provide an additional feature, the “base-

line” feature. This is included as a “safety net”, to make sure

that the Machine Learner falls back to that output, especially

when the test data have uninformative features. Thus,

q1best
c (w) = 1(w exists in the 1-best output of c).

D. The log-linear model

The features described in the previous subsections are

generated with several recognizers (each using a different

language model) and combined together in a log-linear model

(logistic regression). For each word w and conversation c,

the model tries to predict a binary variable which indicates

whether w truly exists in the manual transcript of c or not.

The model learns a joint probability p(label, features) ∝
exp{∑i λifi}, where λi is the weight of the i-th feature

learned by the model, and fi is the value of the feature. Then,

the probability that the word exists is given by the posterior

pM (w exists|features) =
exp{∑i λifi}

1 + exp{∑i λifi} ,

where M represents the set of learned weights {λi}. Thus,

for each conversation c, and for each word w which appears

in the lattice, a separate training example is generated. Many

words are less frequent and necessarily have very few positive

examples (e.g., they truly exist in at most 1-2 conversations);

on the other hand, the same words may result in lots of neg-

ative examples, depending on whether the recognizer tends to

over-recognize such words. Although the number of examples

runs into the millions, the number of features we have used

does not exceed 100-150 and the log-linear model is usually

trained (using the MEGAM toolkit [6]) without requiring

special computational resources.

E. Estimation of df statistics

Once the log-linear model is trained, it is applied to an

unseen set (validation or test). Thus, for each conversation c
and word w, the model will predict whether w exists in c or

not, and will also provide a confidence (posterior probability

of existence) pM (w|c). Then, the df estimate can be provided

either using thresholding, i.e.,

d̂f
thr
M (w) �

∑
c

1(pM (w|c) ≥ thr), (4)

or, by summing together the confidences, i.e.,

d̂f
(soft)
M (w) �

∑
c

pM (w|c). (5)

III. EXPERIMENTAL SETUP

We have experimented with the English Fisher conversa-

tional corpus. The recognition/training/validation is done on

non-overlapping parts of the corpus. For that purpose, we use

the corpus split provided by [7], which was originally designed

for topic identification. For the purposes of our paper, we have

designated the various parts as follows:

409

Model Description

ENG02 Do either of you have a pet? If so, how much

time each day do you spend with your pet?

How important is your pet to you?

ENG03 What do each of you think is the most

important thing to look for in a life partner?

ENG04 Do each of you feel the minimum wage in-

crease - to << $5.15 an hour - is sufficient?

ENG05 How do you each draw the line between

acceptable humor and humor that is in bad

taste?

ENG24 What changes, if any, have either of you

made in your life since the terrorist attacks

of Sept 11, 2001?

“combined” Concatenated text of the above 5 topic-based
language models

Fig. 4. Description of the topics of the language models used in the
experiments. These topics were chosen because they contain at least 10 hours
of audio each in set B we used for learning the log-linear model.

1. Set A: this is used as training material for building the

recognizer(s). We have chosen three training sets from A,

based on different sizes: a 1-hour set (denoted as A1), a 3-

hour set (denoted as A2) and a 20-hour set (denoted as A3),

so that we can study how data scarcity affect our estimates.

2. Set B (train & dev): after decoded with the recognizer(s)

trained on set A, this set is subsequently used for learning

the log-linear model of Section II. This is further split into

a training part (B-train) and a development part (B-dev);

the latter is used for making sure that the log-linear model

is not over-fitted.

3. Set C (dev & test): after decoded with the recognizer(s)

trained on set A, this set is used for testing the log-linear

models, and reporting df statistics. The dev part is used

for validation, and the test part is used for performing

completely blind experiments.

To study the effect of topic mismatch, we further restrict sets

B and C to a predefined set of 5 topics from Fisher. These 5

topics were chosen so that they provide at least 10 hours of

audio per topic on set B (all other topics have less audio). The

description of these topics appears in Figure 4. The language

models used in the recognizer came from the transcripts of

set A, but confined to the set of 5 topics mentioned above.

Thus, 5 topic-based language models were estimated; also, a

6th language model (the “combined” model) was trained on

the concatenated text of the 5 topics. The number of words

per topic varied between 200K and 330K. The total number

of words over the 5 topics was 1.5M.

BBN Technologies speech recognition system, BYBLOS,

was used in all ASR experiments. It is a multi-pass LVCSR

system that uses state-clustered Gaussian tied-mixture models

at the triphone and quinphone levels [8]. The audio features

are transformed using cepstral mean subtraction, HLDA and

VTLN. Only maximum likelihood estimation was used. De-

coding performs three passes: a forward and backward pass

with a triphone acoustic model and a trigram language model,

and rescoring using quinphone acoustic models and a fourgram

language model. These three steps are repeated after speaker

adaptation using CMLLR.

The logistic regression uses 132=22 × 6 features. There

are 22 features for each language model (LM), and the

6 LMs described in Fig. 4. The 22 features consist of 4

primary features: t̃fc(w), q1best
c (w), poc(w, 1), poc(w, 2), plus

18 derived features. The 18 derived features are computed by

thresholding poc(w, 1) and poc(w, 2) at {0.1, . . . , 0.9}.

IV. ESTIMATION RESULTS

In order to motivate the results reported in this section, we

provide a list of questions that we would like to answer.

1. How does the acoustic model training size affect the

estimation of df statistics?

2. Does one obtain better estimates when the topic of the

language model and the topic of the speech match, even

if the language model is trained on much less data?

3. Is it best to apply a threshold to the estimated existence

probabilities, as returned by the log-linear model, or is it

better to sum them up?

The following 3 subsections present short descriptions of

the various estimators of df statistics. Presentation of results

appears in the following subsection.

A. Baseline 1: using the 1-best output

This is the simplest baseline: simply count the number of

documents (conversations) which contain a word w in the 1-

best output:

d̂f
(1best)

(w) =
∑

c

1(w is contained in the 1-best output of c).

The third row of Table III shows the mean square error of

this estimator for all words whose true df is shown in the first

column. As can be easily seen, the error increases significantly

with the WER of the recognition.

B. Baseline 2: using truncated tf statistics from lattices

This is the next baseline, which follows the approach of [9]:

for each word w, make a decision whether it is contained in a

conversation c based on a threshold thr, and then sum together

the decisions over all conversations:

d̂f
(from tf ≥ thr)

(w) =
∑

c

1(tfc(w) ≥ thr)

Note that, in the case of clean text data, d̂f
(from tf ≥ 1)

(w) is

exactly equal to the usual definition of df .

The fourth row of Table III shows the error of this estimator,

based on lattices that were produced with the “combined”

language model. The threshold was set to 0.7, based on

performance on the dev part of set C.

410

TABLE III
TABLE WITH MEAN SQUARE ERRORS FOR VARIOUS ESTIMATORS OF df , AVERAGED OVER ALL WORDS WHICH HAVE THE TRUE df MENTIONED IN THE

SECOND ROW. THE BEST RESULT IN EACH COLUMN IS SHOWN IN BOLDFACE. THE WERS ON SET B ARE SHOWN IN THE FIRST ROW.

Acoust. Model → 1-hr AM (WER: 51.8%) 3-hr AM (WER: 44.6%) 20-hr AM (WER: 36.1%)
true df group → df = 1 df = 2 df ≥ 3 df = 1 df = 2 df ≥ 3 df = 1 df = 2 df ≥ 3

Baseline 1 bdf
(1best)

(combined LM) 1.10 2.93 88.59 0.96 2.51 62.88 0.84 2.13 40.67

Baseline 2 bdf
(from tf ≥ 0.7)

(combined LM) 0.92 2.96 130.68 0.87 2.78 90.72 0.82 2.46 64.21

bdf
(from po)

(combined LM) 1.64 3.60 87.42 1.28 2.71 62.60 1.04 2.10 48.32

Proposed (eq. 5) bdf
(soft)
M 1.00 2.25 69.12 0.84 1.97 46.42 0.70 1.63 30.95

Contrastive bdf
(soft)
M (combined LM) 1.12 2.43 79.62 0.93 2.03 51.17 0.79 1.71 32.49

bdf
(1best)

(oracle topic) 1.00 2.64 89.39 0.91 2.48 65.27 0.77 2.15 42.59

bdf
(from tf)

(oracle topic) 1.41 2.92 99.79 1.11 2.56 85.04 0.89 2.10 66.06

bdf
(from po)

(oracle topic) 1.30 2.74 70.60 1.03 2.42 54.56 0.84 2.01 39.89

C. Using the probability of at least one occurrence

The most natural way of computing a “soft” df from lattices

is through the probability of at least one occurrence; this is

poc(w, 1) of (3). Thus the df estimate for word w is given as

the sum over all conversations

d̂f
(from po)

(w) =
∑

c

poc(w, 1).

Similar to d̂f
(from tf)

(w), d̂f
(from po)

(w) is also equal to the usual

definition of df , when computed over clean data. However, it

is better justified than d̂f
(from tf)

(w), as it does not involve the

“artificial” thresholding of t̃fc(w).
The fifth row of Table III shows the error of this estimator,

which was, as above, based on lattices that were produced

with the “combined” language model.

D. Using the log-linear model

This is estimator d̂f
(soft)
M , provided by (5). The corresponding

results appear in the sixth row of Table III. We also tried

d̂f
thr
M (w), but it gave significantly worse results than d̂f

(soft)
M (w).

E. Analysis of the results

The following trends are clear from Table III: (i) Better

acoustic models result in better estimation of df , no matter

which of the studied estimators is used. (ii) The learned log-

linear model results in the best estimation in 8 out of 9

conditions (columns in the table). Moreover, we performed

several regression tests with R using the features mentioned in

Section III and found that almost all features were significant

at p < 0.001. The existence of multiple language models is

also important; the poc(·, 1) features, computed under the mul-

tiple language models, were assigned the largest coefficients.

To analyze the effect of the multiple recognizers, we also

learned a “contrastive” log-linear models that only contained

features resulting from decoding with the “combined” lan-

guage model only (that is, no features generated from a

multitude of topic-specific language models were fed to train

the model). The results appear in Table III, in the row d̂f
(soft)
M

(combined LM). As is clear from these results, just using a

single language model (despite being trained on five times

more data than each of the individual topic-specific models)

does not provide rich enough features for the log-linear model.

We also performed oracle experiments with topic-specific

models. To see the effect of using language models which are

matched to the topic of the speech, we computed the above

estimators d̂f
(1best)

, d̂f
(from tf)

, d̂f
(from po)

assuming that we know

the topic of each utterance. That is, the various statistics for

each conversation were collected only from the lattices of

the matched recognizer. The bottom three rows of Table III

summarize the results. As we can easily conclude from these

results, recognizing speech with a matched topic does not give

better results than recognizing the speech with a multitude

of topic-specific language models and then combining their

predictions together using the log-linear model.

V. CONVERSATION SIDE MATCHING

While we observe substantial gains in intrinsic evaluations

of our df estimator, we seek an extrinsic evaluation to demon-

strate that these improved estimates yield gains in a target

application. Since frequencies of word types are frequently

used in information retrieval (IR) tasks, we evaluate the effects

of each estimator in an IR task.

Speech information retrieval [10], [11] searches over a cor-

pus of audio documents for the best matches to a given spoken

or written query. As in text based IR systems, the concept

of query document relevance is based on the vector space

model, in which each document is represented as a vector

of word scores. Typically, these scores are based on a term-

frequency inverse document-frequency (TFIDF) representation

of the text, in which common words receive lower weight

than rare words. For spoken document retrieval, documents are

stored as either ASR 1-best transcripts, which leads directly

to TFIDF computation, or as lattices in which fractional

counts are used to compute term-frequency. In an analysis of

term weightings effect on TFIDF, [12] found that IDF scores

provide an effective upper bound on TFIDF scores, namely,

that IDF alone can be an informative measure for IR. Since

our focus is on computing document frequencies, we select

their method for computing document representations: the ith
position in the document vector representing the ith word

is defined as IDF = − log2 dfi/D, where D is the number

411

of documents in the corpus and dfi is the estimate of the

document frequency of word i.
Using the English Fisher conversational corpus, we con-

struct a simple query-by-example based IR task: conversation

side matching. We split each conversation side into a separate

document. The first document (side A) is the query, and the

second document (side B) is added to the document collection.

For each query (side A document), we return a ranking over all

documents (side B documents) in the collection by the score

of the inner product of the document vector with the query

vector, both of which are based on the IDF representation

above. We compute the mean reciprocal rank (
∑

d
1

rankcorrect
),

where higher scores are better. We ran this experiment for

both the 142 conversations in dev and 141 in test of set C.

Using this framework, we evaluate the following methods:

• d̂f
(1best)

(combined LM): A word is included in the docu-

ment’s vector if it appears a single time in the transcript.

IDF is measured from the ASR 1-best transcript.

• d̂f
(from tf)

(combined LM): A word is included in the

vector if it has an expected count >= α. IDF is measured

by counting the number of document vectors in which

each word type occurs.

• d̂f
(soft)
M : A word is included in the vector if it has an

expected count >= α. IDF is measured based on the

estimator of eq. (5).

• Reference: A word is included in the document’s vector if

it appears a single time in the transcript. IDF is measured

from the reference transcript.

A simple value for the parameter α would be 1, but this

dramatically undercounts words in each document since words

that were spoken a single time will likely have expected counts

below 1. Instead, we select a value for α using the development

data that ensures that the resulting document vectors have (on

average) the same number of non-zero elements as the 1-best

vectors. For all of our experiments, this value was α = 0.5.

We evaluated each of the 4 df methods (3 estimators and

the true statistics) by running the conversation side matching

evaluation on the 1, 3 and 20 hour acoustic model on develop-

ment and test data (Table IV.) As expected, the 20 hour model

outperforms the 1 and 3 hour model. For all models, our df
estimator obtains substantial improvements over the baseline

methods. In particular, for the 20-hr model, moving from 1-

best output to lattices gives a small improvement (1% absolute)

on development data (and hurts on test data), but our estimator

yields a 5% absolute improvement. Overall, our estimator

obtains a 20% and 17% relative error reduction on the 3-hr and

20-hr model respectively on development data. This suggests

that our improvements in estimating type frequency statistics

can have a significant impact on speech applications.

VI. CONCLUSIONS

Document frequency df(w), the number of documents that

mention w one or more times, is relatively easy to compute

over text documents, but spoken documents are more challeng-

ing. We proposed d̂f
soft

M , a log-linear combination of more

TABLE IV
MEAN RECIPROCAL RANK FOR CONVERSATION SIDE MATCHING ON

DEVELOPMENT AND TEST DATA FOR A 1, 3 AND 20 HOUR ACOUSTIC

MODEL. THE BEST NUMBER IN EACH COLUMN IS SHOWN IN BOLDFACE.

Dev Test
IDF Estimator 1-hr 3-hr 20-hr 1-hr 3-hr 20-hr

bdf
(1best)

(comb. LM) 0.347 0.408 0.542 0.337 0.448 0.491

bdf
(from tf)

(comb. LM) 0.371 0.457 0.555 0.382 0.438 0.491

bdf
(soft)
M 0.409 0.494 0.593 0.414 0.503 0.537

Reference 0.846 0.847

than a hundred features. Some of these features take advantage

of repetition (self-triggering). Whatever the document is about

is likely to be repeated, unlike ASR errors, which tend to be

more random. Other features use an ensemble of language

models to reduce noise, since errors tend to be relatively

uncorrelated across language models. Table III shows that

d̂f
soft

M reduced the error over the baselines in most cases.

Better estimates of df lead to better performance, at least

on a pairing task, as reported in Table IV. We are hopeful that

these results will generalize to many other tasks as well, since

Inverse Document Frequency, IDF(w) = − log2 df(w)/D, has

proven effective across a wide range of applications including

Information Retrieval.

ACKNOWLEDGMENTS

We are grateful to Scott Novotney for providing his timely

expertise in the use of the Byblos recognizer.

REFERENCES

[1] M. Bacchiani and B. Roark, “Unsupervised language model adaptation,”
in Proceedings of ICASSP-03, vol. 1, April 2003, pp. I–224–227.

[2] F. Jelinek, Statistical Methods for Speech Recognition. MIT Press,
1997.

[3] R. Rosenfeld, “A maximum entropy approach to adaptive statistical
language modelling,” Computer Speech and Language, vol. 10, no. 3,
p. 187, 1996.

[4] C. Allauzen, M. Mohri, and B. Roark, “A general weighted grammar
library,” in Proc. of the 9th Intl. Conf. on Automata (CIAA 2004), 2004.

[5] G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes.
Oxford Science Publications, 1992.

[6] H. Daumé III, “Notes on CG and LM-BFGS optimization
of logistic regression,” August 2004, paper available at
http://pub.hal3.name#daume04cg-bfgs, implementation available at
http://hal3.name/megam/.

[7] T. Hazen, F. Richardson, and A. Margolis, “Topic identification from
audio recordings using word and phone recognition lattices,” in Pro-
ceedings of ASRU-2007, December 2007, pp. 659 –664.

[8] R. Prasad, S. Matsoukas, C.-L. Kao, J. Z. Ma, D.-X. Xu, T. Colthurst,
O. Kimball, R. Schwartz, J.-L. Gauvain, L. Lamel, H. Schwenk,
G. Adda, and F. Lefevre, “The 2004 BBN/LIMSI 20xRT english
conversational telephone speech recognition system,” in Proceedings of
Interspeech-2005, 2005, pp. 1645–1648.

[9] S. Olson, “Combining evidence from unconstrained spoken term fre-
quency estimation for improved speech retrieval,” PhD Dissertation,
University of Maryland, 2008.

[10] C. Manning, P. Raghavan, and H. Schütze, Introduction to information
retrieval. Cambridge University Press Cambridge, UK, 2008.

[11] J. Foote, “An overview of audio information retrieval,” Multimedia
Systems, vol. 7, no. 1, pp. 2–10, 1999.

[12] K. Umemura and K. Church, “Empirical term weighting and expansion
frequency,” in Proceedings of the 2000 Joint SIGDAT conf. on Empirical
Methods in Natural Language Processing and Very Large Corpora,
2000, pp. 117–123.

412

