
Efficient Spoken Term Discovery Using
Randomized Algorithms

Aren Jansen1, Benjamin Van Durme2

Human Language Technology Center of Excellence & The Center for Language and Speech Processing
Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 USA

1aren@jhu.edu
2vandurme@cs.jhu.edu

Abstract—Spoken term discovery is the task of automatically
identifying words and phrases in speech data by searching
for long repeated acoustic patterns. Initial solutions relied on
exhaustive dynamic time warping-based searches across the
entire similarity matrix, a method whose scalability is ultimately
limited by the O(n2) nature of the search space. Recent strategies
have attempted to improve search efficiency by using either
unsupervised or mismatched-language acoustic models to reduce
the complexity of the feature representation. Taking a completely
different approach, this paper investigates the use of randomized
algorithms that operate directly on the raw acoustic features to
produce sparse approximate similarity matrices in O(n) space
and O(n log n) time. We demonstrate these techniques facilitate
spoken term discovery performance capable of outperforming a
model-based strategy in the zero resource setting.

I. INTRODUCTION

Nearly all modern speech technologies rely on supervision
at some stage of the pipeline, most commonly in the form
of orthographic word or phoneme transcriptions. However, for
the vast majority of the world’s languages, little or no training
resources are readily available. In the extreme zero resource
setting, where we have no transcribed training data and no a
priori linguistic knowledge for the language of application,
the only recourse is to fall back on language independent
technologies or fully unsupervised training methods.

Given a collection of speech in an unknown language, one
point of entry is the automatic discovery of the linguistic struc-
ture present in the data. In the absence of supervision, intuition
informs us that longer units (e.g. syllables, words, and phrases)
will be easier to identify and catalog across speakers than short
segmental units such phonemes. The spoken term discovery
task attempts to identify lexical or phrasal units present in
the audio by searching the audio for repeated trajectories in
the acoustic feature space [1][2][3][4][5][6][7]. Even though
they are unlabeled, the resulting automatically discovered units
have clear practical utility, already having been demonstrated
useful for summarization [6][8] and speech retrieval appli-
cations [9][10]. Moreover, it has been demonstrated that a
sufficiently efficient term discovery algorithm can provide top-
down constraints that enable fully unsupervised training of a
speaker independent subword unit acoustic model [11].

To date the vast majority of spoken term discovery ap-
proaches have been built around dynamic time warping (DTW)

based search of similarity matrices spanning the audio. Both
the similarity matrix computation and the dynamic program-
ming search are inherently O(n2) in space and time, limiting
the size of the speech collection to which these methods can
be applied. Recent efforts attempted to reduce the constants
by mapping the original acoustic feature vectors to sparse
representations that limit the necessary computation to pairs of
frames with at least moderate degrees of similarity. In particu-
lar, both unsupervised [10][12] and mismatched-language [6]
acoustic models have been used to produce both posterior-
grams or tokenizations to seed the search. In a subsequent
study [13], it was demonstrated that raw acoustic features
could provide more discriminative cross-speaker word DTW
similarities than these zero resource model-based approaches.
However, the denser raw acoustic features did not permit the
same algorithmic speedups.

With the explicit goal of improving tractability of raw
acoustic feature-based term discovery, this paper investigates
the use of existing randomized approximation algorithms to
circumvent the need for acoustic models, unsupervised or oth-
erwise. In particular, we exploit recent algorithmic advances in
using random projections to efficiently compute approximate
nearest neighbors in the acoustic feature space, permitting
sparse similarity matrix computation in O(n) space and
O(n log n) time. As with most randomized algorithms, these
approaches involve a trade-off between speed and accuracy
for which we provide a detailed experimental study. Having
efficiently computed sparse similarity matrices, we proceed to
apply our efficient two pass repeated interval search algorithm
originally presented in [6], which was designed to operate
on sparse similarity matrices of precisely the form produced
by the randomized methods. We find this combination of
approaches surpasses the mismatched acoustic model approach
in both execution time and discovery performance. We begin
with a complete description of the proposed solution.

II. THE ALGORITHMS

Our starting point is a raw acoustic feature vector time series
of the form X = x1x2 . . . xn, where each xi ∈ R

d. Our
proposed approach consists of three stages of approximation,
each complete with parameters that allow for a controlled
trade-off between speed and fidelity. The first stage maps

401978-1-4673-0367-5/11/$26.00 ©2011 IEEE ASRU 2011

samples in the time series X into series of fixed-length bit
signatures using a randomized hashing technique, permitting
efficient estimation of cosine distances between points in the
original space. The second stage uses the bit signatures to
determine approximate nearest neighbors sets within X in the
service of computing sparse approximate similarity matrices
for the form M ∈ R

n×n, where

Mij =
xi · xj

‖xi‖‖xj‖
(1)

is the cosine similarity between xi and xj . Finally, we use
these similarity matrices to search for repeated acoustic pat-
terns using a two-pass, coarse-to-fine strategy using efficient
image processing techniques. In this section, we provide
details for each of the three stages. For easy reference, Table I
lists all parameters involved along with the default values used
in the experiments described in Section III.

A. Locality Sensitive Hashing

Locality sensitive hashing (LSH) refers to a family of algo-
rithms for hashing high dimensional feature vectors, x ∈ R

d,
into low dimensional bit signatures, h(x) ∈ {0, 1}b, such that
the Hamming distance between two such bit signatures can
be used to approximate some distance metric in the original
space. The distance metric approximated is dependent on the
hash function used. LSH has been used in a variety of image
and language applications, including near-duplicate detection
in web [14] and image search [15], building large-scale
thesauri [16], and topic detection and tracking [17]. While
LSH has not found its way into speech applications ([18] is
one exception), it has been recently connected to compressive
sensing, which has been a popular topic of study for speech
coding and recognition applications with a different goal of
constructing efficient and robust signal decompositions [19].
Here we employ the LSH routine of [20], an extension of [21],
which approximately preserves cosine similarity.

The basic idea is to project each test sample onto a col-
lection of random vectors in R

d and use each projection to
determine a bit value by thresholding at zero. Alternatively,
we may view each vector as defining a random hyperplane
containing the origin, such that the corresponding bit vector
indicates which half-space the test point lies. Formally, we first
generate a transformation matrix T ∈ R

d×b, populated with
random draws from N (0, 1). If we assign the kth column of
this matrix to the random vector rk ∈ R

d, then the kth bit of
the signature h(x), denoted hk(x), is given by:

hk(x) =

{
1 if x · rk ≥ 0,
0 otherwise.

(2)

Note that this whole operation may be performed in one matrix
multiplication of X and T , followed by thresholding at zero.

Next, if we denote Hamming distance by H(·, ·), then the
cosine similarity between acoustic feature vectors xt and xt′

can be approximated by

cos(xt, xt′) ≈ cos(H(h(xt),h(x
t′

))
b

π), (3)

TABLE I
LIST OF PARAMETERS USED IN THE VARIOUS ALGORITHMIC

COMPONENTS, ALONG WITH DEFAULT EXPERIMENT VALUES.

Parameter Default Value
LSH signature size, b 32 bits

Cosine similarity threshold, δ 0.5
Nearest neighbor beam size, B 100

Number of byte permutations, P 4
Diagonal probe length, D 20 frames (200 ms)

Posterior threshold, f 0.1
Percentile filter threshold, μ 45%
Percentile filter length, L 50 frames (0.5 s)
Gaussian filter width, σ 3 frames (30 ms)

Max S-DTW deviation, F 10
Dissimilarity budget, C 7

Path trimming threshold, T 0.5

a relation that approaches equality as b goes to infinity. Here,
the intuition is that increased numbers of random projections
specify in finer detail the ray each test point is contained in,
providing an increasingly accurate approximation of the angle
between pairs of points.

B. Point Location in Equal Balls

Given our efficient means to approximate cosine distances
using LSH bit signatures, the next step is to use those
signatures to generate sparse approximate similarity matrices
M that characterize the pairwise cosine similarity between
points in X . We apply the Point Location in Equal Balls
(PLEB) algorithm of [21], a descendant of [22], to perform
approximate nearest neighbor search over speech frames. By
limiting cosine similarity computation to the nearest neighbor
set of a given test point, we can avoid spending time in regions
of M with negligible values. The savings can be dramatic as
PLEB operates over a collection of LSH bit signatures, running
in time O(n log n), rather than the exhaustive O(n2).

PLEB consists of two steps, which may be performed
one or more times: (i) sort the collection of bit signatures
lexicographically, which amounts to an alphabetical sort of the
bit strings; and then (ii) linearly sweep through the sorted list,
comparing each element to a fixed width beam of signatures
falling nearby under the sort. When performing multiple
iterations, the sort considers the bit signatures via a permuted
order: as there is nothing distinguished by the position of a
bit in an LSH signature (“all bits are created equal”), then
by permuting the order of the bit signatures and resorting,
one is increasing the chance of signatures with low Hamming
distance to fall nearby each other. Performing P iterations
of this algorithm requires O(Pn log n) sorting operations and
O(PBn) neighbor comparisons, where B is the beam width
of the search. In the analysis one might treat P and B as
constants to be disregarded in the face of n log n. In practice
we find that P directly leads to a linear multiplier on run-time,
while B is often set to be larger than log n, and thus the linear
scan dominates the search.

In our application, we are only interested in producing
sparse similarity matrices M , as low similarity regions are
unlikely to contribute to the subsequent search for repeated
trajectories. Thus, as we compute approximate cosine similar-
ities, we need only include them in M if they exceed some

402

Time (s)

T
im

e
(s

)

Exact Similarity Matrix, M

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time (s)

T
im

e
(s

)

Approximate Similarity Matrix, M

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(a) (b)
Fig. 1. Exact (a) and approximate (b) similarity matrices, both thresholded at 0.5, computed on 5 seconds of Switchboard speech. The boxed diagonal line
segment corresponds to two occurrences of the word “recyclable” spoken by the same speaker. For the approximate case, both LSH and PLEB are used with
the default values of Table I.

threshold δ. Now, O(PBn) neighbor comparisons can produce
at most O(n) entries of M , so as δ is lowered B must be
increased to prevent a substantial loss in the approximation.
Moreover, as the problem size grows, our linear space ap-
proximation will incur an increasingly substantial loss in M
if B is not increased accordingly. In Section III, we consider
approximation accuracy as a function of the PLEB parameters
on actual speech data.

Finally, in an effort to improve approximation accuracy with
a limited increase of B, we augment the basic PLEB routine
with an additional processing step tailored to the spoken term
discovery task at hand. Since our acoustic feature vectors have
a temporal ordering and we are searching for runs of similar,
near contiguous frames, finding an isolated pair of highly
similar frames will provide insufficient evidence for further
action downstream. Thus, given such a pair, we can perform
a constant number of comparisons in the temporal vicinity
to probe whether a run of similar frames are also present (as
compared to the sortal vicinity under stage (i) of basic PLEB).
We limit this search to diagonal probes in the similarity matrix
that assume perfect linear alignment of any repeated utterance,
if present. We introduce an additional parameter, D, that refers
to the total diagonal length in frames that we search upon
finding a pair of points whose similarity exceeds our similarity
threshold, δ (i.e., we test D/2 both forward and backward
in time). In the best case, we would need our approximate
search to find only a single pair of frames across a repeated
utterance to provide an anchor around which we could search
for additional matches nearby in the original temporal order.

In practice, it is often desirable to compute self-similarity
matrices as well as similarity matrices between distinct vector
times series (i.e. comparing two separate audio files). In this
case, the PLEB procedure needs to be outfitted for parallel
lexicographic sorts of LSH signatures of the two audio files
separately. The beam search and subsequent similarity com-

parisons are conducted across the two sorted lists, with extra
bookkeeping required to maintain two distinct scan positions.

Figure 1 displays an exact and approximate (using both
LSH and PLEB) cosine similarity matrix of 5 seconds of the
Switchboard corpus. In both cases, all cosine similarity values
below 0.5 are discarded. We find that the repeated utterance of
the word “recyclable” produces a clear diagonal line (boxed
in red). We find that the randomized algorithms introduce
a noticeable level of background noise, though the diagonal
correlation of that noise tends to be sufficiently limited. Thus,
sufficiently long diagonal lines arising from repeated words
and phrases may still be easily identified.

C. Two-Pass Repeated Trajectory Search

Given our sparse approximate similarity matrix M com-
puted with LSH and PLEB, we must now search for re-
peated acoustic trajectories that manifest themselves as closely
matching DTW paths. Performing exhaustive DTW search
on a large similarity matrix can become intractable quickly
given the O(n2) nature of the algorithm. Moreover, the sparse
matrix format does not lend itself to this traditional dynamic
programming solution. As such, we turn to the two-pass
search proposed in [6], which (i) performs a fast diagonal line
segment search for syllable-sized units in the sparse matrix
and (ii) performs a segmental DTW [1] search restricted to
those regions that had a sufficiently confident diagonal match.

1) Fast Diagonal Line Search: Treating our similarity ma-
trix as a real valued image, we can use common image pro-
cessing techniques to recover any present diagonal lines. We
borrow the method of [6], reproduced below for completeness:

1. Transform the matrix M into binary matrix M ′ by
applying a similarity threshold δ such that M ′

ij = 1 if
Mij > δ and 0 otherwise.

2. Apply to M ′ a diagonal μ-percentile filter of length L
with orientation parallel to the target line segments (45◦

403

relative to the x-axis of the image), allowing only diagonal
line structures of sufficient length (and thus sufficient
repeated trajectory duration) and density to pass.

3. Apply a Gaussian filter of width σ with orientation
orthogonal to the target line segments (−45◦ relative to the
x-axis of the image) to the thresholded image, transversely
smearing the remaining pixels to allow some variation in
speaking rate.

4. Apply a classical one-dimensional Hough transform (i.e.,
r is varied, θ fixed at −45◦) to the filtered image, amount-
ing to a projection of the image onto the line y = −x.

5. Use the peaks of the Hough transform to define rays
through which to search for line segments.

One complication to this simple approach is we must adapt
these techniques to the sparse matrix setting, which introduces
some extra bookkeeping. The interested reader may find more
details on this procedure in [6].

2) Match Refinement with Segmental DTW: While diagonal
line search can be efficiently performed using the Hough trans-
form, natural prosodic variation across acoustic realizations
of a given word type (both within and across speakers) can
easily break the warp-free assumption. The original spoken
term discovery approach addresses this reality by performing
an exhaustive segmental DTW (S-DTW) search for all possible
warped paths in the image [1]. However, the computational
cost of applying this globally was high, requiring 33 machine-
hours to process just one hour of speech.

We base our two-pass approach on the assumption that if
a strong nonlinearly warped match is present, it might still
contain a shorter, warp-free, syllable-sized line segment that
the first pass can discover. Thus, if we operate the first pass in
high recall, low precision mode, we can limit our application
of S-DTW to local regions around each diagonal line segment
match. In particular, given a detected line segment in the
first pass, we apply S-DTW to find the curve that (i) passes
through the midpoint of the line segment, and (ii) maximizes
the similarity path integral.

Our implementation of the S-DTW algorithm involves three
additional parameters. The first, meant to reasonably limit the
search space, is the maximal allowable deviation F (in frames)
of the optimal warp path from the diagonal. Next, to impose
the constraint that our optimal warp path passes through the
first-pass line segment, we start from the segment midpoint
and apply S-DTW both forward and backward in time with
a dissimilarity budget of C in each direction (i.e. we stop
growing the match when the path integral of (1 − Mij)/2
exceeds C). Finally, we trim the ends of the optimal path
by removing all initial or final points in the path that have a
similarity less than T .

III. EXPERIMENTS

Given we are proposing multiple stages of approximation,
we evaluated the performance of our approach at each point
in the pipeline from acoustic features to discovered terms. We
begin with a specification of the evaluation data and acoustic
front ends considered.

A. Evaluation Data and Representations

Our evaluation was limited to subsets of the Switchboard
conversational telephone speech corpus that, while consisting
of English speech, can be treated as a zero resource lan-
guage by abstaining from applying supervised techniques. We
borrowed the evaluation paradigm of [11] and [13], which
characterizes a representation’s ability to associate examples
of the same word type while simultaneously preventing incor-
rect matching across word types. Using time aligned word
transcripts for the Switchboard corpus, we extracted a set
of spoken word examples with a minimum duration of 0.5
seconds and minimum character length of 5 as text. Given
each pair of word instances, which can be drawn from the same
or different speakers, we computed their DTW distance using
cosine distance (one minus cosine similarity) as the frame-
level distance metric, using both the exact and LSH/PLEB
approximation. Each example pair is either of the same or dif-
ferent word type, setting up a natural information retrieval task
of isolating correct from incorrect word matches, for which
we can sample a precision-recall curve across the full range of
DTW distance thresholds. We characterized the quality of each
representation and similarity matrix computation strategy by
the resulting average precision (AP). For each experiment, we
report both overall AP and the AP restricted to word example
pairs from the same speaker.

All of our raw acoustic feature-based experiments (both
exact and approximate) were performed on top of the short-
time frequency domain linear prediction (FDLP-S) acoustic
front-end [23]. FDLP-S (39-dimensions, including velocity
and acceleration, sampled every 10 ms) was demonstrated
in [13] to outperform standard PLP and MFCC speech features
for this task, making them a natural starting point for our in-
vestigation into approximation methods. Note that the features
were globally normalized to zero mean and unit variance in
each dimension. In Section III-C, we compare the end-to-end
term discovery performance of our proposed approximation
methods to both matched (English) and mismatched-language
(German, Spanish) multilayer perceptron (MLP) acoustic mod-
els using the architecture of [24].

B. Similarity Matrix Approximation

Our first set of experiments examined the approximation
fidelity of the LSH and PLEB algorithms as a function of the
various algorithmic parameters. For each of these experiments,
we limited evaluation to a set of 10 Switchboard conversation
sides (approximately one hour of speech), containing 79,800
word example pairs, 646 of which are the same word type
(the target pairs), and 118 of those are also uttered by the
same speaker. Table II lists the average precision performance
(both within speaker and overall) for the exact similarity
computation as a function of cosine similarity threshold δ.
These performance values serve as the reference for the
approximation experiments that follow. The listed speedups
were all benchmarked comparing a single pair of 10 minute
conversation sides (n = 60, 000); thus, the exact similarity

404

TABLE II
AVERAGE PRECISION AS A FUNCTION OF COSINE DISTANCE THRESHOLD δ
USING EXACT DISTANCES BETWEEN THE ORIGINAL FDLP-S FEATURES.

Average Precision (%)
δ Same spkr Overall

0.75 46.9 13.2
0.50 71.4 38.3
0.25 73.8 45.2
0.00 73.5 45.3
-0.50 74.0 45.8
-1.00 74.3 45.8

TABLE III
AVERAGE PRECISION AS A FUNCTION OF COSINE DISTANCE THRESHOLD δ

USING LSH/PLEB WITH P = 4, B = 100, D = 20, b = 32.

PLEB Average Precision (%)
δ Speedup Ncomp Same spkr Overall

0.75 14.9 265 M 55.8 25.4
0.50 10.5 353 M 60.9 33.9
0.25 8.4 423 M 62.3 36.3
0.00 7.6 448 M 62.2 36.1
-0.50 7.4 455 M 62.1 36.6
-1.00 7.4 456 M 62.2 36.6

matrix computation required n2 = 3.6 billion frame-level com-
parisons. For each approximate similarity matrix computation,
we also list the number of frame-level comparisons performed,
denoted Ncomp, to be compared with the 3.6 billion of the
exact method.

Table III lists the LSH/PLEB approximation as a function
of the cosine similarity threshold, and is directly comparable
to Table II. Using the default LSH/PLEB parameter settings,
we achieved 88% of the overall AP of the exact compu-
tation in less than 1/10 the runtime. Interestingly, for high
similarity thresholds (e.g. 0.75), the approximation actually
outperformed the exact computation, as the noise induced by
LSH allowed more comparisons to exceed this overly strict
threshold, favoring same-type matching in subsequent DTW
computations. When considering absolute speedup values, it
is important to note that, in theory, the PLEB speedups
listed would grow linearly with n, making it beneficial to
concatenate conversations (at the expense of extra bookkeep-
ing downstream). However, it is important to also realize
that the number of comparisons performed by the PLEB
approximation is linear in n. Thus, if the similarity matrix is
not sufficiently sparse, B will have to grow with n to maintain
the same fidelity of approximation.

Table IV lists the performance for two LSH signature
sizes, 32 and 64 bits. Here, LSH speedup is the runtime
savings resulting from using the approximate cosine distance
calculation to perform a full n2 similarity matrix computation,
while PLEB speedup is the combined savings of the sparse
approximation. We find that the extra bits led to only a
minor LSH slowdown, but actually sped the PLEB portion
up overall by wasting less time on frame-level comparisons
resulting from LSH approximation error. Still, the extra bits
had little impact on the overall AP performance. Interestingly,
we observed a larger relative gain in the same speaker case,
as acoustic variation across speakers prevented cross speaker
matching from benefiting from the extra resolution.

TABLE IV
SPEEDUP AND AVERAGE PRECISION AS A FUNCTION OF SIGNATURE SIZE

S USING LSH/PLEB WITH δ = 0.5, P = 4, B = 100, D = 20.

Speedup Average Precision (%)
S LSH PLEB Ncomp Same spkr Overall
32 1.4 10.5 353 M 60.9 33.9
64 1.3 11.2 299 M 63.6 34.6

Next, we consider the competing role of the beam width B
and permutation count settings P of the PLEB algorithm, with
results in Table V. First, we observed the clear linear depen-
dence on B and P both in runtime and number of frame-level
comparisons made. We also observed a strong dependence of
AP performance on these settings, though saturation is evident
at B = 100 and P = 4. Indeed, when we increased the
beam width to 1000, our performance can actually drop, as the
noise from LSH approximation error can artificially improve
DTW scores between word examples of different types (all
at a significant increase in runtime). Finally, in Table VI we
examine the interdependence of beam width B and diagonal
probe length D. Since the diagonal probe was only performed
for beam search points exceeding threshold δ, runtime grows
more slowly in D than it does B. However, increasing D still
provided significant AP improvements, though they largely
saturate at B = 100 and D = 20. Note that diagonal probing
is the simplest means of secondary local search; indeed, a
greedy DTW search in the vicinity may prove more effective
and will be implemented in future efforts.

C. Spoken Term Discovery

Since the spoken term discovery algorithm produces a
limited set of predicted matches, the above-defined evaluation
strategy must be modified slightly. First, each discovered
repetition produced by our term discovery algorithm was
assigned a score equal to the DTW score between the two
intervals of speech. For each pair of word examples in our
evaluation set, we assigned a discovered repetition to it if it
overlapped at least 50% of the duration of both examples in the
evaluation pair. The score for the evaluation example pair was
subsequently defined as the DTW distance for the assigned
discovered repetition; if multiple discovered repetitions over-
lap the evaluation pair, we assigned the lowest possible DTW
distance, and if no overlapping discovered repetitions were
produced, we assigned a distance of infinity. Having assigned
each evaluation word example pair a distance score in this
fashion, we can sample a precision-recall curve as before.
However, given the inherent match duration thresholds built
into the term discovery procedure of Section II-C, average
precision ceases to be a natural metric. Thus, we resort to
R-precision (a.k.a. precision-recall breakeven) to characterize
end-to-end discovery performance.

For our spoken term discovery evaluation, we expanded
the Switchboard evaluation set to approximately 4 hours of
speech (40 conversation sides, distinct from the 10 used
earlier), containing a total of 944,625 word example pairs
(2021 same word type and 396 of these also uttered by the
same speaker) meeting the requirements for inclusion in the

405

TABLE V
SPEEDUP AND AVERAGE PRECISION FOR VARIOUS BEAM WIDTHS B AND

PERMUTATION COUNTS P USING LSH/PLEB (δ = 0.5, D = 20, b = 32).

PLEB Average Precision (%)
B P Speedup Ncomp Same spkr Overall
10 1 361.5 10.3 M 39.3 14.5
10 2 184.5 20.6 M 47.7 19.1
10 4 91.8 40.5 M 52.0 23.8
100 1 40.6 92.0 M 54.1 24.7
100 2 20.6 181 M 58.6 29.9
100 4 10.5 353 M 60.9 33.9
1000 1 4.8 774 M 50.6 26.8
1000 2 2.4 1.53 B 60.9 33.5
1000 4 1.3 2.93 B 60.2 32.9

evaluation. Table VII lists the total term discovery runtime
across the 4 hours of speech (in machine-hours; for wall clock
time, divide by your compute cluster size) and R-precision
for three model-based approaches (all using the posteriorgram-
based speedups of [6]) and the proposed randomized algorithm
methods. The English MLP entry is the matched acoustic
model case and sets a supervised performance ceiling for the
task. The Spanish and German MLPs are two mismatched
acoustic models, and provide two zero resource baselines.
We find that the proposed method, operating on raw features,
outperforms both mismatched acoustic model systems in R-
precision and represents the best published runtime for spoken
term discovery task in the zero resource setting. As an external
point of comparison, note that the exhaustive S-DTW approach
of [1] would require approximately 528 machine-hours to
process these four hours of speech.

IV. CONCLUSIONS

We have presented a solution to the spoken term discovery
task capable of operating on arbitrary raw acoustic features
and posts the best reported execution time to date in the
zero resource setting. We found that the randomized LSH
and PLEB algorithms provide a suitable strategy for efficient
computation of sparse approximate similarity matrices over
large collections of speech data, a fact that can potentially have
ramifications more broadly for speech applications involving
large similarity matrices. Finally, we have demonstrated that
our proposed method outperforms a mismatched acoustic
model-based strategy for efficient term discovery in both
runtime and accuracy.

ACKNOWLEDGMENTS

The authors would like to thank Samuel Thomas of the
Center for Language and Speech Processing at Johns Hopkins
University for assistance in preparing the FDLP-S acoustic
features and MLP acoustic models used in our experiments.

REFERENCES

[1] A. Park and J. R. Glass, “Unsupervised pattern discovery in speech,”
IEEE T-ASLP, vol. 16, no. 1, pp. 186–197, 2008.

[2] L. ten Bosch, H. V. hamme, and L. Boves, “A computational model of
language acquisition: Focus on word discovery,” in Interspeech, 2008.

[3] L. ten Bosch and B. Cranen, “A computational model for unsupervised
word discovery,” in Interspeech, 2007.

[4] A. Muscariello, G. Gravier, and F. Bimbot, “Audio keyword extraction
by unsupervised word discovery,” in Interspeech, 2009.

TABLE VI
SPEEDUP AND AVERAGE PRECISION FOR VARIOUS BEAM WIDTHS B AND

DIAG. PROBE LENGTHS D USING LSH/PLEB (δ = 0.5, P = 4, b = 32).

PLEB Average Precision (%)
B D Speedup Ncomp Same spkr Overall
10 0 966.5 2.40 M 29.1 8.4
10 10 187.6 19.5 M 49.3 21.3
10 20 91.9 40.5 M 52.0 23.8
100 0 195.0 24.0 M 52.4 23.3
100 10 23.1 171 M 61.3 33.3
100 20 10.5 353 M 60.9 33.9

TABLE VII
RUNTIME AND DISCOVERY R-PRECISION (RANKED BY MATCH DTW

DISTANCE) FOR ENGLISH PHONE POSTERIORGRAMS (MATCHED),
GERMAN/SPANISH PHONE POSTERIORGRAMS (MISMATCHED), AND THE

PROPOSED SYSTEM USING THE DEFAULT PARAMETERS OF TABLE I.

R-Precision (%)
Features Runtime Same spkr Overall

English MLP 2.51 m-hr 59.8 40.2
Spanish MLP 5.43 m-hr 29.4 7.3
German MLP 3.26 m-hr 48.4 18.9
FDLP-S LSH 2.71 m-hr 52.3 19.0

[5] G. Zweig, “New methods for the analysis of repeated utterances,” in
Interspeech, 2009.

[6] A. Jansen, K. Church, and H. Hermansky, “Towards spoken term
discovery at scale with zero resources,” in Interspeech, 2010.

[7] X. Anguera, R. Macrae, and N. Oliver, “Partial sequence matching using
an unbounded dynamic time warping algorithm,” in Proc. of ICASSP,
2010.

[8] R. Flamary, X. Anguera, and N. Oliver, “Spoken wordcloud: Clustering
recurrent patterns in speech,” in Proc. of CBMI, 2011.

[9] M. Dredze, A. Jansen, G. Coppersmith, and K. Church, “NLP on spoken
documents without ASR,” in Proc. of EMNLP, 2010.

[10] M.-H. Siu, H. Gish, A. Chan, and W. Belfield, “Improved topic classifi-
cation and keyword discovery using an HMM-based speech recognizer
trained without supervision,” in Proc. of Interspeech, 2010.

[11] A. Jansen and K. Church, “Towards unsupervised training of speaker
independent acoustic models,” in Interspeech, 2011.

[12] Y. Zhang and J. R. Glass, “Towards multi-speaker unsupervised speech
pattern discovery,” in Proc. of ICASSP, 2010.

[13] M. Carlin, S. Thomas, A. Jansen, and H. Hermansky, “Rapid evaluation
of speech representations for spoken term discovery,” in Proc. of
ICASSP, 2011.

[14] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig, “Syntactic
clustering of the web,” Computer Networks and ISDN Systems, vol. 29,
pp. 1157–1166, 1997.

[15] Y. Ke, R. Sukthankar, L. Huston, Y. Ke, and R. Sukthankar, “Efficient
near-duplicate detection and sub-image retrieval,” in In ACM Multime-
dia, 2004, pp. 869–876.

[16] D. Ravichandran, P. Pantel, and E. Hovy, “Randomized algorithms
and NLP: Using locality sensitive hash functions for high speed noun
clustering,” in ACL, 2005.

[17] S. Petrovic, M. Osborne, and V. Lavrenko, “Streaming first story
detection with application to Twitter,” in NAACL, 2010.

[18] J. Labiak and K. Livescu, “Nearest neighbors with learned distances for
phonetic frame classification,” in Interspeech, 2011.

[19] L. Jacques, J. N. Laska, P. T. Boufounos, and R. G. Baraniuk, “Robust 1-
bit compressive sensing via binary stable embeddings of sparse vectors,”
Arxiv preprint arXiv:1104.3160, 2011.

[20] M. Charikar, “Similarity estimation techniques from rounding algo-
rithms,” in STOC, 2002.

[21] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards
removing the curse of dimensionality.” in STOC, 1998.

[22] R. M. Karp, O. Waarts, and G. Zweig, “The bit vector intersection
problem,” in Proc. of FOCS, 1995.

[23] S. Thomas, S. Ganapathy, and H. Hermansky, “Recognition of rever-
berant speech using frequency domain linear prediction,” IEEE Signal
Processing Letters, pp. 681–684, 2008.

[24] ——, “Phoneme recognition using spectral envelope and modulation
frequency features,” in Proc. of ICASSP, 2009.

406

