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Abstract—This paper investigates neural network (NN) based
cross-lingual probabilistic features. Earlier work reports that
intra-lingual features consistently outperform the corresponding
cross-lingual features. We show that this may not generalize.
Depending on the complexity of the NN features, cross-lingual
features reduce the resources used for training —the NN has to
be trained on one language only— without any loss in perfor-
mance w.r.t. word error rate (WER). To further investigate this
inconsistency concerning intra- vs. cross-lingual neural network
features, we analyze the performance of these features w.r.t. the
degree of kinship between training and testing language, and the
amount of training data used.

Whenever the same amount of data is used for NN training,
a close relationship between training and testing language is
required to achieve similar results. By increasing the training data
the relationship becomes less, as well as changing the topology
of the NN to the bottle neck structure. Moreover, cross-lingual
features trained on English or Chinese improve the best intra-
lingual system for German up to 2% relative in WER and up
to 3% relative for French and achieve the same improvement as
for discriminative training. Moreover, we gain again up to 8%
relative in WER by combining intra- and cross-lingual systems.

Index Terms—neural network, cross-lingual portability, feature
extraction, LVCSR

I. INTRODUCTION

Several state-of-the-art large vocabulary continuous speech

recognition (LVCSR) systems based on subsystems with dif-

ferent acoustic front-ends are developed at RWTH [1], [2].

In order to benefit from the different acoustic front ends,

a complete GMM/HMM based training has been performed

independently for each front-end and language. Since neural

network (NN) probabilistic features have become a major

component of state-of-the-art speech recognition systems, NNs

have been trained independently for each language, too. In

the last years several investigations to further improve the

probabilistic NN features have been performed, resulting in

a very complex structure and high computational costs for

training these NNs [3], [4], [5]. Whereas the training of NNs

is extremely time consuming, NN decoding is very efficient.

Therefore, decoding a previously trained NN to provide acous-

tic probabilistic features for GMM/HMM training and for the

recognition step is an efficient reuse of resources available. By

this, we reduce the computational costs and resources in the

NN feature extraction process, without any loss in performance

w.r.t. word error rate (WER), whereas in [6] the acoustic

training has been simplified by combining different feature

streams by neural networks.

In [7] Tandem-PLP NN posterior features, trained on 1800

hours of English data, have improved the recognition results

for Arabic and Chinese. Nevertheless, the best results in [7]

have been obtained when the NN features are trained on

Chinese or Arabic, even when a small amount of less than

100 hours are used to train the NN and the acoustic model.

By adapting the weights of a previously trained NN to another

language the NN benefits from a good initialization, e.g. when

only a small amount of training data is available. Moreover, a

good initialization of the NN could save necessary resources

during training [8]. In [9] a developed Hungarian system

is improved by adapting English trained Tandem-PLP NN

features to Hungarian, where 2000h of English data have been

provided for NN training. Again, a very small amount of intra-

lingual data (7h) has been available only. Overall, a large

amount of data of another language as for the acoustic training

is used for NN training, whereas the acoustic model is trained

on a small amount of data only.

In contrast, in this paper we concentrate on the questions

of this inconsistency of NN training and testing language

concerning:

• the role of the structure/topology of the neural network

—only Tandem-PLP probabilistic features have been used

for acoustic training so far,

• the degree of kinship of training and testing language for

the (cross-lingual) NN probabilistic feature extraction,

• and the dependency on the amount of data used for

training the NNs.

Therefore, we have trained several NNs with hierarchical

structure and with and without bottle neck topology, on Chi-

nese, English, French and German [5], [3]. The corresponding

NN probabilistic features are evaluated on the Quaero task
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Fig. 1. Hierarchical processing of neural networks. Here the neural networks
consist of the bottle neck structure, where the output of an inner layer is taken
during decoding instead of the posteriors from the output layer. In training,
all five layer are used.

for French and German. We show that the topology of the

NN chosen is more significant than the specific training

language, since almost all NN features achieve similar results,

irrespective of whether training and testing language of the

NN matches. Moreover, we obtain the best results for French

and German when we use the (cross-lingual) NN features

obtained by forwarding the data to a NN trained on Chinese

or English. In addition, the time for training NN features for

each language is reduced significantly, because the time and

resources consuming NN training have to be performed on

one language only, here, to obtain best results, Chinese. After

training, the French and German training and testing data

are forwarded to the final NN and cross-lingual NN features

are provided. These cross-lingual features could be used for

GMM/HMM training without any loss in WER.

Finally we show, whenever different intra- and cross-lingual

NN features without any extra costs are available, the systems

trained on these features produce different complementary

errors. Moreover, we gain slightly more by the combination

of the different systems as shown in other system combination

experiments on the same corpus.

II. NEURAL NETWORK FEATURE EXTRACTION

In this section, we briefly summarize the different NN

topologies used in the probabilistic NN features extraction

step. The NN feature extraction step is based on the hier-

archical processing of NNs and on the bottle neck structure.

The hierarchical bottle neck topology used is the result of

an exhausting investigation in the field of NN features in

the last years [4], [5], [3]. In [10] a large comparative study

of several NN features like Tandem-PLPs, features based

on TempoRAl Pattern (TRAPs), their further development

to hidden activation TRAPs (HATs) and NN features based

on multi-resolution RASTA filtering have been performed. In

[3] the best approach is further developed resulting in the

very complex hierarchical bottle neck topology, Figure 1. The

training of such a hierarchical NN requires high computational

resources and therefore reducing this cost is of high interest.

Next, we will shortly summarize the input features used and

the hierarchical bottle neck topology.

A. Multi-resolution RASTA Features

In [11] an extension of the RASTA, the multi-resolution

RASTA (MRASTA) filtering is introduced. The filters are

realized by two dimensional band-pass filters using separate

ranges of modulation frequencies to extract a set of multiple

resolution filters. The RASTA filtering itself has been proposed

as a modification of the TRAP-based probabilistic features,

introduced in [12]. We use the MRASTA features as input to

train each of our NNs.

In order to extract the MRASTA features, 19 critical bands

of the auditory spectrum, extracted from the Fourier transform

of a signal every 10 ms are taken. Next, each critical band

is filtered with a bank of several low-pass filters represented

by six first derivatives and six second derivatives of Gaussian

functions.

B. Hierarchical Bottle Neck Processing

The concept of hierarchical bottle neck features combines

the advantages of the hierarchical processing of NNs and the

bottle neck topology [3]. As shown in Figure 1 the hierarchical

processing consists of a cascade of NNs, where the NNs use

the decoded features of a previous trained NN as input [3],

[13]. Such a hierarchical processing improves the accuracy of

the final posterior estimates and the complete ASR system

trained on the improved probabilistic features. On the other

hand, the goal of bottle neck features is to provide the ability

to compress the input raw features in an arbitrary size and to

ensure a good class separability of the output features [5].

In the hierarchical bottle neck processing the 3-layer NN of

the hierarchical processing is exchanged by the bottle neck NN

[3]. In order to provide the necessary modeling power the first

hidden layer uses 4000 nodes, whereas the bottle neck, second

hidden layer, is set equal to the number of output units. This

allows a direct comparison between the final posterior features

and the probabilistic features obtained from the bottle neck. In

order to further improve the classification error rate, the last

hidden layer has been enlarged again to 2000 nodes.

After training the first NN with the fast modulation frequen-

cies of the MRASTA features, the second NN (NN2) takes

the linear output of the bottle neck and the slow modulation

frequencies of the MRASTA processing as input. Next, the

linear output of the bottle neck of NN2 is normalized by

mean and variance normalization. Finally, the features are

transformed by PCA and are reduced to a dimensionality of

30. In the experimental section these features are referred to

as Hier.bn.mrasta. Hier.mrasta features are extracted by the

hierarchical processing without the bottle neck topology.

III. CROSS-LINGUAL NEURAL NETWORK FEATURES

In the last years, the topology of the neural network, as

well as the input features, have been under investigation,

resulting in a very complex, resources and time consuming

NN training step. Nevertheless, the decoding of such a NN

is very efficient. Therefore, instead of training NNs for each

database or language, our purpose is to train NN probabilistic

features on one database or language only and to reuse the
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trained NN in the decoding step to produce NN probabilistic

features for other databases as well. When the training and

testing language differ, the resulting NN features are referred

as cross-lingual NN features. Intra-lingual NN features are

extracted, when training and testing language are identical.

As shown in [7], [9], porting a previously trained NN to

other languages helps to improve the system performance.

There, the best results are obtained when intra-lingual NN

features are used, even though the cross-lingual features

are trained on a huge amount of data. In contrast to the

experiments done in [7], we have exchanged the Tandem-

PLP features by the complex Hier.mrasta and Hier.bn.mrasta

features, Section II-B. We have chosen a similar amount of

data to train the different NNs to analyze the relationship

between training and testing language. In our case, porting NN

features save computational costs and resources. Moreover,

we could simplify the development process of several speech

recognition systems for multiple languages by training a NN

for one language only. By decoding, the NN provides the

cross-lingual NN features.

In order to investigate the effect of the different NN features,

we have extracted intra-lingual NN features and cross-lingual

NN features for two European languages. After NN training,

we generate the cross-lingual NN features for French and

German by forwarding the data to the NNs trained on Chinese

or English, and the intra-lingual features by the NNs trained on

French and German. Again, we have taken the two languages

Chinese and English for training the NNs and to decode the

cross-lingual NNs to analyze the influence of the relationship

of training and testing language.

While the relationship for Chinese to French and German

is not as large as for English, we create, for comparison, the

Hier.mrasta and Hier.bn.mrasta NN features on a medium and

a large corpus. As shown in the experimental section, even

the medium corpus achieves good results. In Chinese tonal

information play an important role to distinguish tonemes,

phonemes with tonal information, and words [14]. Therefore,

all Mandarin ASR systems cope with these information [2]. In

European languages this information is not helpful to improve

the system performance. The Chinese system used is described

in detail in [2]. For comparison, the final NN features are

reduced by PCA to a 30 dimensional feature vector.

As in [3], the English Hier.mrasta and Hier.bn.mrasta

NN features are trained on 310h of speech data. The 44

phonetic targets are derived from a forced alignment of a

previously trained English system. The final Hier.mrasta and

Hier.bn.mrasta NN features are reduced to 95% of the vari-

ability by PCA to a 30 dimensional feature vector.

IV. ACOUSTIC MODELING

In order to evaluate the different NN features, several

ASR systems based on GMM/HMM models are trained. The

systems built are based on the French and German systems

used in the QUAERO 2010 Evaluation [1], competitive to

current systems within the project. The acoustic models are

trained with the RWTH speech recognition system [15].

A. Acoustic Features

Compared to [1], the acoustic front-ends of the systems for

French and German differ in the type of the NN probabilistic

features only. On one hand, the training is based on two

different types of NN topologies, the hierarchical processing

and the bottle neck structure, see Section II. On the other hand,

the training of the NN is performed on different training data

and languages. When training and testing languages of the NN

match, intra-lingual NN features are produced, cross-lingual

NN features, when a mismatch between the training and

testing languages exist. The final models are trained on French

and German. The extracted NN features are augmented with

classical short-term MFCC features resulting in a final feature

stream of 75 components. The MFCC features have been

normalized by segment-wise mean and variance normalization.

Furthermore, before augmented with the NN features, all

MFCC features within a sliding window of length nine are

concatenated and projected to a 45 dimensional feature space

using a linear discriminant analysis (LDA).

B. Acoustic Training

The acoustic models for all systems are based on triphones

with cross-word context, modeled by a 3-state left-to-right hid-

den Markov model (HMM). A decision tree based state tying is

applied resulting in a total of 4500 generalized triphone states.

The acoustic models consist of Gaussian mixture distributions

with a globally pooled diagonal covariance matrix.

In order to compensate for speaker variations constrained

maximum likelihood linear regression speaker adaptive train-

ing (SAT/CMLLR) is performed. In addition, during recogni-

tion, MLLR is applied to the means of the acoustic models.

For computational reason we disclaim a full training including

discriminative training.

V. CORPORA

The NN probabilistic features have been trained on Chinese,

English, French and German. In contrast, the training of the

acoustic models is performed on the French and German data

only. All data consist of broadcast news (BN) and broadcast

conversation (BC).

The training data of the two corpora for Chinese have been

collected by LDC and consist of audio data of the first four

years of the GALE project (releases P1R1-4, P2R1-2, P3R1-

2, P4R1). Whereas the large corpus is built from 1600h of

speech data from all releases, the medium corpus consists of

230h from the P1R1-4 data only.

Approximately 310 hours of American BN of speech data

are used for training the English probabilistic NN features.

The whole corpus consists of 140 hours of HUB4 speech data

and 170 hours of TDT4 data collected by LDC.

The training corpus for French consists of 140h of Es-

ter1 and Ester2. In addition, 90h of speech data collected

from various sources within the Quaero project are used for

training. The French NN probabilistic features as well as the

GMM/HMM training for French has been performed on the

full corpus of 230 hours.
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For German 50h of acoustic data are used. As for French,

this data are provided within the Quaero project and consists

of BC data collected from various sources of the web.

A more detailed description of the training data for Chinese

is given in [2], in [3] for English and for French and German

in [1].
TABLE I

ACOUSTIC DATA OF THE QUAERO DEVELOPMENT AND EVALUATION

CORPORA FOR FRENCH (FR) AND GERMAN (DE). THE DEVELOPMENT

CORPUS OF 2010, MARKED BY *, IS USED FOR TUNING THE PARAMETERS

OF THE FINAL ASR SYSTEMS.

Tuning and testing data
dev10* eval10 eval09

FR total data 3.8h 2.7h 3.9h
# segments 2478 1866 1067

DE total data 3.7h 3.4h 3.7h
# segments 1207 1126 1356

The evaluation of the systems is performed on the Quaero

development and evaluation data of 2009 and 2010 for French

and German. While the systems are tuned on the development

corpus, marked by * in Table I, the evaluation corpora are

used for testing only. Within the Quaero project, a transcription

and a manual segmentation of these corpora are provided. As

for the Quaero training data, the development and evaluation

corpora consist of a mix of different speech sources, contain-

ing broadcast news, broadcast conversation, several pod cast

shows and other speech data collected from the web. Table I

summarizes the development and testing corpora used.

In order to cope with high lexical variety in the German

language, a large number of distinct lexical forms can be

generated by derivation, compounding, and inflection, words

have been decomposed into sublexical fragments [1], [16].

After decoding, a preprocessing step joins the sublexical

fragments again.

VI. EXPERIMENTS

We have trained several recognition systems for French and

German using probabilistic features extracted by NNs trained

on Chinese, English, French and German to analyze the effect

of cross-lingual portability of the NN probabilistic features. In

addition, we compare the cross-lingual NN features and the

intra-lingual NN features. As reported in the literature, apply-

ing any NN features helps to improve the system performance

in terms of WER for all languages and corpora. We use a two

pass decoding system, where we apply the speaker adapted

model in the second pass.

A. French

As shown in Table II all NN features could gain over the

baseline system, and all systems using Hier.bn.mrasta features

outperform the corresponding systems based on Hier.mrasta

features. Moreover, the systems S2, S3 and S4 achieve similar

results, even so the training and decoding language of the NN

does not match. All results are within a range of 1% relative

and the amount of data used to train the NNs are approximately

the same. Here, the bottle neck structure produces language

independent features and provide a good global structure of

speech production, tied over different languages. The English

cross-lingual feature could benefit from its close relationship

of the European languages to each other, and achieve always

slightly better results as the corresponding Chinese cross-

lingual trained on a similar amount of data, here 230h.

TABLE II
RECOGNITION RESULTS FOR FRENCH AFTER SPEAKER ADAPTATION

USING CROSS-LINGUAL AND INTRA-LINGUAL NN FEATURES. THE NN
TRAINED ON CHINESE (CN), ENGLISH (EN) AND FRENCH (FR) ARE

USED TO PRODUCE THE NN FEATURES FOR FRENCH TO TRAIN A

GMM/HMM ASR SYSTEM. THE TOPOLOGIES USED TO TRAIN THE NN
ARE THE HIERARCHICAL MRASTA (HIER.MRASTA) AND THE

HIERARCHICAL BOTTLE NECK MRASTA (HIER.BN.MRASTA) PROCESSING.

NN-train WER[%]
language NN feature type dev10* eval10 eval09

FR (no NN features) 24.1 25.4 34.2
Hier.bn.mrasta (S3) 23.1 23.7 33.4

EN Hier. .mrasta 23.5 24.0 33.2
Hier.bn.mrasta (S2) 23.0 23.9 33.2

CN Hier. .mrasta.230 23.7 24.3 33.6
Hier.bn.mrasta.230 (S4) 23.3 24.1 33.3
Hier. .mrasta.1600 23.1 24.1 33.1
Hier.bn.mrasta.1600 (S1) 22.4 23.5 32.7

The best recognition result could be achieved by the

Hier.bn.mrasta features trained on 1600 hours of Chinese data

(S1). The huge amount of data could reduce the effect of

the degree of kinship of the training and decoding language.

This could also be verified for the structure of the neural

network. The Hier.mrasta features trained on 1600 hours of

Chinese data perform as good as the systems S2, S3 and S4.

Therefore, the combination of huge amount of data combined

with the topology of the neural network results in an absolute

improvement of 0.7% in WER by the Chinese cross-lingual

features compared to the intra-lingual features on dev10 and

eval09. Moreover, the improvement of 0.7% absolute in WER

is reported as improvements of discriminative training in

Table 5 in [1]. Therefore, we expect a further improvement

of the system when discriminative training is applied.
These results show that cross-lingual features are not always

worse than intra-lingual features. In this case, cross-lingual

features could even outperform the intra-lingual features. The

main reason for this is the large amount of training data

used and the bottle neck structure of the NN. Increasing the

amount of training data results in a more robust estimation

of the weights of the NN. Since the same amount of data is

sufficient to achieve similar results for cross- and intra-lingual

features when the relationship of training and testing languages

is close, the bottle neck structure gains most. System S1, the

NN is trained on Chinese, is improved by more than 0.6%

absolute by the bottle neck structure for all corpora. The bottle

neck structure is not only relevant for a good class separability

and to provide a good and compact representation of the input

features, the bottle neck structure focuses on speech production

aspect, common across different languages. This is supported

by the fact, that only the cross-lingual bottle neck features

could gain over the intra-lingual features. Cross-domain and

cross-system adaptation effects play an insignificant role only.
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B. German

Although, the amount of training data for the training of the

acoustic GMM/HMM model for German is smaller than for

the French task, we get similar results. Results are shown in

Table III. Again, system S3 and S4 and the system based on

Chinese Hier.mrasta features, trained on 1600 hours, perform

equally well on the dev10 and eval09 corpora, whereas on

eval10 a gap of 0.5% exists. This is due to the effect of the

degree of similarity of German and Chinese.

TABLE III
CROSS-LINGUAL AND INTRA-LINGUAL RECOGNITION RESULTS FOR

GERMAN AFTER SPEAKER ADAPTATION. THE NNS TRAINED ON CHINESE

(CN), ENGLISH (EN) AND GERMAN (DE) ARE USED TO DECODE NN
FEATURES FOR GERMAN TO TRAIN THE FINAL GMM/HMM ASR

SYSTEMS. THE TOPOLOGIES USED TO TRAIN THE NN ARE THE

HIERARCHICAL MRASTA (HIER.MRASTA) AND THE HIERARCHICAL

BOTTLE NECK MRASTA (HIER.BN.MRASTA) STRUCTURE.

NN-train WER[%]
language NN feature type dev10* eval10 eval09

DE (no NN features) 18.6 18.1 27.1
Hier.bn.mrasta (S3) 17.8 17.2 26.2

EN Hier. .mrasta 17.9 17.3 26.2
Hier.bn.mrasta (S2) 17.4 17.0 25.4

CN Hier. .mrasta.230 18.3 18.1 26.8
Hier.bn.mrasta.230 (S4) 17.9 17.9 26.4
Hier. .mrasta.1600 18.0 17.7 26.3
Hier.bn.mrasta.1600 (S1) 17.4 17.0 25.5

In contrast to the experiments on French, S2 performs as

good as S1. The system S2 performs so well on the German

task because the training domain of the German training and

testing data and the English data mostly consist of broadcast

news, whereas for the French task other domains are included

as well, e.g. podcasts from various sources of the web.

The best recognition performance of 17.4% on dev10 is

achieved by the Hier.bn.mrasta features trained on 1600 hour

of Chinese speech data (S1). This is a relative improvement

of over 2% in WER of the intra-lingual system (S3) on dev10

and 6.5% compared to the baseline system, which uses no

NN features at all. As shown in Table III, again the intra-

lingual system has been beaten by the cross-lingual features.

In addition, we could draw the same conclusion on the German

task as done on the French task. The degree of similarity

between training and testing language could be reduced by

increasing the data used for NN training and by the bottle neck

structure. Moreover, we could verify, that, even though each

language has its own phoneme set, languages share phonetic

distinction at the level of articulatory features, such as voicing,

frication and nasality.

Overall, the training process for French and German can

now be simplified. Instead of training two NNs for each

language, the training of the Chinese Hier.bn.mrasta on 1600h

is sufficient. The final cross-lingual features for German and

French are extracted by forwarding the data to the previously

trained Chinese NN.

VII. SYSTEM COMBINATION

In order to get a better analysis on how complementary the

intra-lingual and cross-lingual systems are, we have performed

system combination based on confusion networks as described

in [17] for systems S1-S4. See Table II and Table III for details

about the NN training language. The lattices are converted into

confusion networks and the weights for the different system

are optimized on the development set. We have performed

combination of two, three and four systems and the results

are shown in Table IV. Other combinations like ROVER have

been tested as well, resulting in slightly worse results.

The best recognition for French is achieved when we

combine all four systems, whereas the improvement is small

compared to the combination S1 ⊕ S2 ⊕ S3. Here, the weight

for S4 is set to 0.05 for German and 0.20 for French, whereas

the other weights are set equally. Whenever S1 and S4 are

combined, the weight for S4 is less. This is not the case

when S4 is combined with the other two systems. Since S2,

S3 and S4 perform equally well for French we get similar

results for the two and three system combinations and equal

combination weights for each system. Moreover, we get the

same result also for S1 ⊕ S4, whereas all other combinations

including S1 achieving a much lower WER. This is, because

both, S1 and S4 use cross-lingual features trained on Chinese

and therefore produce similar errors. This behavior has been

also observed on the German task, where e.g. S1 ⊕ S4 gets

the worst combination result of two systems.

Overall, we achieve an improvement of up to 5.5% relative

on the French task, and get a final WER on dev10 which is

slightly worse than the combination result in [1], but giving

a better generalization on eval10. We note, that the systems

here are trained without discriminative training which will

result in an additional improvement of 3%-5% relative. Due

to an improvement of the postprocessing step of the sublexical

fragments for German, we end up with a better baseline system

and a better final combination result.

VIII. SUMMARY AND CONCLUSIONS

In this paper, we ported cross-lingual NN features to French

and German. We showed that such features trained on Chinese

or English improved the recognition performance. Moreover,

we achieved similar results by the cross-lingual NN features

as for the intra-lingual features, when the NN is trained on

the same amount of data. The fact that cross-lingual features

were always outperformed may not generalize. Depending

on the amount of training data available for the specific

language and the NN topology used, the degree of kinship

of training and testing language got unimportant. Even more,

the good generalization of the bottle neck structure itself and

the compact representation of the input features by the bottle

neck had provided cross-lingual specific features. This helped

to reduce the degree of kinship of the training and testing

language for the cross-lingual features and to outperform the

intra-lingual features.

The Chinese cross-lingual Hier.bn.mrasta NN features

achieved the best recognition results on French and German
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TABLE IV
SYSTEM COMBINATION RESULTS FOR GERMAN AND FRENCH. THE SYSTEMS S1, S2, S3 AND S4, EACH USING THE HIER.BN.MRASTA FEATURES, ARE

COMBINED BY FRAME WISE LATTICE BASED SYSTEM COMBINATION. THE NN USED FOR FEATURE EXTRACTION ARE TRAINED ON CHINESE, ENGLISH,
FRENCH AND GERMAN. THE SYSTEMS COMBINED ARE MARKED BY X. WE HAVE TESTED THE COMBINATION OF TWO, THREE AND FOUR SYSTEMS.

Systems (NN training language) German (WER[%]) French (WER[%])

S1 (CN) S2 (EN) S3 (FR/DE) S4 (CN-230h) dev10* eval10 eval09 dev10* eval10 eval09

X 17.4 17.0 25.5 22.4 23.5 32.7
X 17.4 17.0 25.4 23.0 23.9 33.2

X 17.8 17.2 26.2 23.1 23.7 33.4
X 17.9 18.1 26.8 23.1 24.1 33.1

X X 16.3 16.0 24.5 21.5 22.6 31.6
X X 16.5 16.0 24.7 21.4 22.4 31.8
X X 16.9 16.5 25.0 21.8 22.9 31.8

X X 16.4 16.0 24.6 21.9 22.6 32.3
X X 16.5 16.4 24.8 22.0 23.0 32.1

X X 16.8 16.5 25.0 21.9 22.6 32.2

X X X 16.1 15.7 24.2 21.3 22.1 31.7
X X X 16.2 15.9 24.3 21.5 22.4 31.8
X X X 16.5 16.0 24.6 21.4 22.3 31.6

X X X 16.3 15.9 24.4 21.5 22.4 32.1

X X X X 16.0 15.7 24.1 21.3 22.1 31.5

and improved the best intra-lingual French system up to 3%

relative. Moreover, discriminative training, as reported in [1],

achieved the same improvement. So we expect an additional

improvement, when discriminative training will be applied. On

the German task, we ended up with a relative improvement of

up to 2%.
Overall, the system development circle for German and

French could be simplified now, without any loss of per-

formance w.r.t. WER. Instead of training NN probabilistic

features for each corresponding language within a project, a

training of Hier.bn.mrasta NN features for one language will

be sufficient —here Chinese. Since the NN feature extraction

was very efficient for decoding, cross-lingual NN features

reduced the necessary amount of training resources used and

optimized the overall training and decoding process and the

resources available.
Furthermore, if different ASR systems were available, we

showed that different cross- and intra-lingual NN features were

complementary to each other and that the combination of the

systems resulted in a further improvement of up to 6%-8%

relative. Overall, we got better recognition results for both

languages, as reported in [1].
In order to further improve the systems and complete the

analysis of the training of cross-lingual specific features by the

bottle neck structure, a detailed analysis of the error will be

necessary. Moreover, to verify the current results, experiments

on other European languages have to be performed as well. In

addition, the resources saved will be used to improve the NN

features further by increase the complexity of the NN.
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