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Abstract—We investigate cross-lingual acoustic modelling for
low resource languages using the subspace Gaussian mixture
model (SGMM). We assume the presence of acoustic models
trained on multiple source languages, and use the global subspace
parameters from those models for improved modelling in a
target language with limited amounts of transcribed speech.
Experiments on the GlobalPhone corpus using Spanish, Por-
tuguese, and Swedish as source languages and German as target
language (with 1 hour and 5 hours of transcribed audio) show
that multilingually trained SGMM shared parameters result in
lower word error rates (WERs) than using those from a single
source language. We also show that regularizing the estimation
of the SGMM state vectors by penalizing their �1-norm help to
overcome numerical instabilities and lead to lower WER.

I. INTRODUCTION

Large vocabulary continuous speech recognition systems

rely on the availability of substantial resources including

transcribed speech for acoustic model estimation, text for

language model estimation, and a pronunciation dictionary.

Building a speech recognition system from scratch for a

new language thus requires considerable investment in such

resources. Cross-lingual acoustic modelling has the aim of

significantly reducing the amount of acoustic training data

for a new target language, by leveraging on existing acoustic

models for other source languages. However, owing to differ-

ences such as different sets of subword units, this is not a

straightforward task. There have been three main approaches

to cross-lingual acoustic modelling: the use of global phone
sets, cross-lingual phone/acoustic mapping, and cross-lingual

tandem features.

Schultz and co-researchers [1], [2], [3], [4] have investigated

the construction of language-independent speech recognition

systems by pooling together all the phoneme units, as well

as the acoustic training data, from a set of monolingual

systems. The resultant multilingual acoustic model may be

used to perform transcription directly, or may serve as a seed

model to be bootstrapped or adapted to the target language

[1], [3]. More recently, this approach has been extended to

include confidence scoring for cross-language bootstrapping

and unsupervised training [5], [6].

Rather than constructing a global phone set, the mismatch

of phone units between source and target languages may be

addressed by a direct cross-lingual mapping between phones or

between acoustic models. Both knowledge-based [7], [8] and

data-driven [9], [10] approaches have been investigated. Given

a cross-lingual mapping, either the target language acoustic

model is derived from the source language model, or the

transcription of target language speech is performed using the

mapped source language acoustic model [10].

Tandem features, based on phone posterior probability es-

timates, were originally proposed to improve monolingual

speech recognition [11], but they have also proven effective

in the cross-lingual setting. In this approach, multi-layer

perceptrons (MLPs) trained using source language acoustic

data of source language, are used to generate the MLP phone

posterior features for the target language [12], [13], [14], [15].

As tandem acoustic features are not directly dependent on

the lexicon, this approach is simple to apply. In addition, the

training data of the target language can also be used to adapt

the MLPs to fit the target system better [14].

In this paper, we investigate a new approach for cross-

lingual acoustic modelling, based on the framework of the

subspace Gaussian mixture model (SGMM) [16]. In SGMMs,

the hidden Markov model (HMM) parameters are inferred

subject to a globally shared model subspace which captures

the principal model variations, as opposed to conventional

direct estimation. Phonetic and speaker variabilities, which are

key factors affecting recognition accuracy, can be modelled

using separate model subspaces in SGMMs [16]. As the model

subspace is independent of the HMM architecture, it may be

shown that the phonetic model subspace can be shared across

languages and can be trained using multilingual acoustic data.

This model subspace may be used to estimate models for a

new language with limited training data [17].

We have further developed these ideas, comparing the

performance of model subspaces estimated from the source

language in both monolingual and multi-lingual settings, and

using a regularized SGMM estimation approach [18] to ad-

dress numerical instabilities and possible overfitting that arise

in the case of highly limited training data. We have performed

experiments using the GlobalPhone corpus [4], using German

as target language and Spanish, Portuguese and Swedish as

source languages. We examined two evaluation conditions

with 1 hour and 5 hours of target language training data re-

spectively. We observed considerable reductions in word error

rate (WER) when using a multilingual subspace, and achieved

further WER reductions using �1-norm regularization.
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II. SGMM ACOUSTIC MODELS

SGMM acoustic models are similar to conventional Gaus-

sian mixture model (GMM) systems, in that the output pdf of

each HMM state is a GMM. The principal difference is that

the Gaussian means and the mixture component weights are

derived from the phonetic and speaker subspaces, in order to

capture the corresponding variability together with the weight

projection [16]. In addition, the covariance matrices (which

are normally full rather than diagonal) are shared between all

the HMM states. The model may be expressed formally as:

p(ot|j, s) =
Mj∑
m=1

cjm

I∑
i=1

wjmi N (ot|μμμ(s)
jmi,ΣΣΣi) (1)

μμμ
(s)
jmi = Mivjm +Niv

(s) (2)

wjmi =
expwT

i vjm∑I
i′=1 expw

T
i′vjm

(3)

where ot ∈ R
F denotes the t-th F -dimensional acoustic

frame, j is the HMM state index, m is a sub-state [16], I is

the number of Gaussians, and ΣΣΣi is the i-th covariance matrix.

vjm ∈ R
S is referred to as the sub-state vector, and S denotes

the subspace dimension. The matrices Mi and the vectors wi

span the model subspaces for Gaussian means and weights

respectively, and are used to derive the GMM parameters given

sub-state vectors (equations (2) and (3)). Similarly, Ni defines

the speaker subspace for Gaussian means, and v(s) ∈ R
T is

referred as the speaker vector where T denotes the dimension

of the speaker subspace. However, in this paper, we do not

perform speaker adaptive training using the speaker subspace.

A. Regularized State Vector Estimation

Maximum likelihood parameter estimation for SGMMs is

discussed by Povey et al. [16], in which the sub-state vector v̂
is estimated by maximizing the following objective function:

v̂ = argmax
v

−1

2
vTHv + vTy, (4)

where y is an S-dimensional vector and H is an S×S matrix,

representing the first- and second-order statistics respectively.

While the solution for non-singular H is v̂ = H−1y, Povey

et al. [16] presented a more practical approach to cover the

general case in which H may be singular.

In the case of limited acoustic training data, the system of

equations for estimating the sub-state vectors may be under-

determined or ill-conditioned. Moreover, maximum likelihood

estimation can lead to model overfitting. In our previous work,

we addressed these by regularizing the objective function [18]:

v̂ = argmax
v

−1

2
vTHv + vTy − Jλλλ(v), (5)

where Jλλλ(v) denotes a regularization function parametrized

by λλλ. From a Bayesian perspective, Jλλλ(v) may be interpreted

as a negative log-prior for the sub-state vector, in which

case equation (5) may be viewed as a maximum a posteriori
(MAP) estimate. Regularization functions investigated include

the �1-norm and the �2-norm penalties, corresponding to

Laplacian and Gaussian priors respectively, as well as their

combination, referred to as elastic net regularization. Our

previous experiments indicated that �1-norm regularization

offers slightly better performance in terms of both recognition

accuracy and model robustness [18]. Hence, in this paper, we

have concentrated on �1-norm regularization.

B. Modified Regularization

Regularizing all coefficients in the sub-state vectors (5),

forces the sub-state vector to shrink towards zero, correspond-

ing to a prior on the Gaussian means centered at the origin.

This is clearly demonstrated in Figure 6, where hundreds of

sub-state vectors are shrunk to zero for systems with a larger

number of sub-states. Intuitively, we would prefer a prior that

fits the general distribution of the data. To achieve this, we

modify the regularization such that the Gaussian means shrink

towards a universal background model (UBM). This is done by

setting the first coefficient of sub-state vector v to be 1, which

also forces the first column of phonetic subspace matrices Mi

to be the UBM means during model update. The regularization

penalty is applied to the remaining sub-state coefficients. For

�1-norm regularization, the objective function becomes:

v̂ = argmax
v

−1

2
vTHv + vTy − λ‖v‖�1 ,

s.t. λ ≥ 0, v[1] = 1.
(6)

where we are fixing the first coefficient of v to be exactly one.

If we adopt the following expressions:

v̂ =

[
1
v̂∗

]
,v =

[
1
v∗

]
,y =

[
a
y∗

]
,H =

[
b hT

h H∗

]
,

then equation (6) is equivalent to

v̂∗ = argmax
v∗ −1

2
v∗TH∗v∗ + v∗T (y∗ − h)− λ‖v∗‖�1 ,

s.t. λ ≥ 0.
(7)

This modified regularization, does not involve any change in

accumulating the statistics of H and y, and the code for the

original regularization [18] can be reused.

III. EXPERIMENTAL SETUP

We have performed a set of speech recognition experiments

using the GlobalPhone corpus [4], with German as the tar-

get language. Our main experiments have investigated low-

resource cases, in which we have used one hour and five hours

of target language acoustic training data. Before presenting

these cross-lingual experiments, we give a brief description of

the corpus and system configuration for our experiments, and

give results for the baseline monolingual systems, trained on

the complete data sets.

A. GlobalPhone Corpus

The GlobalPhone corpus [4] contains up to 20 languages

including English, Arabic, Chinese and a number of European

languages, and consists of recordings of a range of speakers

reading newspapers in their native language. There are about
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TABLE I
THE NUMBER OF PHONES AND SPEAKERS, THE AMOUNT OF TRAINING

AND DEVELOPMENT DATA (HOURS) FOR THE 4 LANGUAGES USED IN THIS

PAPER.

Language #Phones #Speakers Trn(h) Dev(h)
German (GE) 44 77 14.8 2.0
Spanish (SP) 43 97 17.2 2.0
Portuguese (PT) 48 101 22.6 1.5
Swedish (SW) 52 98 17.4 2.0

TABLE II
WORD ERROR RATES (WER %) OF GMM AND SGMM BASELINE OF

TARGET AND SOURCE LANGUAGES ON DEV DATASET.

Language LM PPL OOV Dict GMM SGMM
GE Trigram 422 5.2% 17k 25.7 24.0
SP Bigram 306 4.8% 17k 33.7 30.4
PT Bigram 393 4.3% 52k 29.3 25.9
SW Trigram 940 0% 23k 47.2 40.8

100 speakers for each language, and recordings were made

under a range of ‘quiet’ conditions, resulting in about 15–20

hours of high quality speech for each language. However, since

the recording locations vary, acoustic conditions also vary both

within and between each language. Hence, corpus mismatch

may degrade the performance of cross-lingual systems.

In these experiments, German (GE) was used as the target

language, and Spanish (SP), Portuguese (PT), and Swedish

(SW) as the source languages. Table I describes the data

for each language used in the experiments in terms of the

number of phonemes and speakers, and the amount of training

and development data. Our baseline monolingual systems,

described below, used the complete training sets for each

language. In the cross-lingual experiments (section IV), we

used the full training sets for the source languages, but limited

training sets (1 hour and 5 hours) for the target language.

B. Baseline Monolingual Systems

We constructed GMM-based baseline systems for each of

the four languages, based on the system of Lal [15]. We used

12th order mel-frequency cepstral coefficients, plus energy,

with first and second derivatives, to give a 39-dimension

acoustic feature vector. We applied cepstral mean and variance

normalization, and used HTK1 to build the acoustic models.

For the German GMM baseline, we used 3125 triphone states,

and 16 mixture components.

The baseline monolingual SGMM systems used the same

acoustic feature vectors and the same context dependent phone

clustering as the corresponding baseline GMM system. We set

the number of Gaussians I = 400, and the sub-state vector

dimension S = 40. The open source Kaldi software2 was

used for the SGMM systems in this paper. Table II gives the

baseline monolingual WERs for each of the four languages.

We used trigram language models for all experiments, except

the baseline monolingual systems for Spanish and Portuguese.

Following Burget et al. [17], a multilingual SGMM was

constructed by tying ΣΣΣi, Mi and wi across the source lan-
1http://htk.eng.cam.ac.uk
2http://kaldi.sourceforge.net/

TABLE III
TOTAL TRACE OF COVARIANCE AND SUBSPACE MATRICES GIVEN BY THE

SOURCE SGMM SYSTEMS, S = 40.

SP PT SW Multilingual
# of states 2298 3140 3153 -

# of sub-states 20k 20k 20k -∑
i tr(ΣΣΣi)/10

3 8.02 8.07 8.14 8.15∑
i tr(MiM

T
i )/103 16.1 12.9 11.9 11.2

guage (SP, PT, SW) monolingual SGMM systems, i.e. those

parameters were updated by summing up all the related statis-

tics across the source languages. This means the number of pa-

rameters in multilingual and monolingual system are the same

for each language, and the only difference is in estimating the

globally shared parameters. In this paper, we renormalized the

phonetic subspace [19] (Appendix K) to concentrate the most

important variation in the lower-numbered dimensions. This

also allowed us to use a lower dimension subspace for cross-

lingual systems without retraining the subspace parameters Mi

and wi. Table III shows the size of ΣΣΣi and Mi estimated in

both monolingual and multilingual fashion.

IV. CROSS-LINGUAL EXPERIMENTS

In this section we present results of the cross-lingual acous-

tic modelling experiments, in cases where we have limited

target language resources. Our experiments use German as the

target language and we have investigated two levels of limited

acoustic training data, 1 hour and 5 hours, in order to provide

an estimate of the amount of transcribed speech needed for an

acceptable recognition accuracy. These training data subsets

were randomly selected from the complete German training

set, from which we selected 7–8 minutes of recorded speech

from each of 8 and 40 speakers for the 1 hour and 5 hour sys-

tems respectively. The globally-shared SGMM parameters for

these cross-lingual systems were obtained from monolingual

source language systems, or from the multilingually-trained

SGMM using all the source languages.

A. Cross-lingual Experiments: 1 Hour Training Data

With 1 hour training data, we trained the target language

(GE) GMM baseline system which had 620 triphone states,

each of which was modelled using 4-component GMMs. The

baseline and the cross-lingual SGMM systems used the same

context-dependent phonetic clustering as the GMM system,

and the dimension of sub-state vector is set to be S = 20 for

all the SGMM systems. In the baseline SGMM systems, all

the parameters in equations (1–3) were updated: the sub-state

vectors vjm and the globally shared parameters Mi,wi and

ΣΣΣi. In the cross-lingual systems, only the sub-state vectors vjm

were re-estimated, with the globally shared parameters taken

from the source language or multilingual systems. Hence, with

the same number of sub-states, the number of active param-

eters are the same for all cross-lingual systems, but there are

much smaller than that in the corresponding baseline SGMM

system. As discussed earlier, the subspace parameters were

renormalized and we only used a 20-dimension subspace for

the cross-lingual system without retraining these parameters.
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Fig. 1. 1 Hour Training Data: WER of baseline GMM and SGMM system
(41.2% vs. 38.0%) as well as cross-lingual systems. For all SGMM systems,
the dimensionality of the sub-state vectors is set to be S = 20. The lowest
WER (35%) is obtained from the multilingual subspace system (w/Mul).

In contrast to Burget et al. [17], the number of tied states

was fixed rather than being increased (from 500 (GMM)

to 1000 (SGMM) to 1500 (multilingual SGMM), in their

experiments on CallHome). This clearly demonstrates that the

improvements are due to better estimation of the parameters,

and not because the SGMM systems allows for estimation of

a larger number of context-dependent models for the same

amount of data. We expect that the results reported here will

improve further by increasing the number of tied states.

The WERs for the monolingual GMM and SGMM systems

trained on 1 hour of data were 41.2% and 38.0% respectively,

a significant increase in WER compared with the case when

they were trained with the complete 14.8 hour training data set.

The SGMM system again has a considerably lower WER than

the GMM system, as was observed by Burget et al. [17]. The

performance of the cross-lingual systems is shown in Figure 1

with the globally shared parameters obtained from each of

the source language systems, as well as the tied multilingual

system. The results indicate that the system with multilingually

trained subspace parameters results in considerably lower

WERs compared with the other cross-lingual systems derived

from a single source language, as well as compared with the

SGMM baseline. We may also observe that the cross-lingual

system with Spanish subspace (denoted as “w/SP”) results in

a higher WER compared with the other cross-lingual systems.

In addition to factors such as linguistic differences and corpus

mismatch, this difference may also be due to the larger model

subspace in the Spanish system (Table III) which may make

it harder for the data to saturate the model.

While training a model with 40-dimensional sub-state vec-

tors (i.e. S = 40) we encountered numerical instabilities. This

is shown in Figure 2, where the condition number of the co-

variance matrix of the sub-state vectors start increasing rapidly

and the estimation failed, leading to a decrease in the log-

Fig. 2. 1 Hour Training Data: Training of 40-dimensional sub-state vectors
showed numerical instability after a few iterations. Condition number of the
covariance matrix of the sub-state vectors start increasing rapidly and the
estimation failed, leading to a decrease in the log-likelihood. This was fixed
using a regularized sub-state vector update.

Fig. 3. 1 Hour Training Data: WER of cross-lingual systems with and without
�1-norm regularization. Regularization does not bring performance gains but
slight degradation for systems with 20-dimension state vectors, and there are
omitted in the figure for clarity. For the multilingual subspace system (w/Mul)
with S = 40, the best performance is 32.7% by original regularization and
31.9% by modified regularization (M).

likelihood. Other measures like the determinant and trace of

the covariance of vjm as well as the maximum and minimum

elements of the vectors show similar trends. The precise reason

for this instability is currently under investigation.

However, using a regurlarized estimation of the 40-

dimensional sub-state vectors, with a relatively strong penalty

on their �1-norm, we could not only train the systems but

also observe significantly lower WERs for all cross-lingual

systems (Figure 3). Applying �1-norm regularization to the

20-dimension cross-lingual SGMM systems results in slightly

higher WERs, even with a relatively weak regularization

penalty. This is probably due to the relative simplicity of the

368



TABLE IV
MEAN AND VARIANCE OF THE 1st COEFFICIENT IN THE STATE VECTORS

OF THE CROSS-LINGUAL SYSTEMS WITHOUT REGULARIZATION.

System w/SW w/SP w/PT w/Mul
Mean 1.006 0.889 0.946 1.019
Varance (×10−3) 9.75 16.83 17.53 9.33

TABLE V
WER OF GMM AND SGMM BASELINE SYSTEMS WITH 5 HOUR TRAINING

DATA.

System WER(%)
GMM baseline 34.3
SGMM baseline, S = 20 31.1
SGMM baseline, S = 40 32.0

20-dimensional subspace model.

Results for the modified regularization (equation 7) are

also shown in Figure 3. The modification is based on the

assumption that the first column of Mi corresponds to global

means, which should be learned by fixing the first coefficient

of vjm to 1. However, the source language systems were not

trained with this constraint, leading to a potential mismatch.

Yet we found that modified regularization led to modest

improvements in WER for subspaces trained using Swedish

and multilingual data, but not for Spanish and Portuguese.

Table IV shows that this was due to serendipity, as the first

element of the state vectors had a mean value of nearly 1

with low variance for the Swedish and multilingual systems,

but that was not the case for the other two systems in which

modified regularization was ineffective.

B. Cross-lingual Experiments: 5 Hour Training Data

We increased the amount of target language acoustic train-

ing data to 5 hours and trained the baseline monolingual GMM

and SGMM systems. The GMM system had 1561 tied triphone

states and each state is modelled by an 8-component GMM.

As before, all the following SGMM systems share a context-

dependent phonetic clustering with GMM system. WERs of

these baseline monolingual systems are shown in Table V.

The results of the cross-lingual systems are shown in Fig-

ure 4 where the dimension of sub-state vectors are still S = 20.

Again, the cross-lingual system with multilingual subspace

parameters denoted as (“w/Mul”) results in the lowest WER.

The results of the regularized cross-lingual SGMM systems

are shown (for the multilingual subspace) in Figure 5, and the

results are broadly consistent with the 1 hour case. We did not

observe any reductions in WER when regularizing the baseline

system (S = 20), but we were again able to observe significant

reductions in WER when regularizing a cross-lingual SGMM

with dimension S = 40.3 A small improvement in WER

was observed using the modified regularization approach, from

26.8% (original) to 26.6% (modified).

C. Sparsity Analysis

The �1-norm regularization used in this paper is able to

penalize the model complexity of cross-lingual systems in
3Once again, it was not possible to train a system with S = 40 without

regularization.

Fig. 4. 5 Hour Training Data Case: WER of cross-lingual systems. In these
experiments, the dimension of state vectors is 20. The best performance is
achieved by multilingual subspace system denoted as ”w/Mul” and the WER
is 28.6% which is considerably better than 31.1% by SGMM baseline.

Fig. 5. 5 Hour Training Data Case: WER of cross-lingual systems with and
without the original �1-norm regularization and the modified regularization
(M).

order to achieve model robustness. In addition, it also has

the effect of driving some coefficients to zero, thus leading to

a kind of variable selection, where the most relevant bases

from Mi and wi get used. In Figure 6 we can see the

proportion of parameters set to zero by the �1-regularization.

Not surprisingly, with sub-state splitting, the sub-state vectors

are driven to be increasingly sparse as the amount of acoustic

frames aligned to each sub-state decrease accordingly.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have investigated the use of SGMMs for

cross-lingual speech recognition when the target language has

limited acoustic training data. Following experiments using

one and five hours of target language acoustic training data,

we are able to draw four principal conclusions:

1) The SGMM-based systems are consistently better than

the GMM-based systems, in terms of WER.

2) Cross-lingual SGMM systems with global subspace pa-

rameters estimated from tied multilingual systems re-

sult in lower WERs compared to systems with global
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Fig. 6. Sparsity achieved by �1-norm regularization for the “w/Mul +
regularization” system in Figure 5. With larger number of sub-states, hundreds
of sub-state vectors are set to the zero-vector.

Fig. 7. A summary of results: the WER of the 5-hour SGMM system with
multilingual subspaces and 40-dimensional sub-state vectors estimated with
�1-norm regularization is within 1% of the GMM system and within 3% of
the SGMM system trained on the full training set.

subspace parameters estimated from invididual source

language systems.

3) Cross-lingual SGMM systems with a multilingual sub-

space result in lower WERs than monolingual SGMM

systems built from scratch with the same data.

4) Regularising cross-lingual SGMM systems (using the �1-

norm) enables a higher dimension sub-state vector to be

used, resulting in a reduced WER.

In this work, the out-of-domain subspace parameters are

fixed in all the cross-lingual systems. In future work, we would

like to investigate the adaptation of those parameters using

the target language acoustic training data. In particular, we

are interested in the MAP adaptation of the phonetic subspace

matrix Mi where the cross-lingual and multilingual subspace

will serve as priors in the model estimation.
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