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Abstract—This study is focused on the performance of Proba-
bilistic and Bottle-Neck features on different language than they
were trained for. It is shown, that such porting is possible and
that the features are still competitive to PLP features. Further,
several combination techniques are evaluated. The performance
of combined features is close to the best performing system.
Finally, bigger NNs were trained on large data from different
domain. The resulting features outperformed previously trained
systems and combination with them further improved the system
performance.

I. INTRODUCTION

The increasing interest in speech-to-speech translation and
automatic processing of low-resource languages led to research
of multilingual approaches which would ease the system
development for a new language. The biggest cost factor
in such development is the need of training data for the
acoustic model. Several techniques have been investigated to
alleviate this problem. The cross-language transfer applies a
system developed on one language to another one. It has been
shown that the performance in new language is proportional to
the similarity of the languages [1]. The language adaptation
technique adapts the system to a new language with only
limited data. The performance of the adapted system depends
on the amount of available data [2]. When the amount of
data becomes sufficient for full training, the bootstrapping
technique can be used for initializing the new language system
by the original one.

But having low-cost monolingual systems might not solve
the problem completely. To process a recording with un-
known language, it would be necessary to perform language
identification on the given recording and then to load the
appropriate ASR system. A multilingual system combining
the phonetic inventory of several languages into one acoustic
model will benefit from total parameter reduction and leaving
out the language identification system. Moreover, multilingual
system can switch the languages within one utterance. Further
research has shown that such multilingual acoustic model also
improves all techniques mentioned above [3], [4]. Addition-
ally, these systems can also better handle foreign accented
speech [5].

The up-rise of neural network (NN) based features in
last few years ported the problem of multilinguality from
acoustic modelling to feature extraction process. The NN-
based features are obtained from the NN which is trained on

data from particular language. Ideally, the same data is used for
both, neural network and acoustic model training. In practice,
for every acoustic model, also the feature extraction block is
trained. The first study of portability of NN-based features was
done in [6].

Since then, the NN-based features progressed from the role
of cepstral features helper to their competitors so they can be
used without cepstral features [7], [8]. This shift makes the
question of multilinguality of NN-based features an urgent
one – will it be possible to use the NN-based features for new
language without the need for (re)training the NN?

Several recent works address the multilinguality of NN:
in [9], [10] the authors focused on the usage of NN in language
identification system, either through phonotactic model or by
training a NN to classify languages. The closest to our problem
is the work of Scanzio [11], where a majority of the NN is
common for all languages and only the last layer is language
specific. This NN, including its language specific part, is then
used in a hybrid HMM-ANN.

Our study focuses on the behavior of Probabilistic and
Bottle-Neck features [7] trained on a particular language in
a system designed for a different language. Further, possibil-
ities of obtaining NN-based features using data from several
languages are examined and evaluated.

II. EXPERIMENTAL SETUP

A. Data

The data comes from multilingual database Global-
Phone [12]. The database covers 19 languages with an av-
erage of 20 hours of speech from about 100 native speakers
per language. This database aims for an acceptable Out Of
Vocabulary (OOV) rate in test sets but with occurrences of
words from other languages. This requirement was satisfied by
newspaper articles which were read by native speakers. The
database covers speakers of both genders in ages from 18 to
81 years. The speech was recorded in office-like environment
by high quality equipment. We converted the recordings to
8KHz, 16 bit, mono format.

The following languages were selected for the experiments:
Czech (CZ), German (GE), Portuguese (PO), Russian (RU),
Spanish (SP), Turkish (TU) and Vietnamese (VN). These lan-
guages were accompanied with English (EN) taken from Wall
Street Journal database. See Tab. I for detailed numbers of
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TABLE I
NUMBER OF SPEAKERS AND AMOUNT OF AUDIO MATERIAL IN HOURS

OVERALL, FOR TRAINING, DEVELOPMENT AND TESTING

Lang. Speakers Audio TRAIN DEV TEST
GE 77 18 13.2 1.8 1.3
CZ 102 29 26.8 1.2 1.9
EN 311 16 14.2 1.0 1.0
SP 100 22 13.4 1.2 1.2
PO 102 26 14.7 1.0 1.0
TU 100 17 12.0 1.6 1.4
VN 129 19 14.7 1.2 1.3
RU 115 22 16.9 1.3 1.4

TABLE II
DETAILED INFORMATION ABOUT LANGUAGE MODELS AND TEST

DICTIONARIES FOR INDIVIDUAL TASKS.

Dict LM Corpus WWW
Lang OOV Size Size Server
GE 1.92 375k 19M www.faz.net
CZ 3.08 323k 7M www.novinky.cz
EN 2.30 20k 39M WSJ - LDC2000T43
SP 3.10 135k 18M www.aldia.cr
PO 0.92 205k 23M www.linguateca.pt/

cetenfolha
TU 2.60 579k 15M www.zaman.com.tr
VN 0.02 16k 6M www.tintuconline.vn
RU 1.44 485k 19M www.pravda.ru

speakers and data partitioning. Each individual speaker appears
only in one set. The partitioning followed the GlobalPhone
recommendation.

When preparing the databases, several problems were en-
countered. The biggest issue was the low quality of dictio-
naries with many missing words. The Vietnamese dictionary
was missing completely. The typos and miss-spelled words
were corrected, abbreviations were expanded and missing
pronunciations were generated with in-house grapheme-to-
phoneme conversion tool. The dictionaries for Vietnamese and
Russian were obtained from Lingea1. The CMU dictionary was
used for English. If the transcription contained a completely
unknown word, the sentence was deleted. The final OOV rate
is between 1% and 3%, for Vietnamese (syllabic language) it
is 0.02%, see Tab. II for details.

The transcription and dictionary encoding was converted to
single format suitable for HTK toolkit. Each language has its
own phoneme set.

The data for Language Model (LM) were obtained from
Internet sources (newspaper articles) using RLAT and SPICE
tools2. The size of gathered corpus for LM training together
with the sources are given in Tab. II. Bigram LMs were
generated for all languages except Vietnamese, which is a
syllable language and trigram LM was created for it.

1http://www.lingea.com
2http://i19pc5.ira.uka.de/rlat-dev/index.php,

http://plan.is.cs.cmu.edu/Spice/spice/index.php
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Fig. 1. Block diagram of Bottle-Neck feature extraction
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Fig. 2. Block diagram of Probabilistic feature extraction

B. Probabilistic and Bottle-Neck features

The probabilistic and bottle neck features are obtained
similarly to [7]: critical band energies are computed from the
speech signal first, using standard 25ms window and 10ms
shift. A filter-bank with 15 Mel-scaled filters is used. Then,
the energies are mean-normalized within the given segments.
Further, the block of 31 frames (context of ±15 frames) is
taken and Hamming window followed by Discrete Cosine
Transform (DCT) is applied on the trajectory of each energy
coefficient. The DCT retrieves 16 coefficients including the
0

th one. Finally, there are 15×16 = 240 coefficients creating
input vector for NN training. The TRAIN part of the data is
used for NNs training, the DEV part is used as cross-validation
set.

The target labels associated with each frame are obtained by
forced alignment using a baseline PLP system (see Sec. II-C).
The labels represent states of context-independent phoneme
models. The numbers of NN targets per language are given in
Tab. III.

The Probabilistic and Bottle-Neck features are obtained
from a single fully connected NN with approximately 250 000
trainable parameters. This simple approach is preferred over
structure of several NNs (although it provides better ASR
performance [13]) to keep the experimental setup straight
and to avoid expansion of experiments in a direction of NNs
structures.

The Bottle-Neck (BN) features are obtained from 5-layer
NN where the middle hidden layer (BN layer) has the size of
the desired feature vector. The first and the third hidden layers
have the same size. The outputs of BN layer are decorrelated
using Heteroscedastic Linear Discriminant Analysis (HLDA)
transform which treats every state of HMM model as a class.
Block diagram of BN feature extraction is shown in Fig. 1.
The Probabilistic features are obtained by a 4-layer NN where
the first and the second hidden layers have the same size. The
output probability estimates are processed by logarithm non-
linearity and decorrelated by Linear Discriminant Analysis
(LDA) which also reduces the vector dimensionality to 30
coefficients. LDA classes corresponds to NN targets. The use
of HLDA was not possible because of insufficient data to
collect the statistics (large input vector) for the transformation
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TABLE III
NUMBER OF NN TARGETS AND BASELINE RESULTS [WER%] FOR

SYSTEMS TRAINED ON PLP, PROBABILISTIC AND BN FEATURES

NN results with features
Lang. targets PLP Prob BN
GE 129 28.2 26.8 25.4
CZ 129 24.2 20.4 20.1
EN 123 17.6 17.4 16.2
SP 126 25.0 23.4 24.1
PO 141 28.0 26.5 26.1
TU 93 34.5 31.6 31.6
VN 258 28.4 30.5 23.5
RU 174 35.4 32.9 33.6

computation and resulting features provided worse recognition
performance then those with LDA transform. Block diagram
of Probabilistic feature extraction is given in Fig. 2.

Since this study is focused on the behaviour of language-
dependent NN-based features in systems built for other lan-
guages, the resulting features are not augmented with any other
features (PLP, deltas).

C. Recognition system

The recognizer system is based on HMM cross-word tied-
states triphones acoustic models. The models contain ≈3000
tied states with 18 Gaussian mixtures per state. Models for
each parameter set were trained from scratch using mixture-
up maximum likelihood training.

Mel-filter bank based PLP coefficients were used as lan-
guage independent parameters. There were 13 direct parame-
ters augmented with deltas and double-deltas totaling in fea-
ture vectors with 39 coefficients. Cepstral mean and variance
normalization was applied on speaker basis. The resulting
models were used for forced alignment of the data preceding
the NN training.

Apart from the PLP baseline, the 4- and 5-layer NNs
were trained on each language representing the ideal case
of the same data for NN and acoustic model training. All
these results are given in Tab. III. It can be seen that for all
languages except Vietnamese Probabilistic features, the NN-
based features performs better then the PLP features. The poor
results obtained by Probabilistic features in case of Vietnamese
can be explained by large number of classes and inefficient
dimensionality reduction. As can be seen, this problem is
overcome by the dimensionality reduction embedded in NN
architecture in the BN feature extraction.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Since the study is focused on the behavior of NN-based
features obtained on one language in different language sys-
tem, the division between “old” and “new” languages has to
be made. The old languages should represent well established
systems and databases for their training: we have selected
German, Czech and English. This languages are chosen for
our previous experience with them and also for the availability
of native speakers in our group who are able to check the
correctness of transcripts and dictionary entries. The rest of
the languages will play the role of new languages.

TABLE IV
RESULTS [WER%] OF NN BASED FEATURES FROM Old LANGUAGES

APPLIED TO New LANGUAGES.

NN trained on
GE CZ EN

Lang. Prob BN Prob BN Prob BN
SP 24.9 30.6 24.9 26.8 27.1 29.3
PO 28.4 31.5 27.6 27.9 29.7 31.3
TU 37.5 39.9 34.1 35.0 36.0 37.6
VN 34.7 37.8 30.9 32.7 34.1 34.9
RU 37.5 40.7 33.2 35.9 37.7 39.8

A. Applying NN in different language

The first step in our evaluation is to simply apply old NN-
based features into a new language. The results are given in
Tab. IV. This experiment would represent the worst scenario
in the sense, that only a single old language is available. Note,
that the decorrelation step is done on the new language data.

By taking a look at Tab. IV, it can be seen that from BN
features, the best performing are the CZ ones. Comparing them
with Tab. III, an increase of WER is observed, but for some
languages (PO, TU, RU) the features are still competitive to
language-independent PLP features. Although the Probabilistic
features are inferior to BN features in matched language sce-
nario, in this case they are superior. We hypothesize that this
behavior is caused by the larger variability in the probability
outputs and that the following LDA decorrelation is able to
find the directions important for the new language.

B. Concatenation of NN outputs

This scenario is aimed at a fast application of already
trained NNs into new language domain. The simple way, to
combine outputs of several NN is to merge their outputs.
Several methods of probability averaging were proposed for
multistream approach (for example [14]) but this technique
assumes the same target classes for all NNs. In this scenario,
each NN is trained on different language and thus having
different target classes. Moreover, the averaging approach
cannot be used for BN outputs. On the other hand, our goal is
not to precisely classify given classes, but to obtain features for
the subsequent model. Since the decorrelation step is always
in the processing chain, it can also effectively handle the task
of NN output merging.

The new language data are processed by two (three,...) NNs
in parallel and the output vectors from these NNs are concate-
nated. The resulting vector is decorrelated and desired dimen-
sionality obtained. The results achieved by concatenation of
(e.g. CZ and GE ⇒ CZ.GE) NNs are given in Tab. V. Looking
at the results obtained with BN features, it can be seen that
they are similar to the one obtained with Czech NN only. This
indicates, that improving resulting BN features by the means
of parallel data processing by several NNs might be more
difficult. The positive finding is that concatenated systems are
more robust and the system performance is close to the best
one achieved by a single old language NN (which is not known
beforehand). The probabilistic features performs better again.
All the systems have almost the same performance indicating
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TABLE V
RESULTS [WER%] OF FEATURES DERIVED FROM CONCATENATED

OUTPUTS OF Old LANGUAGES NNS APPLIED TO New LANGUAGES.

NN trained on
CZ.GE CZ.EN CZ.GE.EN

Lang. Prob BN Prob BN Prob BN
SP 25.6 27.3 25.2 26.9 25.8 27.0
PO 27.9 28.6 27.8 28.5 28.5 28.0
TU 34.9 35.1 34.1 34.7 35.1 35.3
VN 30.9 32.7 30.6 31.4 31.0 32.0
RU 33.6 35.9 33.6 35.4 33.6 35.8

TABLE VI
LIST OF PHONEME LABELS SHARING THE SAME IPA SYMBOL AND

EXAMPLE WORDS.

GE CZ examples GE CZ examples
b b Ball, byl S sh schal, šelest
d d dann, délka t t Tal, ten
f f Fass, foukat ts c Zahl, cena
g g Gast, gag v v was, vı́tr
h h hat, hořet x x Bach, chomout
j j ja, jenom z z Hase, zima
k k kalt, kolo a a Dach, matka
l l Last, lak al aa Bahn, máma

m m Mast, mouka e e Bett, let
n n Naht, nyn el ee wähle, létat

ng ng lang, Hanka il ii viel, klı́t
p p Pakt, pyl i i bist, klid
r r Rast, robot ol oo Boot, móda
s s Hast, stůl ul uu Hut, kůlna

that the information can be efficiently utilized and systems
created in this way are stable.

C. Phoneme set unification

The next step is to train a single NN covering targets from
several languages. Similarly to the creation of multilingual
acoustic models, data-driven or knowledge-based approaches
can be used. It is also possible to join the target sets of
individual languages into one. To avoid expansion of number
of experiments, only CZ and GE are considered in this part.

The solution for the latter mentioned case is straightforward:
all labels except silence are appended with language identifi-
cation mark. The data are then mixed (within the given set)
and one single NN is trained.

The knowledge base unification of phoneme sets is done
through IPA notation: First, the phonemes labels are mapped
to IPA symbols using the example words given in IPA and their
transcription in dictionary. Then the labels sharing the same
IPA symbols are assigned a new label. The rest of phonemes
stay language-dependent. The merged phoneme labels with
example words in both languages can be seen in Tab. VI.

The data driven approach was based on the phoneme hard
confusion matrix. The Czech NN was used to classify German
data. The value of the hard confusion at position i, j: Hi,j

is given by the number of times when the input vector
with label GEi is classified into the output class CZj . Then,
the normalized matrix is computed in the following way:
Hni,j =

Hi,jP
∀j Hi,j

, where
∑

∀j Hi,j is the number of vectors

TABLE VII
RESULTS [WER%] OF NN BASED FEATURES FROM NNS WITH UNIFIED

PHONEME TARGETS.

Unification method
join IPA Data driven

Lang. Prob BN Prob BN Prob BN
SP 26.8∗ 26.9 25.2 27.1 26.0 27.1
PO 28.7∗ 27.9 27.9 28.6 28.1 28.1
TU 36.7 35.2 34.4 35.3 34.2 35.7
VN 33.7 32.4 31.7 33.4 31.5 34.5
RU 36.3∗ 34.9 33.7 35.7 33.5 35.6
∗ variance of one coefficient was found to be 0.

belonging to input label GEi. The labels GEi and CZj are
said to be the same if Hni,j > 0.4. This threshold was set
experimentally to allow only one GEi to be mapped to CZj

and to get the maximum number of merged labels at the same
time.

The results obtained with different unification scenarios are
given in Tab VII. Comparing the BN feature results with one
another, it can be observed that simple joining of phoneme
sets yields slightly better results then the other methods. But
this method fails for Probabilistic features. The decorrelation
transform was badly estimated which resulted in zero variance
of one coefficient in resulting feature vector (look for ∗ mark in
Tab. VII). The problem was solved by flooring the variance at
10

−5 during GMM training. The system ended up with worse
performance then other unification method.

The knowledge based and data driven unification methods
provides better results with Probabilistic features, but within
the given features, both kids of unification give about the same
results.

Note the interesting behavior of BN features: the system
based on join phoneme set is able to preserve the phoneme
variability between languages although the BN layer function
as a compression and (almost) the same phoneme classes
should produce the same output. But when the (almost) same
phonemes are merged into one, this source of variability is
lost. Thus NN cannot learn the slight differences useful in
languages with different phoneme sets. This is illustrated by
the increase of WER for systems with unified phoneme set.

D. NN trained on large data

Since the data in our database is quite small (about 15 hours
for training) we were interested what will be the performance
with NN trained on larger training set. For this purpose,
a part of the SwitchBoard corpus was utilized. This data
is Conversation Telephone Speech (CTS) which is different
speaking style from read speech we have been using so far.
Additional differences are caused by the technical parameters
of the recordings: telephone channel causes band limitation
of the recordings and adds noises to speech signal. This
differences are another subject of interest - will the amount of
training data have positive effect on the system performance
or will it be outweighed by the difference between train and
test data?

100 hours of speech were randomly selected from Switch-
Board and NNs with approximately 1 000 000 parameters were
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TABLE VIII
RESULTS [WER%] OF NN BASED FEATURES FROM CTS NNS.

EN CTS features
alone CZ concat CZGE concat

Lang. Prob BN Prob BN Prob BN
EN 15.1 15.6
SP 26.1 25.6 24.1 25.6 24.6 26.4
PO 28.5 28.5 26.4 28.1 26.8 28.4
TU 33.5 32.1 32.3 32.6 32.8 34.0
VN 31.6 29.1 28.7 28.5 29.4 28.7
RU 35.4 35.1 32.6 34.2 33.1 34.8

trained. Since the phoneme alignment of the CTS data is
also based on the CMU dictionary, the phoneme set is the
same as for our English task. The performance of the EN
CTS features on GlobalPhone data is given on the first line in
Tab. VIII. This shows, that using larger dataset which allows to
train bigger NNs can be beneficial for cross-domain databases
(conversations vs. read speech).

The performance of features obtained through EN CTS
NNs on other languages are given in the first two columns in
Tab. VIII. Comparing it with results obtained by English NNs
in Tab. IV, considerable and consistent improvement can be
seen. Moreover, these are the best performing single language
features.

Concatenating these features to Czech ones (see 3
rd and 4

th

columns in Tab. VIII), an improvement is achieved in most
cases. Further concatenation with German features (last two
columns) brings impairment of the resulting system.

IV. CONCLUSION

This study focused on the performance of NN-based fea-
tures in multilingual environment. Since the NN is usually
trained on the same data as the acoustic model, porting already
trained NN to a new language might be problematic. In our
scenario, we decided to have three old languages, for which
the NNs are already trained, and five new languages, where
these NNs were applied.

It has been shown, that NN-based features can perform
well when applied on different languages and they can still
outperform language-independent PLP features. An important
observation is that the Probabilistic features perform better
than BN features when applied on different language. Our
hypothesis is that the Probabilistic features contain larger
variability which can be utilized in the decorrelation and
dimensionality reduction steps which is done with respect to
target language.

Further experiments with concatenating of several NNs
outputs reveal that the resulting features have performance
close to the best individual ones. This is especially the case
for probabilistic features which reach practically the same
performance. This is an important finding as in practice, we
usually cannot test the systems on new data.

The experiment with unifying the phoneme set confirmed
our hypothesis that the variability in output vector is important,
because with compacting the phoneme set, the performance
decreased. It was also observed that simple concatenation of

NNs outputs brought similar performance as NN newly trained
on several languages. This is again important finding showing
that it is possible to simply concatenate outputs of existing
networks without the necessity of training a new one on unified
languages.

Finally, we have performed experiments with NN trained on
large amount of Conversation Telephone Speech which differ
in speaking style and recording environment from our test data.
This experiment shows that the large amount of data from
different domain is useful not only for the same language
tasks, but can be efficiently used also for other languages.
The resulting features outperformed not only the original En-
glish ones, but also all systems trained before. Concatenating
these features with Czech ones (the best features obtained on
GlobalPhone data) slightly improves the resulting performance
and gives better or the same results compared to language-
independent PLP features.

This result suggests, that there is the possibility to further
improve NN-based feature extraction for unseen language. Our
future work will focus on the variability issue and NNs with
larger BN will be trained to allow the dimensionality reduction
to find useful directions for new language.
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