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Abstract—One of the main challenge in non-native speech
recognition is how to handle acoustic variability present in multi-
accented non-native speech with limited amount of training data.
In this paper, we investigate an approach that addresses this chal-
lenge by using Kullback-Leibler divergence based hidden Markov
models (KL-HMM). More precisely, the acoustic variability in the
multi-accented speech is handled by using multilingual phoneme
posterior probabilities, estimated by a multilayer perceptron
trained on auxiliary data, as input feature for the KL-HMM
system. With limited training data, we then build better acoustic
models by exploiting the advantage that the KL-HMM system has
fewer number of parameters. On HIWIRE corpus, the proposed
approach yields a performance of 1.9% word error rate (WER)
with 149 minutes of training data and a performance of 5.5%
WER with 2 minutes of training data.

Index Terms—Non-native speech recognition, hidden Markov
model, posterior features, Kullback-Leibler divergence, multi-
layer perceptron

I. INTRODUCTION

Non-native speech recognition is a challenging task for

reasons such as, a) there are large number of non-native

accents, and b) usually only a small amount of non-native

speech data is available for training. In literature, several

methods based on acoustic model adaptation, pronunciation

model adaptation, or both have been proposed to improve

automatic speech recognition (ASR) system performance on

non-native speech. In acoustic model adaptation based ap-

proaches, the native language acoustic models are pooled and

adapted to the non-native speaker/accent using small amount

of non-native speech. In the framework of hidden Markov

models/Gaussian mixture models (HMM/GMM) system, tradi-

tional adaptation methods such as, maximum likelihood linear

regression (MLLR), maximum a posteriori (MAP), and model

interpolation have been used [1], [2]. While, in the frame-

work of hybrid hidden Markov modesl/multilayer perceptron

(HMM/MLP) system, linear hidden network (LHN) based

adaptation has been used to improve the performance [3]. In

the area of pronunciation modeling, attempts have been made

to detect and correct the non-native pronunciations using small

amount of non-native speech data [4].

Kullback-Leibler divergence based HMM (KL-HMM) is

a recently proposed acoustic modeling approach where the

acoustic class conditional probabilities are directly used as

feature observation [5], [6]. We refer to these features as

posterior features. As described in detail in Section II, in

this approach the emission distribution of each HMM state is

modeled by a multinomial distribution, and the cost function

used to optimize the multinomial distribution is based on

Kullback-Leibler divergence.

The KL-HMM system provides flexibilities such as transfer

learning, fewer number of parameters, choice of acoustic

classes (i.e., posterior features), and use of alternate subword

units such as, graphemes. These flexibilities can be exploited

to address the challenges involved in non-native speech recog-

nition. In that regard, this paper investigates

1) an approach where the acoustic variation in multi-

accented speech is modeled through the use of universal
phoneme class conditional probabilities as posterior

features in the KL-HMM system. These features are

estimated by training an MLP on (auxiliary) multilingual

speech data. We compare it against the approach where

the MLP is trained on monolingual speech data, in our

case English data.

2) the use of graphemes as subword units and compare

it with the standard approach of using phonemes as

subword units. The use of graphemes eases pronunci-

ation lexicon generation. In addition, it could avoid the

necessity to generate multiple pronunciation variants.

3) fast acoustic model training/adaptation using small

amounts of non-native speech data by exploiting the

flexibility that KL-HMM system has fewer number of

parameters, especially when the posterior extractor is

trained on auxiliary data.

Experimental studies conducted on the HIWIRE corpus [1]

shows that a) universal posterior features yield better per-

formance than monolingual posterior features, b) systems

based on phoneme subword units and grapheme subword units

perform equally well, and c) a ”reasonable” ASR performance

could be achieved with training data as low as two minutes

speech.

The remainder of the paper is organized as follows. Sec-

tion II describes the KL-HMM system. Section III then moti-

vates the use of KL-HMM for non-native speech recognition.

Section IV describes the different systems that are investigated

and experimental results are presented in Section V. Finally,

Section VI summarizes and concludes the paper.
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II. KULLBACK-LEIBLER DIVERGENCE BASED ACOUSTIC

MODELING

As mentioned briefly earlier in Section I, KL-HMM directly

use the acoustic class conditional probabilities as features, i.e.

posterior features [5], [6]. Posterior features can be seen as a

data driven feature. More precisely, posterior feature extraction

involves the transformation of standard acoustic feature vector

xt of dimension F ,

xt =

⎛
⎜⎝

xt(1)
...

xt(F )

⎞
⎟⎠

at time frame t into a class conditional probability vector zt
of dimension K,

zt =

⎛
⎜⎝

zt(1)
...

zt(K)

⎞
⎟⎠ =

⎛
⎜⎝

P (c1|xt, θ)
...

P (cK |xt, θ)

⎞
⎟⎠

where, {c1, · · · , cK} denotes the acoustic classes and θ the

parameters of the model/classifier that is used to estimate

the probabilities. The model/classifier can be a well trained

discriminative classifier such as, an MLP or a generative

classifier such as, GMM1.

HMM: 

Associated 
multinomial 
distributions: 

q2 q1 q3 end start 

yq1(1) 
. 

yq1(K) 

yq2(1) 
. 

yq2(K) 

yq3(1) 
. 

yq3(K) 

a11 a22 a33 

a01 a12 a23 a34 

Fig. 1. Each state is parametrized by a multinomial distribution of dimen-
sionality K. The transition probabilities are also parameters of the HMM.

Formally, in the KL-HMM system, zt is the feature ob-

servation and each state is parametrized by a multinomial

distribution. Figure 1 illustrates a KL-HMM consisting of three

emitting states q1, q2, q3 and two non-emitting start and end

states. Each emitting state qd : d ∈ {1, . . . , D}, where D is

the total number of states, is parametrized by a multinomial

distribution ⎛
⎜⎝

yq
d

(1)
...

yq
d

(K)

⎞
⎟⎠

with K being the dimensionality of the posterior feature.

The KL-HMM acoustic model is completely parameterized

by ΘKL = {Y,A} , where Y = {yq1 , · · · , yqD} is the set

containing state multinomial distributions and A is the state

transition probability matrix.

1Note that GMM can be trained discriminatively, but then they may not be
truly generative models

1) Training: Let us assume that we have access to a set of

T training frames along with labels, i.e:

• a sequence of posterior probability feature vectors Z =
{z1, · · · , zT }.

• transcription in terms of subword units, e.g. phonemes.

Then, the training phase involves the estimation of ΘKL by

optimizing a cost function based on the Kullback-Leibler (KL)

divergence. More precisely, this is done by Viterbi expectation

maximization training algorithm which minimizes

arg min
Q

T∑
t=1

[f(yqt , zt)− log(aqt−1,qt)] (1)

where, qt ∈ {q1, · · · , qD} and Q is the set of all possible state

sequences {q1, · · · , qT } allowed by the HMM corresponding

to the training frames. The local score f(yqt , zt) is the KL-

divergence between the multinomial state distribution yqt and

the observation posterior feature vector zt.
2) Decoding: Given a sequence of posterior feature vectors

Zb = {z1, · · · zT b} corresponding to a test utterance b and the

set of trained parameters ΘKL = {Y,A}, the decoding phase

involves recognition of hypothesis m̂b as follows:

m̂b = argmin
Qm

T b∑
t=1

[f(yqt , zt)− log(aqt−1,qt)]

where, Qm represents the set of all possible state sequences

allowed by hypothesis m.

KL-divergence being an asymmetric measure, the local

score f(yq
d

, zt) can be estimated as:

fKL(y
qd , zt) =

K∑
k=1

yq
d

(k) log
yq

d

(k)

zt(k)
(2)

fRKL(y
qd , zt) =

K∑
k=1

zt(k) log
zt(k)

yqd(k)
(3)

fSKL(y
qd , zt) =

1

2
fKL(y

qd , zt) +
1

2
fRKL(y

qd , zt) (4)

Through the use of different local scores, KL-HMM estab-

lishes a framework that unifies different types of acoustic

models, such as discrete HMM and HMM/MLP [6, Chapter 6].

For instance, when using MLP for posterior feature extraction

the system using the local score fKL(y
qd , zt) can be linked to

HMM/MLP systems. While, the system using the local score

fRKL(y
qd , zt) can be linked to discrete HMM systems, where

the MLP acts as a vector quantizer [6]. ASR studies until now

have shown that fSKL(y
qd , zt) yields the best system [5], [6],

[7].

In this work, as done in the original work [6], an MLP

that is trained to classify context-independent phonemes is

used. The choice of MLP for posterior feature extraction

can be motivated by reasons such as, a) a well trained

MLP can directly estimate a posteriori probabilities of output

classes [8], b) discriminative training can provide invariance

towards undesirable variabilities such as, speaker and envi-

ronment, c) posterior feature estimation could be improved by
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combining multiple feature streams at MLP output level [9] or

using hierarchical approaches, and d) MLPs can be effectively

employed for transfer learning [10], i.e. they can be trained

on auxiliary data and used for different tasks.

III. MOTIVATION TO USE KL-HMM FOR NON-NATIVE

SPEECH RECOGNITION

KL-HMM provide certain advantages which can be effec-

tively exploited for non-native speech recognition such as,

1) Transfer learning: the posterior feature estimator could

be trained on auxiliary data. In the context of non-native

speech recognition, this can be effectively used to pool

resources from multiple databases and languages.

2) Choice of posterior feature space: the posterior feature

space can be phonemes that are specific to a language,

universal phonemes, or articulatory features. Thus, KL-

HMM systems provide a framework to introduce multi-

lingual knowledge. This may be essential for improving

the performance of ASR system on multi-accented non-

native speech. Along this direction, in this work we

propose to use universal phonemes as acoustic classes.

3) Choice of subword units: as the phonetic information is

captured via posterior feature space, KL-HMM allow

the possibility to use alternate subword units, such

as graphemes. One of the main advantage of using

graphemes as subword units is that it avoids the need to

build a lexicon. In KL-HMM systems, when graphemes

are used as subword units, the parameters of the system,

i.e. K dimensional multinomial distribution per state,

can capture the relation between written and spoken

form of the language [7]. This could be useful in the

context of non-native speech recognition. For instance,

in [4] graphemic constraints were introduced in the

phonetic confusion because the writing of uttered words

may influence the pronunciations produced by non-

native speakers. Thus, in addition to phonemes, in this

paper we also investigate the use of graphemes as

subword units for non-native speech recognition.

4) Fewer number of parameters: As described earlier in

Section II, each emitting state is modeled by a K
dimensional multinomial distribution. Thus, the KL-

HMM system has fewer number of parameters that needs

to be estimated during training. This suggests that KL-

HMM systems may require less training data to adapt to

multiple accents. We also explore this direction in this

paper.

IV. EXPERIMENTAL SETUP

In this section, we first describe the datasets we used

followed by the details about posterior feature extraction and

the investigated systems.

A. Dataset

We use HIWIRE [1] for our experimental studies. HIWIRE

is a non-native English speech corpus that contains English

utterances pronounced by natives of France (31 speakers),

Greece (20 speakers), Italy (20 speakers) and Spain (10

speakers). The utterances contain spoken pilot orders made

up of 133 words and the database also provides a grammar

with a perplexity of 14.9. The phoneme dictionary is in

CMU format and makes use of 38 ARPABET2 phonemes.

The grapheme dictionary was transcribed using 29 context-

independent graphemes including silence. The abbreviation

words present in the dictionary were transcribed using a look

up table specifying the way individual letters are pronounced

as shown in Table I.

TABLE I
EXAMPLE OF LOOKUP TABLE ENTRIES USED FOR TRANSCRIBING LETTERS

IN THE ABBREVIATIONS, FOR GRAPHEME DICTIONARY

Letter Grapheme pronunciation
D [D] [E] [E]
F [E] [F]
I [E] [Y] [E]
S [E] [S]
T [T] [E] [E]

The phoneme dictionary consists of pronunciation vari-

ants, i.e. multiple pronunciations for some words, whereas

grapheme dictionary consists of single pronunciation for each

word. HIWIRE consists of 100 recordings per speaker, of

which the first 50 utterances are commonly defined to serve

as adaptation data and the rest of the 50 utterances as testing

data.

For training posterior feature extractors i.e. MLPs, we used

SpeechDat(II) 3 data. More specifically, we used data from

the British English, Italian, Spanish, Swiss French and Swiss

German SpeechDat(II) databases. All SpeechDat(II) databases

contain native speech. Furthermore, the data is also gender-

balanced, dialect-balanced according to the dialect distribution

in a language region, and age-balanced. The databases have

been recorded over the telephone at 8 kHz and are subdivided

into different corpora. We only used Corpus S, that contains

ten read sentences from each of the 2000 speakers per lan-

guage. To split the databases into training (1500 speakers),

development (150 speakers) and testing (350 speakers) sets,

we used the standard procedure that maintains the gender-,

dialect- and age-distributions of the database, as described

in [11]. Only the training portion was used for this study.

B. Posterior features

As discussed in Section II, KL-HMM use posterior prob-

abilities of acoustic classes, i.e. posterior features as feature

observation. To estimate these features, we train MLPs to clas-

sify context-independent phonemes using Quicknet4 software.

The feature input to the MLPs is 39 Mel-Frequency Perceptual

Linear Prediction (MF-PLP) cepstral features (C0−C12+Δ+
ΔΔ) with a temporal context of four preceding frames and

four following frames. In this paper, we investigate posterior

2http://www.speech.cs.cmu.edu/cgi-bin/cmudict
3http://www.speechdat.org/SpeechDat.html
4http://www.icsi.berkeley.edu/Speech/qn.html
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features estimated using two different source phoneme sets in

SAMPA5 format.

• English phoneme set: we use only the British English

data to train a MLP to estimate English SAMPA phoneme

posteriors. We denote this MLP as MLP-EN.

• Universal phoneme set: since all the SpeechDat(II) dic-

tionaries use SAMPA symbols, we merged phonemes

that share the same symbol across languages to build a

universal phoneme set. We then train an MLP to estimate

universal phoneme posteriors using the data from five

different European languages (British English, Italian,

Spanish, Swiss French and Swiss German). We denote

this MLP as MLP-UNI.

The number of parameters in each MLP was set to 10% of

the number of available training frames and the MLPs were

trained with cross entropy error criteria. For more details

about the MLP training the reader is referred to [12]. Table II

summarizes the posterior feature extraction systems.

TABLE II
OVERVIEW OVER ALL THE PHONEME POSTERIOR ESTIMATORS. THE

TOTAL AMOUNT OF TRAINING DATA AS WELL AS THE PHONEME SET

INCLUDING THE NUMBER OF PHONEMES K ARE GIVEN.

Phoneme set K Data (in hours)
MLP-EN SAMPA English 45 12.4
MLP-UNI SAMPA universal 117 63.0

After training, MLP-EN and MLP-UNI were used to extract

English posterior features and universal posterior features,

respectively on the HIWIRE corpus, and used as feature

observations for the KL-HMM system. It is to be noted that

since HIWIRE was recorded at 16 kHz and SpeechDat(II)

was recorded at 8 kHz, the HIWIRE recordings were down-

sampled to 8 kHz before extracting the MF-PLP features.

C. Systems

We study non-native speech recognition in the framework

of KL-HMM using two types of subword units, namely,

phonemes and graphemes. The KL-HMM are trained with

either English phoneme posterior features estimated by MLP-

EN or universal phoneme posterior features estimated by

MLP-UNI. Each subword unit is represented by a three

state left-to-right HMM. The multinomial state distributions

are estimated by optimizing an objective function based on

a symmetric variant of the Kullback-Leibler divergence (as

discussed in Section II) over the adaptation set of the HI-

WIRE corpus. The insertion penalty and the language scaling

factor were tuned on the adaptation set of the HIWIRE

corpus. We study both context-independent subword unit

(mono-phoneme/mono-grapheme) and word internal context-

dependent subword unit (tri-phoneme/tri-grapheme) based sys-

tems. In the case of context-dependent subword unit based

system, for the unseen contexts the corresponding context-

independent subword unit models were used. Table III gives

an overview of the investigated systems.

5http://www.phon.ucl.ac.uk/home/sampa/

TABLE III
OVERVIEW OF THE DIFFERENT SYSTEMS INVESTIGATED. WE COMBINE

EACH FEATURE TYPE WITH EACH WORD UNIT TYPE.

System Subword unit Features
PHONE-EN Phonemes English posteriors
GRAPH-EN Graphemes English posteriors
PHONE-UNI Phonemes Universal posteriors
GRAPH-UNI Graphemes Universal posteriors

V. RESULTS

We first present results for different features and subword

units and then for low amounts of adaptation data.

A. Varying posterior features and subword units
Table IV shows the word error rates (WERs) on the test

set of the HIWIRE database for context-independent subword

unit systems. Results reveal that phoneme subword units

yield better performance than grapheme subword units. This

is not surprising as the correspondence between phoneme

and grapheme is weak in English language. As a result, the

HMM of context-independent grapheme subword unit captures

only gross phonetic information in their multinomial state

distributions, and are thus ambiguous [7]. Universal phoneme

posterior features yield significantly better performance than

English phoneme posterior features for both phoneme and

grapheme subword units.

TABLE IV
WORD ERROR RATES ON VARIOUS LANGUAGES OF HIWIRE DATABASE

USING CONTEXT INDEPENDENT SUBWORD UNITS (MONO-PHONEMES AND

MONO-GRAPHEMES). FR DENOTES FRENCH ACCENT, GR DENOTES

GREEK ACCENT, IT DENOTES ITALIAN ACCENT, AND SP DENOTES

SPANISH ACCENT.

System FR GR IT SP Total
PHONE-EN 4.8 3.3 6.0 5.5 4.8
GRAPH-EN 13.0 10.7 14.0 13.9 12.8
PHONE-UNI 2.6 1.8 3.8 3.5 2.8
GRAPH-UNI 10.2 6.1 8.6 9.2 8.6

Table V shows the WERs on the test set of the HIWIRE

database for context-dependent subword unit systems. Inter-

estingly, grapheme-based systems yield same performance as

phoneme-based systems. For the English language, it has been

observed that grapheme-based systems may require longer

subword contexts to be modeled to effectively disambiguate

between phonemes, and achieve performance as good as

phoneme based system [7]. However, in this case, single

preceding and single following context is sufficient. The main

reasons for this trend could be that a) longer context may

be more important for native speech than non-native speech

which could contain more variation at phonetic level. In such

a case, a smaller grapheme context could be sufficient. This

point needs further investigation and is part of our future work.

b) HIWIRE task is relatively constrained task when compared

to large vocabulary tasks. As already observed with context-

independent subword unit systems, universal phoneme poste-

rior features outperform English phoneme posterior features.

Thus, signifying the importance of multilingual features for

non-native speech recognition.
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TABLE V
WORD ERROR RATES ON NON-NATIVE ACCENTS OF HIWIRE DATABASE

USING SINGLE PRECEDING AND SINGLE FOLLOWING

CONTEXT-DEPENDENT SUBWORD UNIT MODELS. FR DENOTES FRENCH

ACCENT, GR DENOTES GREEK ACCENT, IT DENOTES ITALIAN ACCENT,
AND SP DENOTES SPANISH ACCENT.

System FR GR IT SP Total
PHONE-EN 2.2 1.8 4.2 3.0 2.7
GRAPH-EN 2.3 2.2 3.6 2.9 2.7
PHONE-UNI 1.8 1.2 2.5 2.1 1.9
GRAPH-UNI 1.7 1.4 2.5 2.0 1.9

B. Fast training/adaptation

To investigate the behavior of the KL-HMM system when

there is only little amount of training data, we decreased

the amount of adaptation data progressively. The standard

adaptation set of HIWIRE consists of 50 sentences per speaker.

We decreased the amount of adaptation data by only taking

40, 30, 20, ten, five and three sentences per speaker. Three

sentences per speaker is about ten minutes of adaptation

data. To ensure full coverage in terms of context-independent

phonemes and graphemes, we picked different sentences for

the three, five and ten sentences scenario for the phoneme- and

grapheme-based systems, respectively. We went further down

and randomly picked utterances until full coverage of context-

independent phonemes and graphemes was achieved. This

resulted in three minutes of data. Instead of randomly picking

sentences, we also explored manual utterance selection. This

allowed us to decrease the amount of data to two minutes.

For this study, we trained context-dependent phoneme- and

grapheme-based systems using universal phoneme posterior

features. As mentioned earlier in Section IV-C, unseen context-

dependent subword unit models were backed-off to context-

independent subword unit models.

Table VI compares the phoneme- and grapheme-based KL-

HMM systems. It can be observed that with 60 minutes or

more, the two systems yield same performance. The phoneme-

based system is clearly superior to the grapheme-based system

when very little adaptation data is used. As discussed earlier,

in the case of graphemes, contextual modeling is important, es-

pecially for languages like English. Therefore, the grapheme-

based system requires more adaptation data than the phoneme-

based system.

TABLE VI
UNIVERSAL POSTERIORS TRI-GRAPHEME AND TRI-PHONEME SUBWORDS

SYSTEM PERFORMANCE FOR DIFFERENT AMOUNTS OF DATA.

Minutes Sentences per speaker Graphemes Phonemes
2 - 21.6 5.5
3 - 13.8 4.4
10 3 5.2 3.9
16 5 5.1 3.2
32 10 3.1 2.5
64 20 2.1 2.0
90 30 1.9 2.0

122 40 1.9 1.9
149 50 1.9 1.9

Figure 2 compares the performances of phoneme- and

grapheme-based systems to the results reported in the liter-

ature on the same setup. It can be observed that KL-HMM

systems outperforms the MLLR-based speaker adaptation for

all amounts of adaptation data that have been investigated.

In [3], two different linear hidden network (LHN) based

adaptation approaches have been investigated, namely, LHN

based speaker adaptation and LHN based data adaptation. For

the LHN based speaker adaptation, an extra hidden layer was

trained for each speaker separately. While, in the case of LHN

based data adaptation an extra hidden layer was added and

trained on the whole adaptation data. It can be seen that the

KL-HMM system clearly outperforms the system based on

speaker adaptation and achieves performance similar to the

system based on data adaptation.
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Fig. 2. We compare the KL-HMM systems with different amounts of
adaptation data to previous studies reported in the literature. The MLLR
studies are published in [1] and the LHN approaches in [3].

Finally, in the literature the best result reported on HIWIRE

task is 1.4% WER [2]. However, this performance has been

obtained by a modified setup where, after excluding the

data of the test speaker, the rest of the corpus is used for

training/adaptation. In that sense, the performances achieved

with the KL-HMM system can be considered as one of the

best.

VI. SUMMARY AND CONCLUSION

In this paper, we investigated how the flexibilities pro-

vided by KL-HMM can be exploited for non-native speech

recognition. The main findings from our investigations are

summarized as follows,

• KL-HMM framework is able to exploit multilingual infor-

mation in the form of universal phoneme posterior prob-

abilities to improve performance on non-native speech.

• Graphemes can be used as an alternative subword unit to

phonemes. This could possibly help in reducing dictio-

nary building efforts.

• KL-HMM could be trained rapidly with small amount of

non-native speech data.
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• KL-HMM outperform previously reported MLLR-based

and LHN-based speaker adaptation techniques on the

HIWIRE dataset and yields the same performance as

LHN-based data adaptation technique.

In our future work, we intend to investigate a) the use of

articulatory features for non-native speech recognition, b) the

effect of unseen non-native accents, c) longer subword unit

context modeling, and d) approaches to tie context-dependent

subword unit models to handle unseen contexts.
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