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Abstract—In many inference and learning tasks, collecting
large amounts of labeled training data is time consuming and
expensive, and oftentimes impractical. Thus, being able to ef-
ficiently use small amounts of labeled data with an abundance
of unlabeled data—the topic of semi-supervised learning (SSL)
[1]—has garnered much attention. In this paper, we look at the
problem of choosing these small amounts of labeled data, the first
step in a bootstrapping paradigm. Contrary to traditional active
learning where an initial trained model is employed to select
the unlabeled data points which would be most informative if
labeled, our selection has to be done in an unsupervised way, as
we do not even have labeled data to train an initial model.

We propose using unsupervised clustering algorithms, in par-
ticular integrated sensing and processing decision trees (ISPDTs)
[2], to select small amounts of data to label and subsequently
use in SSL (e.g. transductive SVMs). In a language identification
task on the CallFriend1 and 2003 NIST Language Recognition
Evaluation corpora [3], we demonstrate that the proposed method
results in significantly improved performance over random se-
lection of equivalently sized training data.

I. INTRODUCTION

The goal of spoken language identification (LID) is to

identify the language of a segment of spoken utterance au-

tomatically, based on features extracted from the speech [4].

As a motivating application, consider a customer service for a

multilingual population which needs to route calls to an appro-

priate operator. Training a LID system consists of extracting

features from speech appropriate for discriminating between

languages and learning to weight those feature appropriately.

There are cases, however, where a LID system encounters

speech from new (surprise) languages that it was not trained

on. In such cases, one should be able to quickly acquire labels

for a few utterances and be able to bootstrap a new LID

system for those languages. Once an initial seed set has been

collected, additional large amounts of unlabeled data can be

used to improve the models, as is done in semi-supervised

learning (SSL) [1]. Acquiring labeled data is the topic of

1http://www.ldc.upenn.edu/Catalog/byType.jsp#speech.telephone

active learning (see [5] and references therein). Traditional

active learning assumes the existence of a learned model which

guides the selection of unlabeled data to annotate, but here

we are concerned with the (harder) task of coming up with

an initial set of labels—we assume that we start without any

supervision. We also assume that we have a limited budget for

annotation and therefore must proceed with minimal labeled

data in the domain of interest; we hope that using additional

unlabeled data in a semi-supervised setting will allow us to

get around this limitation. As we describe in a later section,

our approach is to utilize an unsupervised clustering algorithm,

and then select data to annotate based on the confidence of the

clustering. The motivation behind this approach is consistent

with the cluster assumption of SSL, which requires that data

which belong to different classes tend to form clusters.

The attribute-based approach proposed by [6] (which we

make use of in this paper) explores the universal acoustic

phonetic features of speech with state-of-the-art performance

results. Specifically, using HMMs and a language-dependent

to language-independent mapping procedure, raw speech is

converted into “manner” and “place” of articulation attributes

which are subsequently used to train HMM-based and SVM-

based identification systems. LID is essentially performed

by detecting high-probability sequences (n-grams) of such

features that correlate with each language. As mentioned

above, training a LID system in a semi-supervised setting is

done with collections of labeled and unlabeled data. Note that

by “training data” we do not mean data useful for learning

how to generate the articulatory features; in fact, the approach

mentioned in [6] does not require the articulatory attribute

generator to be trained on the languages that it will eventually

be applied on.

The paper proceeds as follows: a review of the attribute-

based approach [6] is given in Section II. A description

of the proposed active learning approach is provided in

Section III. Unsupervised integrated sensing and processing

decision trees (ISPDTs) and other clustering algorithms are
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described in Section IV. Experimental results on the 2003

NIST Language Recognition Evaluation corpora using ISPDTs

and other unsupervised clustering algorithms appear in Section

V. Concluding remarks appear in Section VI.

II. ATTRIBUTE-BASED APPROACH FOR SPOKEN

LANGUAGE IDENTIFICATION

In [6], “manner” and “place” of articulation “attributes”

were proposed as a universal acoustic characterization of all

spoken languages. Manner contains six items: vowel, fricative,

nasal, approximant, stop, and silence; and place contains

ten items: coronal, dental, glottal, high, labial, low, mid,

palatal, silence, and velar. Attribute transcriptions are obtained

from phonemic transcripts via application of a phoneme-to-

manner mapping table and a phoneme-to-attribute mapping

table as is done in [6]. For each document, the feature

vector is then created by collecting up to 4-gram statistics of

the “attributes” items. Specifically, manner-based and place-

based transcriptions are obtained for each document (Di for

i ∈ (1, · · · , N)), and each transcription is then converted

into an M -dimensional feature vector Vi by concatenation of

the two term-count vectors, V m
i and V p

i ; therefore2, M =
Mm + Mp = 12664. The feature vectors are also weighted

according to the formula in [6],

wi,j =

[
1 +

1

logN

N∑
i=1

nij

n·j
log

nij

n·j

]
nij

ni·
(1)

where nij is the number of times term j occurs in document

Di, and n·j is the number of times that term j appears in all

the N documents, and ni· is the number of terms in document

Di.These document vectors are then used to train spoken

language classifiers (i.e., SVM).

The LID system employed in this paper is the same as

the one used in [6], where a 1-versus-all multi-class SVM

system is trained, such that for an individual target language,

a separate SVM is trained with positive class consisting of the

target language and the negative class consisting of all other

languages. For LID tasks, the language identity is decided

based on the maximum positive distance from the separating

hyperplane [7].

III. UNSUPERVISED BOOTSTRAPPED LID

Traditionally in active learning, the task is to annotate

new data to improve upon an existing classifier. However,

as we mention in Section 1, we aim to annotate an initial

set of data to bootstrap a classifier; the selection of data to

annotate will have to be done in an unsupervised manner. The

baseline (naı̈ve) way of doing this would be to select data

randomly—we expect this to be a viable solution only when

it is acceptable to annotate a large amount of data. Under a

limited data annotation budget, however, the random sampling

may introduce bias (or fail to correct for) in the learned labels.

2Since we are collecting up to 4-gram statistics of the attributes, the length
of the attribute vector M ′ = p + p2 + p3 + p4, where p is the number of
attributes. For manner and place respectively we have pm = 6 and pp = 10,
thus Mm = 1554 and Mp = 11110.

Our approach for obtaining labels is to first cluster the

unlabeled data and then select data to annotate based on this

clustering. Our argument in favor of this approach is similar

to the cluster assumption3 [1], but goes in the opposite direc-

tion: once the data have been clustered, the most confidently

clustered data (e.g., those closest to each cluster centroid) are

the ones with the strongest likelihood of belonging to different

classes and are thus the “best” candidates for labeling.

This proposed approach differs significantly from the usual

practice in active learning of selecting data to be labeled

close to the boundary between classes. Since we lack a pre-

existing classifier, we lack boundaries, so this approach is not

possible. The (hypothesized) boundary between the clusters

only loosely corresponds to the true boundary between the

classes. Furthermore, in the case of bootstrapping with very

small amounts of labeled data, picking data close to the

boundary between the clusters one risks annotating data that

lie on opposite sides of the boundary4. Bootstrapping a LID

system with such labeled data will most certainly lead to

learning the wrong model, one that classifies the (+)’s as (-)’s

and vice-versa.

Unsupervised active learning has also been done in [8]. Our

approach differs from [8] where the unsupervised clustering

is done on data for which labels are known, and the active

learning is done by selecting additional data which do not fall

into any of the clusters. Despite noted similarities to [8], we

do not assume the existence of labeled data; even if we applied

the method of [8] using clusters that belong to a different set of

languages (for which we do have labels), there is no guarantee

that unlabeled data that do not fall into any of the clusters are

the most informative.

In our experimental setup, we assume that the unlabeled

data v1, v2, · · · , vN are a mixture of L different languages:

l1, . . . , lL. We have experimented with L = 2 (binary clas-

sification) and L = 3 (three-way classification); thus, we do

binary (resp. three-way) clustering in the first step. This can

be easily extended to the case where there are more than 3

languages present, where a 1-versus-all multi-class SVM is

trained. Once the unlabeled data have been clustered into L
clusters, C1, . . . , CL, we compute the centroids as follows:

ci =
1

|Ci|
∑

vk∈Ci

vk, i ∈ {1, . . . , L}. (2)

Next, based on these centroids, we select the data to anno-

tate C ′
1, . . . , C

′
L according to a similarity measure function;

specifically, we employ the Euclidean distance as the similarity

measure s(k, i) = ‖vk − ci‖, i ∈ {1, . . . , L} between the data

point vk and the centroid ci.

3As mentioned in [1], one of the reasons for the success of SSL is the cluster
assumption, i.e., the fact that data that belong to different classes tend to form
clusters. Thus, once some supervised data are available, the SSL learner is in
a position to confidently “propagate” these labels to other (unlabeled) data
that belong to the same cluster as the labeled data.

4That is, a data point with a (+) label which happens to be on the (-) side,
and vice-versa (lots of points of that sort are close to the boundary–these are
the misclassifications).
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The K data points v′1, v
′
2, · · · , v′K that are closest to the

two centroids are “annotated” (their labels are revealed).

Additionally, we have also considered a variant, where, apart

from the K annotated data points, we also use another U
additional data points that are close to the centroid as (noisy)

labeled data, i.e., we assign labels to these U data points

according to the label of the majority of the K annotated data

in the same cluster C ′
i.

IV. UNSUPERVISED CLUSTERING ALGORITHMS

A. Unsupervised ISPDTs

Unsupervised integrated sensing and processing decision

trees (ISPDTs) [2] are an unsupervised method to hierarchi-

cally cluster together data points that have similar empirical

distributions by minimizing the expected value of a loss

function (this is notably similar to regression trees). The main

difference between ISPDTs and regular decision trees is that in

ISPDTs the data are projected onto a lower-dimensional space

at each internal node of the tree before splitting. The projection

depends only on the data present at the corresponding node,

and is optimized jointly with the “question” asked at that node,

based on some local criterion.

One common non-tunable choice [9] for the local

optimization criterion is minimization of l (xn, Q) =
− 1

n log (Q (x1, · · · , xn)), the negative normalized likelihood

of the sequence xn under the distribution Q. We instead prefer

a tunable version of mutual information, the Jensen-Rényi
divergence (as used in [10], [11]); the tunable parameter allows

greater flexibility and more robustness to sparsity (which can

yield state-of-the-art results in document categorization [10],

[11]).

B. Other Unsupervised Clustering Algorithms

We compared ISPDTs to several other well known unsuper-

vised clustering algorithms: repeated bisection (RB), globally

optimal repeated bisection (GRB), agglomerative clustering

(AG) [12] and information bottleneck (IB) [13]. Specifically,

we choose the first three algorithms so that the resulting

clustering solution optimizes the following criterion function:

maximize H =
I
ε =

k∑
r=1

‖Dr‖2
nr

/
k∑

r=1

nr
Dt

rD

‖Dr‖
(3)

where k is the number of clusters, D =
∑N

i=1 xi is the sum

of all data points, Dr =
∑

xi∈Sr
xi is the sum of all data

points in the r−th cluster Sr, nr is the size of Sr. This is the

case where we use cosine function as the similarity measure

between documents.

RB first clusters all the data points into two groups, then

chooses one from the groups and bisects it. This process is

repeated until all the k clusters are found; in each step, the

data are bisected such that the criterion function H is locally

maximized. The greedy nature of this procedure implies that

it is only locally optimal and does not necessarily lead to

globally optimal clusterings. GRB is similar to RB, yet with

a globally optimized overall solution at the end. AG is a

bottom-up algorithm in that it tries to find the clusters by

first considering each data point to be a cluster and repeatedly

merging pairs of clusters until there are k of them left; the data

points are merged in such a way that the criterion function H
is maximized.

For the information bottleneck (IB) method, the goal is to

find clusters such that the mutual information between data

Xn and the assigned cluster indices is as large as possible,

under the constraint on the number of clusters. In this paper we

follow the procedure for finding the maximizing clustering by

choosing the one with the highest mutual information among

many random clusterings.

V. EXPERIMENTAL RESULTS

The annotation (active learning) and subsequent bootstrap-

ping of the LID system are done using the CallFriend corpus,

which is a collection of unscripted telephone conversations in

12 languages: Arabic, English, Farsi, French, German, Hindi,

Japanese, Korean, Mandarin, Spanish, Tamil, Vietnamese. We

use 40 sessions of each of the above languages in the ex-

periments, and split the 12 languages into 2 sets, S1 contains:

English, German, Hindi, Japanese, Mandarin and Spanish, and

S2 contains the rest of the languages. The data in S1 are

labeled and are used in clustering experiments to find out

which clustering algorithm works best, and those in S2 are

used in LID experiments. Note that our data selection approach

is considered to be unsupervised with respect to the languages

in S2 because we do not use any of the S2 labels to guide the

selection process.

All results are reported on the 2003 NIST Language Recog-

nition Evaluation test data corpus [3], and were performed

using the 30-second setting, yielding 1280 sessions – 240

English sessions, 160 Japanese sessions, and 80 sessions for

all other languages. Accordingly, the NIST corpus is divided

into two sets: T1 contains the languages in S1 and is used as

test set in clustering experiments; T2 contains the languages

in S2 and is used as test set for the resulting LID system.

In the following experiments, we used the acoustic features

from [6] to transform each spoken utterance into a high

dimensional feature vector and perform LID tasks.

A. Unsupervised Clustering Experiments

In the unsupervised clustering experiments, we performed

2-way clustering of all possible 15 language pairs in T1

using ISPDTs, with a resulting mean error rate e2 = 0.111,

with standard deviation σ2 = 0.104. Likewise, for the 3-way

clustering of all possible 20 language pairs, we obtain a mean

error rate e3 = 0.199, with standard deviation σ3 = 0.084.

The results of the 2-way clustering, by language pairs, are

shown in Fig. 1, with the red line representing the baseline

error rate obtained after placing all data into a single cluster

(i.e., assigning the most probable label to all data).

For the other unsupervised clustering algorithms: repeated

bisection (RB), globally optimal repeated bisection (GRB),

agglomerative clustering (AG) and information bottleneck

(IB), the first three algorithms are implemented using the Cluto
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Fig. 1. Error rates from 2-way clustering using unsupervised ISPDTs, the
x-axis corresponds to the 15 language pairs and y-axis corresponds to error
rates.

TABLE I
ERROR RATES OF VARIOUS UNSUPERVISED CLUSTERING ALGORITHMS

Algorithm 2-way 3-way

ISPDTs 0.111± 0.104 0.199± 0.084
IB 0.140∗ ± 0.117 0.225∗ ± 0.095

RB 0.128∗ ± 0.100 0.237† ± 0.105

GRB 0.128∗ ± 0.100 0.230† ± 0.096

AG 0.282† ± 0.082 0.428† ± 0.057

clustering library [12]; each algorithm is run 10 times with

cosine similarity as the similarity metric and the optimal clus-

tering is selected according to the provided criterion function

H mentioned above. Information bottleneck is implemented

using the MATLAB package provided by [14], where we

choose the parameter beta to be infinity (this setting performed

best). The mean error rate ± the standard deviation (μ ± σ)

for the above 4 algorithms along with ISPDTs are shown

in Table I. The results are shown in Table I, all algorithms

are statistically significantly worse than ISPDTs, as computed

with a paired t-test. A ∗ indicates a statistically significant

difference at the p = 0.05 level or lower. A † indicates a

statistically significant difference at the p = 0.005 level or

lower.

B. Annotation and LID Experiments

As is shown above, ISPDTs outperform the other clustering

algorithms on set T1. It is thus justifiable to use unsupervised

ISPDTs to cluster the unlabeled data on set T2 and then use

the resulting clusters to collect labeled data to bootstrap the

LID system.

Specifically, in the case of a mixture of 2 (resp. 3) lan-

guages, for the proposed approach, we choose K data points

that are closest to each centroid after we cluster the CallFriend

data into 2 (resp. 3) clusters. Furthermore, we also tried

two variant approaches: (1) we annotated the K data points

that were farthest away from each centroid. On average, we

expect that such points will be spread more uniformly over

the dataset, thus preventing biases introduced by the centroid

proximity constraint; (2) we annotate the K data points that

are close to the boundary.

To compare with the proposed approach, we randomly

choose K utterances to annotate and do m-fold cross-

validation, where the K utterances chosen in one fold are

distinct from those chosen in the other fold. In this case we

are using random selection to bootstrap our LID system, as is

done in [15]. In the 2-way case, we ran the random selection

experiments 1600 times for each language pair and computed

the mean and standard deviation of the error rates across all

language pairs.

Similar experimental settings are also used when there is a

mixture of 3 languages in the training and test data, except

that we ran the random selection experiments 300 times.

The experimental results of the proposed approach and

random selection in mean error rate ± the standard deviation

(μ± σ) are shown in Table II. Fig. 2 shows a comparison of

the proposed approach and the random selection (baseline),

the error bars represent μ± σ
2 . Error rates of 0.0633± 0.0311

and 0.108± 0.019 are obtained in the 2-way case and 3-way

case respectively when all the training data are used to train the

SVMs; which can be considered as a lower bound on the error

rate obtainable with the active learning and semi-supervised

methods in each case. We can see that when we choose a small

amount of training data to annotate in the active learning, the

proposed approach gives a better result compared to the case

where the selection is done randomly. This result is statistically

significant with an overall p-value 2.14× 10−4.

For the proposed approach, in addition to the K annotated

data points, we picked another U data points that are also

closest to each centroid and assign labels according to the

annotated data points. As it turns out, for the range of K of

interest (2.5% and 5% of the dataset) the different values of U
(ranging from 2.5% to 75% of the dataset) do not significantly

affect the transductive SVM results.

The results of the two variant approaches are shown in Table

III, both variant approaches perform worse compared to the

proposed approach.

VI. CONCLUSIONS

This paper proposes to use unsupervised clustering, specif-

ically unsupervised ISPDTs [2], as a way to select small

amounts of data to be annotated and used in bootstrapping

a LID system. As is shown in Section IV-A, unsupervised

ISPDTs give the best results on a set of development lan-

guages, and they are thus used to guide the computation of

the different clusters in the remaining 6 “test” languages.

We have shown in Section V that the proposed approach

gives results which, in the case of very limited annotation,

are superior to selecting data to annotate at random. For

future work, we would like to expand the set of attributes to

increase the acoustic resolution as is done in [16], use other

speech features, and run experiments on more recent NIST

Language Recognition Evaluation tasks. We also would like

to try other approaches for active learning, using some kind

of “closed-loop”: once the initial data have been collected and

used for bootstrapping the LID system, use the subsequent
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TABLE II
ERROR RATES OF PROPOSED APPROACH AND RANDOM SELECTION

Training data
2-way 3-way

Proposed Approach Random Selection Proposed Approach Random Selection

2.5% 0.107 ± 0.078 0.323 ± 0.191 0.209 ± 0.099 0.454 ± 0.146
5.0% 0.108 ± 0.087 0.242 ± 0.135 0.190 ± 0.099 0.354 ± 0.136
10% 0.098 ± 0.072 0.183 ± 0.106 0.177 ± 0.082 0.320 ± 0.180
20% 0.086 ± 0.061 0.152 ± 0.112 0.158 ± 0.058 0.311 ± 0.223
50% 0.077 ± 0.034 0.122 ± 0.120 0.139 ± 0.042 0.298 ± 0.252
75% 0.069 ± 0.033 0.104 ± 0.094 0.129 ± 0.038 0.247 ± 0.225

100% 0.063 ± 0.031 0.108 ± 0.019

(a) (b)

Fig. 2. Comparison of the proposed approach and random selection (baseline)

TABLE III
ERROR RATES OF 2 VARIANT APPROACHES

Training data
2-way 3-way

Variant Approach 1 Variant Approach 2 Variant Approach 1 Variant Approach 2

2.5% 0.288 ± 0.170 0.364 ± 0.164 0.377 ± 0.136 0.454 ± 0.131
5.0% 0.234 ± 0.154 0.363 ± 0.167 0.312 ± 0.116 0.411 ± 0.096
10% 0.225 ± 0.147 0.303 ± 0.184 0.253 ± 0.103 0.340 ± 0.110
20% 0.192 ± 0.158 0.219 ± 0.158 0.210 ± 0.090 0.276 ± 0.105
50% 0.091 ± 0.039 0.164 ± 0.118 0.157 ± 0.056 0.274 ± 0.137
75% 0.095 ± 0.076 0.145 ± 0.115 0.136 ± 0.051 0.227 ± 0.185

100% 0.063 ± 0.031 0.108 ± 0.019

automatic labels to suggest a more informed annotation effort

that focuses on the boundary between the different classes.
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