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Abstract—The current problem in building a conversational
model from Twitter data is the scarcity of long conversations.
According to our statistics, more than 90% of conversations
in Twitter are composed of just two tweets. Previous work has
utilized only conversations lasting longer than three tweets for
dialogue modeling so that more than a single interaction can
be successfully modeled. This paper verifies, by experiment, that
two-tweet exchanges alone can lead to conversational models that
are comparable to those made from longer-tweet conversations.
This finding leverages the value of Twitter as a dialogue corpus
and opens the possibility of better conversational modeling using
Twitter data.

I. INTRODUCTION

Twitter offers useful data for analyzing social communica-

tion, such as how information spreads among people [1], [2].

Twitter data can also be useful for mining timely opinions on

the web for marketing purposes [3]. Recently, because of the

conversational nature of Twitter (e.g., mentions and replies)

and because of its vast data size and diversity of content com-

pared to what the dialogue research community has seen, there

has been emerging work on creating stochastic conversational

models, such as hidden Markov models (HMMs), from Twitter

data [4]. Building such models can be useful for analyzing

how humans exchange utterances and obtaining insight into

building automated text/spoken dialogue systems.

Although it is true that Twitter data are conversational and

large in size, there is a severe limitation when we want to

build a conversational model from Twitter data. That is, only

a very small proportion of all posts form conversations, and,

what is worse, most of such conversations consist of only two

tweets (a post and a reply; hereafter referred to as two-tweets).

According to a previous study, 37% of English tweets are

reported to be conversational [5], of which 69% are two-tweets

[4]. This tendency is the same in Japanese. According to our

study (see Section IV-A), only about 5.1% of all Japanese

tweets form conversations, of which 91% are two-tweets. Note

that we call two or more tweets connected with an in-reply-

to relationship a conversation, which is different from Kelly’s

idea. He regards all tweets starting from @ (an indicator of

addressing other users) conversational, which we consider to

be too lenient since there may not be a reply to an address.

Typically, when we want to build a conversational model,

we need conversations longer than just two tweets, because

conversations in general are not simply about a single inter-

action, such as a question and answer. Minimally, we need

conversations of three or more tweets (hereafter referred to as

long-tweets) to build reasonable conversational models when

we want to deal with more-than-one-shot interactions. This

is why previous studies have used conversations longer than

three tweets to train their models [4]. Now the problem is that

we have a very small number of long-tweets, which severely

limits the size of training data for conversational modeling.

This paper proposes to make use of two-tweets to build a

conversational model that can be equivalent to or better than

one built from long-tweets. Our basic idea is to cluster tweets

within two-tweets to form pseudo long conversations, from

which we can train a conversational model. In our approach,

we use a non-parametric Bayesian method called the infinite

HMM for the modeling. Our approach could make full use of

the conversations in Twitter and has the potential to leverage

the performance of conversational models that can be learned

from Twitter data.

II. RELATED WORK

Modeling conversations from dialogue data has long been

studied, mainly by using HMMs for their usefulness in dealing

with sequential data. Shirai trained ergodic HMMs from the

data of task-oriented spoken dialogues to analyze the functions

of audio-visual information in dialogue [6]. Dialogues with

less task restriction have also been modeled using HMMs;

Isomura et al. used HMMs to model interview-like conver-

sations and used the HMMs to evaluate the naturalness of

conversations [7], and Meguro et al. used HMMs to analyze

counseling-like listening-oriented dialogues for the purpose

of building listening agents [8]. Engelbrecht et al., and Hi-

gashinaka et al., both trained HMMs that can predict turn-

wise user satisfaction transitions within a dialogue [9], [10].

All these studies use long conversations that at least last
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three turns; typically one conversation lasts more than a few

minutes, resulting in tens of turns per dialogue. The problem

in these studies is that collecting conversations using human

subjects is usually very costly, resulting in a limited number

of dialogues with restrictions in dialogue topics.

Twitter data could overcome such a problem by its data

size and diversity in content, but as we mentioned in the

introduction, modeling Twitter conversations needs to deal

with the scarcity of long conversations. Currently, only long-

tweets are used for training conversational models as in [4],

which we consider does not make the best use of conversations

in Twitter. To the best of our knowledge, no work has tackled

the problem of the scarcity of long conversations in Twitter.

In the context of modeling Twitter data, Ramage et al., used

a technique called labeled latent Dirichlet allocation (labeled

LDA) to model a large number of tweets in order to understand

the varied content in Twitter [11], but their focus is to cluster

individual tweets by latent topics, not to model conversations.

Joty et al. proposed to model conversations using an HMM

(called HMM+Mix) [12]; however, they use the data of e-

mail discussions and messages at Internet forums, where the

conversations are typically longer than those found in Twitter,

and therefore do not address the lack of long conversations.

III. APPROACH

We aim to use two-tweets to create conversational models

that have only been realized by using long-tweets. We consider

that, by using clustering techniques, we can cluster tweets

within two-tweets to form pseudo long conversations, from

which we can train a conversational model for long conver-

sations; that is, we first find two-tweets, such as A → B and

B′ → C, where B and B′ are similar tweets, and cluster the

similar ones to form a pseudo three-tweet conversation (i.e., A
→ {B, B′} → C). If we can apply this process to many two-

tweets and obtain the optimal clusters with their transitions,

then that structure would make a model for long conversations.

Since this process is the same as what HMM training does,

we can adopt known algorithms of HMMs for this task. In

this paper, we employ a non-parametric Bayesian version of

the HMM; namely, the infinite HMM, and use Gibbs sampling

for parameter estimation. The infinite HMM is related to the

Dirichlet process [13], which is a non-parametric Bayesian

model [14]. The hierarchical Dirichlet processes (HDP) [15]

is one realization of the Dirichlet process for handling mixture

models, and the infinite HMM is one implementation of

the HDP. The infinite HMM has been applied to modeling

sequential data when the number of states is not known in

advance; the optimal number of states is determined by data.

We find this feature useful because Twitter data are diverse in

content and it is difficult to estimate the number of states in

advance. In addition, a Bayesian approach has been reported

to perform better [4] than the EM algorithm [16].

One possible drawback of the above approach is that Gibbs

sampling is computationally heavy. Even when we are to use

only two-tweets in Twitter, which constitute a small proportion

of all tweets, we still need to handle a large number of

tweets. Since we have more than a million two-tweets in our

data set (see Section IV-A), a straightforward application of

Gibbs sampling would be extremely difficult. Therefore, in

our approach, we insert one step before HMM training; that

is, the creation of small subsets. To make such subsets, we

take a grep approach; we grep the entire tweets by keywords

to create keyword-related subsets of tweets. Compared to

applying sophisticated hard-clustering algorithms for creating

subsets of data, we find this approach promising and attractive

because we can ascertain that a subset is concerned with

a certain topic semantically constrained by keywords. One

difficulty of this approach is that tweets are generally short,

and this simple grep approach may end in low recall. To

overcome this problem, following [17], we turn to Wikipedia

to annotate tweets with Wikipedia concepts (titles/entries) so

that we can additionally include such concepts as our grep

target and thereby leverage the coverage of tweet extraction.

We first describe how we use Wikipedia to annotate tweets

with Wikipedia concepts in order to create subsets. Then, we

describe how we train our model using the infinite HMM.

A. Making a Subset of Tweets using Wikipedia

Banerjee et al. annotated tweets with Wikipedia concepts

[17]. They first made a text database of Wikipedia articles.

Then, for each tweet, they queried the database using the

words in the tweet to retrieve top-N Wikipedia articles (they

used 20 for N). They used the titles of the retrieved articles

to semantically augment tweets for better clustering.

Our approach is similar to theirs in that we use Wikipedia to

complement the information of tweets, but different in that we

take a more direct approach. We first add all Wikipedia titles

to the dictionary of a morphological analyzer so that words

that match Wikipedia titles can be detected in morphological

analysis. Second, we create a database of Wikipedia titles and

their categories (NB. Wikipedia usually has several categories

associated with each title). Since Wikipedia categories have a

hierarchical structure, for each title, we also include categories

that are one layer above the categories directly associated with

that title. Such hypernym categories can be useful for adding

generalized meanings to the titles. For example, the word “w-

cup (daburyuu hai)” is associated with a category “world cup

(wârudo kappu)” together with their upper layer categories

“world championships (sekai senshuken)” and “international

sports competitions (kokusai supôtsu kyougi taikai)”. Third,

we process all tweets by the morphological analyzer and detect

Wikipedia titles. The detected titles are then coupled with their

categories using the database. Finally, given such processed

tweets and keywords KW , we can create a subset of the tweets

by finding those that contain KW . Note that grep extracts

tweets that have KW in the tweets as well as in the associated

Wikipedia categories. In this approach, for example, a tweet

having “w-cup” can be extracted by keywords such as “world-

cup” as well as “sports” and “championships”.

331



B. Modeling Tweets by the Infinite HMM

In the infinite HMM, tweets are processed one by one.

The first tweet is clustered to the initial cluster (NB. there

is only one cluster at the beginning). Then, the next tweet ti
is clustered to an already occupied cluster cj or creates a new

cluster (cj=new) with the probability

P(cj |ti) ∝ P(cj |cti−1) · P(cti+1 |cj) · P(ti|cj),

where ct means the cluster of a tweet t. In a conversation,

tweets are given a sequential order; ti−1 and ti+1 denote

the previous and next tweets of ti. P(ck|cj) is a transition

probability:

P(ck|cj) =
transitions(cj , ck) + β

∑K
l=1 transitions(cj , cl) + K · β + α

,

where α is the hyper-parameter that determines how likely a

new cluster is created, K is the number of occupied clusters,

and transitions(cj , ck) returns the number of transitions from

cj to ck. β is a flooring value to avoid zero probability. P(ti|cj)
is the probability that ti is generated from cj ; that is,

P(ti|cj) =
∏

w∈W

P(w|cj)count(ti,w),

P(w|cj) =
count(cj , w) + γ∑

w∈W count(cj , w) + |W | · γ ,

where W is a set of features (e.g., bag-of-words), count(∗, w)
a function that returns the number of occurrences of a feature

w for a tweet or a cluster, and γ the hyper-parameter.

The probability of creating a new cluster is

P(cnew|cti−1) · P(cti+1 |cnew) · P(ti|cnew),

where P(cnew|cti−1) and P(cti+1 |cnew) are derived by

P(cnew|cti−1) =
α

∑K
l=1 transitions(cti−1 , cl) + α

,

P(cti+1 |cnew) =
1

K + 1
.

Here, we use a uniform distribution for P(ti|cnew).
After all tweets have been processed, Gibbs sampling is

performed; that is, we repeatedly select one of the tweets

from its cluster and relocate that tweet as if it were the last

tweet to be clustered. After performing a sufficient number of

samplings, we obtain the optimal number of clusters together

with their emission probabilities and transition probabilities,

which become our conversational model.

Determining the appropriate features for representing tweets

is a difficult problem. Following previous studies [4], [12],

we use bag-of-word-unigrams in this paper. This choice of

features is also backed by the fact that there are too many

unique words in Twitter data (see Section IV-A), suggesting

that features made using bigrams or longer n-grams would be

too sparse.

TABLE I
STATISTICS OF OUR TWITTER CORPUS.

food sports all

# conversations 63312 37292 1211725
# tweets 132203 78123 2500918
# words 2517179 1870382 40098705
# unique words 74865 75309 452099

IV. EXPERIMENT

To verify our approach, we performed an experiment. We

first collected tweets from the public timeline. Then, we made

two subsets of tweets related to food and sports, which we

consider to be common topics in everyday conversation. Since

our aim is to examine whether the two-tweets can be used to

create models that can be achieved by long-tweets, we further

divided the subsets into two-tweets and long-tweets. Finally,

we examined whether conversational models made from two-

tweets can compete with those made from long-tweets.

A. Data Collection

We collected Japanese tweets from the public timeline using

Rest and Streaming APIs between February 2 and September

15, 2010. We used the default access level called “Spritzer”.

In this period, we crawled over 95 million tweets (95,501,894

tweets). From them, we retrieved conversations using the in-

reply-to field of the tweets (4,907,519 tweets; 5.1%). After

discarding conversations starting with replies, the resulting

corpus of conversations contains about 2.5 million tweets. This

is about 2.62% of the crawled data, which shows just how

scarce conversations are.

Having created the corpus, we ran our morphological an-

alyzer JTAG [18] with a user defined dictionary augmented

with Wikipedia titles (see Section III-A). We used the Japanese

Wikipedia dump of April 20, 2011. We also created a database

of titles and their categories from the same dump. After all

tweets had been annotated with Wikipedia categories, we

created two subsets by grep using “meal|food (shokuji|ryouri)”
(‘|’ indicates OR) and “sports (supôtsu)” as keywords. We call

the subsets here Food-Set and Sports-Set. Here, grep was done

on the conversation level; that is, when one of the tweets in

a conversation had a keyword, that entire conversation was

extracted.

Table I shows the statistics of our Twitter corpus together

with the information of the two subsets. We can confirm the

diversity of content in Twitter from its large vocabulary size.

From the fair size of the subsets, we can also confirm the

effectiveness of our utilizing Wikipedia. Table II shows the

number of N-tweet conversations. We can see that most are

two-tweets. We can also see that, as N increases, the number

of tweets decreases exponentially. This shows the difficulty of

using Twitter data as a dialogue corpus and makes clear the

need to make use of two-tweets, which account for over 90%

of all conversations (2,280,402 tweets; 91% of all tweets in

our conversations).

B. Evaluation Procedure

We divided each subset into two sets. One set comprises

only two-tweets (the 2-tweet set) and the other set long-tweets
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TABLE II
NUMBER OF N-TWEET CONVERSATIONS.

N food sports all

2 58269 (92.03%) 34114 (91.48%) 1140201 (94.10%)
3 4565 (7.21%) 2865 (7.68%) 66223 (5.47%)
4 426 (0.67%) 273 (0.73%) 4729 (0.39%)
5 46 (0.07%) 34 (0.09%) 506 (0.04%)
6 6 (0.01%) 5 (0.01%) 62 (0.01%)
7 0 (0.00%) 0 (0.00%) 3 (0.00%)
8 0 (0.00%) 1 (0.00%) 1 (0.00%)

3 ≤ 5043 (7.97%) 3178 (8.52%) 71524 (5.90%)

(the long-tweet set). We further divided the long-tweet set into

two sets by dividing it in half; we call them the long-tweet
train set and the long-tweet test set. In Food-Set, the long-

tweet train set and long-tweet test set have 2522 and 2521

conversations, respectively. In Sports-Set, the long-tweet train

set and long-tweet test set both have 1589 conversations.

Since we are interested in how the conversational model

made from two-tweets competes with that made from long-

tweets, we trained models from the 2-tweet set and the long-

tweet train set and evaluated them by looking at how they

explain unseen long conversations; that is, the long-tweet test

set. We also used the long-tweet test set to train a model and

evaluate it using itself as test data (i.e., closed test), which

will indicate the upper bound. We are also interested in how

a model improves when we increase the training data. To

investigate this, we split the 2-tweet set into blocks of 1000

conversations each, and investigated how a model improves

by adding blocks to the training data.

C. Evaluation Metrics

For evaluation metrics, we used log likelihood (LL) and

Kendall’s tau, which have been used in a previous study [4].

For LL, we used the forward algorithm for calculation [16].

For Kendall’s tau, we first created all possible orders of tweets

in each conversation in the long-tweet test set, and calculated

the LL of each order and selected the order with the highest

LL. Then, that order was compared against the original order

to calculate Kendall’s tau by:

tau(R, H) =
n+(R, H) − n−(R, H)

combination(R)
,

where R and H denote reference and hypothesis orders,

n+(R, H) the number of correct pairwise orders, n−(R, H)
the number of incorrect pairwise orders, and combination(R)
the number of possible pairwise orders. The high value in

Kendall’s tau suggests that the flow of conversation has been

successfully modeled.

D. Training infinite HMMs

We trained our infinite HMMs from (a) the 2-tweet set, (b)

the long-tweet train set, and (c) the long-tweet test set of Food-

Set and Sports-Set. We call the models trained from (a), (b),

and (c) the 2-tweet model, the long-tweet open model, and the
long-tweet closed model, respectively. We used tentative values

of 0.01 for all α, β, and γ in HMM training (cf. Section III-B).

For features, we used bag-of-word-unigram features, where the

words are the top-5000 words in the 2-tweet set. The number

TABLE III
THE NEGATIVE LOG LIKELIHOOD (LL) AND KENDALL’S TAU FOR THE

LONG-TWEET TEST SET BY THE 2-TWEET MODEL, THE LONG-TWEET

OPEN MODEL, AND THE LONG-TWEET CLOSED MODEL. * AND + INDICATE

STATISTICAL SIGNIFICANCE (P < 0.01) OVER THE 2-TWEET AND

LONG-TWEET OPEN MODELS, RESPECTIVELY.

2-tweet long-tweet open long-tweet closed

Food-Set LL 290.70+ 294.71 285.54∗+
Food-Set tau 0.312+ 0.247 0.277

Sports-Set LL 332.36 331.92∗ 320.86∗+
Sports-Set tau 0.308+ 0.170 0.303+

of top-N words follows the convention [4], [12]. The number

of iterations for Gibbs sampling was set to 1000, which means

that each tweet is considered 1000 times for relocation.

E. Results

Table III shows the negative log likelihood (the lower, the

better) and Kendall’s tau averaged over all test conversations

(i.e., the long-tweet test set) for the obtained models. We

performed the Wilcoxon rank-sum test to check whether the

models are significantly different. As a result, we found that

the 2-tweet models significantly outperform the long-tweet

open models in almost all cases and that their performance can

even attain the level of the long-tweet closed models in some

cases; for example, there is no statistical difference between

the 2-tweet model and the long-tweet closed model for tau in

both Food-Set and Sports-Set. This indicates that it is possible

to use two-tweets to model long conversations.

Figures 1 and 2 show the line plots of the negative LL and

Kendall’s tau against the long-tweet test set depending on the

size of the 2-tweet set of Food-Set and Sports-Set, respectively.

The solid blue and red lines indicate the possible upper bounds

(i.e., results of the long-tweet closed models) of the LL and

tau, respectively. The dotted blue and red lines indicate the

performance of the long-tweet open models. As for the LL,

as we increase the training data, the performance gradually

passed or closely neared the dotted line. Since the performance

reaches that of the long-tweet open models when the number

of training conversations is 5000-10000, this number of two-

tweets is what we need to compete against 1500-2500 (i.e.,

the size of our long-tweet train sets) long-tweets. It is also

noticeable that the LL somewhat degrades after 20000 two-

tweets, probably because of some structural changes in the

HMMs to better cope with longer tweets, which instead led to

improvements in tau. The result for Kendall’s tau seems better

than that for the LL; the 2-tweet models steadily reached the

performance of the long-tweet closed models. This indicates

that, in terms of ordering, two-tweets seem very helpful for

creating better conversational models.

Figure 3 shows the number of states of our 2-tweet models

depending on the size of training data. Remember that the

optimal number of states is automatically decided from data

in the infinite HMM. It can be seen that we require about 35-

40 states for the food and sports topics. This number is close to

that reported in [4] when their models’ performance saturated.

Although we need further verification by using different hyper-

parameters, 35-40 could be the rough estimate of utterance

333



 280

 290

 300

 310

 0  10000  20000  30000  40000  50000  60000
 0.15

 0.2

 0.25

 0.3

 0.35

N
eg

at
iv

e 
lo

g 
lik

el
ih

oo
d

K
en

da
ll’

s 
ta

u

Training data size (number of conversations)

LL (long-tweet closed)
LL (long-tweet open)

tau (long-tweet closed)

tau (long-tweet open)
LL (2-tweet)
tau (2-tweet)

Fig. 1. Learning curve: the negative log likelihood (LL) and Kendall’s tau
against the long-tweet test set depending on the size of training data (2-tweets)
for Food-Set. The red solid and dotted lines indicate the LL for the long-tweet
closed and open models, respectively. The blue solid and dotted lines indicate
Kendall’s tau for the long-tweet closed and open models, respectively.

 310

 320

 330

 340

 350

 0  5000  10000  15000  20000  25000  30000  35000
 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

N
eg

at
iv

e 
lo

g 
lik

el
ih

oo
d

K
en

da
ll’

s 
ta

u

Training data size (number of conversations)

LL (long-tweet closed)
LL (long-tweet open)

tau (long-tweet closed)

tau (long-tweet open)
LL (2-tweet)
tau (2-tweet)

Fig. 2. Learning curve: the negative log likelihood (LL) and Kendall’s tau
against the long-tweet test set depending on the size of training data (2-tweets)
for Sports-Set. See Fig. 1 for the descriptions of the red and blue solid and
dotted lines.

variations in Twitter.

F. Analysis of Obtained HMMs

To understand our obtained HMMs, we looked at how

our 2-tweet models decode long-tweets. For this purpose,

we obtained best paths for the long-tweet test set in the 2-

tweet model using the Viterbi algorithm. Then, we visualized

frequent paths in the best paths. Figure 4 shows the resulting

graph. Here, only the paths that occurred more than 15 times

are shown. States that do not have such frequent paths and

the paths to the END state have been removed for better

visibility. The numerical numbers along the edges indicate the

probabilities of choosing those paths. The graph clearly shows

the existence of long sequences of tweets in the trained model

even though the model is trained from two-tweets, confirming

the feasibility of using two-tweets to model long conversations.

To further analyze the graph, we examined what words are
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Fig. 3. The number of optimal states depending on the training size.

representative in the states. Table IV shows the representative

words for some of the states in Fig. 4. To select the represen-

tative words, we used the log-likelihood ratio test, which is

similar to the chi-square test; that is, for a state in question,

we count the occurrences of a word in the tweets clustered

to that state (see Section III-B) and tested whether that count

is significantly higher than its expected value. Since the log-

likelihood ratio follows the chi-square distribution, we selected

representative words that had the log-likelihood ratio of over

15.13 (p<0.0001).

To make it easier to grasp the underlying meaning of the

representative words in the table, we included our interpre-

tations of them in square brackets. For example, in state 29,

we see words that concern the status of people; e.g., come

home, wake up, work, and sleepy. State 11 also concerns

one’s status, but is more oriented towards activities at home.

In state 13, we have interrogatives. In state 6, 18, and 31, we

have some response variations; namely social, affection, and

emotion. In state 26, we see words that report one’s meals,

and in state 27, we see the description of food, such as food

names and ingredients. States 26 and 27 seem to be somewhat

topic-dependent states. State 7 seems to represent a generic

comment; people expressing their opinions/attitudes in reply

to previous tweets. Because many states come in to this state

and few edges go out, this state seems to be the terminal of

conversation in Twitter.

Below, we list some sequences from the graph. The se-

quences seem reasonable and bears some similarity to the

typical conversation flow in Twitter [4], again showing the

feasibility of using two-tweets for conversational modeling.

• 11:status (home) → 6:response (social) → 7:comment

• 29:status → 31:response (emotion) → 18:response (af-

fection) → 7:comment

• 26:report → 13:question → 27:description → 7:comment

V. SUMMARY AND FUTURE WORK

In this paper, we first pointed out that Twitter data scarcely

contain long conversations and that most of the conversations

(91% in Japanese tweets) are composed of two tweets.
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Fig. 4. Graphical representation of transitions between states for the food topic.

TABLE IV
REPRESENTATIVE WORDS OF EACH STATE FOR THE FOOD TOPIC. ID

MEANS THE STATE ID. THE SQUARE BRACKETS INDICATE OUR

INTERPRETATIONS OF THE REPRESENTATIVE WORDS. ENGLISH WORDS

ARE TRANSLATIONS BY THE AUTHORS AND THE ORIGINAL JAPANESE

WORDS ARE GIVEN IN PARENTHESES.

ID [Interpretation] Representative words

6 [response (social)] welcome home (kaeri, kae, nasai, nasa),
you must be tired (otsukaresama), good night (oyasumi)

7 [comment] first person pronoun (watashi), sentence-ending
particles that express confirmation or agreement (ne, yo, yone,
desune), think (omou), lol (warai)

11 [status (home)] come home (kitaku), I’m home (tadaima),
!, meal (gohan), now (nau, ima), from now (korekara), bath
(furo), dinner (yuuhan), finished (shuuryou)

13 [question] what (nani), okay (daijoubu), ?, where (doko),
what kind of (donnna), how (dou)

18 [response (affection)] please (kudasai), !, thank you (ariga-
tou), congratulations (omedetou), good luck (ganbaru), I hope
to (yoroshiku), take care (daiji)

26 [report] today (kyou), lunch (ohiru), tonight (konya), yummy
(umauma), ramen noodles (râmen), hamburger (hanbâgu),
curry (karê), set meal (teishoku)

27 [description] salad (sarada), tomato (tomato), fried (itame),
miso soup (miso shiru), soy sause (shouyu), vegetables (ya-
sai), pork (butaniku), onion (tamanegi)

29 [status] meal (gohan), come home (kitaku), sleep (neru),
wake up (okiru), work (shigoto), sleepy (nemui)

31 [response (emotion)] ), (, *, ,̂ ·, ‘, ∀, o, ;, -, �, ’, ≤, ≥, !,
(characters used for facial expressions)

Previous work has utilized only conversations lasting longer

than three tweets for dialogue modeling so that more than a

single interaction can be successfully modeled. This paper has

verified by experiments that two-tweets alone can also lead to

good conversational models that are comparable to those made

from long-tweets. This finding leverages the value of Twitter

as a dialogue corpus and points the way to making better use

of conversations in Twitter for conversational modeling. As

future work, we want to consider the possibility of using single

tweets to enhance our models. Since our approach is analogous

to estimating trigrams from bigrams, the same can be said for

unigrams. Although single tweets do not affect the transitions,

we may be able to obtain better emission probabilities. We

also wish to build an automated dialogue system based on the

obtained conversational models.
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“Modeling user satisfaction with hidden Markov models,” in Proc.
SIGDIAL, 2009, pp. 170–177.

[10] R. Higashinaka, Y. Minami, K. Dohsaka, and T. Meguro, “Issues in pre-
dicting user satisfaction transitions in dialogues: Individual differences,
evaluation criteria, and prediction models,” in Proc. IWSDS, 2010, pp.
48–60.

[11] D. Ramage, S. Dumais, and D. Liebling, “Characterizing microblogs
with topic models,” in Proc. ICWSM, 2010.

[12] S. Joty, G. Carenini, and C.-Y. Lin, “Unsupervised approaches for dialog
act modeling of asynchronous conversations,” in Proc. IJCAI, 2011.

[13] T. S. Ferguson, “A Bayesian analysis of some nonparametric problems,”
Annals of Statistics, vol. 1, pp. 209–230, 1973.

[14] J. K. Ghosh, Bayesian Nonparametrics. Springer, 2003.
[15] Y. Teh, M. Jordan, M. Beal, and D. Blei, “Sharing clusters among related

groups: Hierarchical Dirichlet processes,” in Proc. NIPS, 2004.
[16] L. R. Rabiner, “A tutorial on hidden Markov models and selected

applications in speech recognition,” Readings in speech recognition,
vol. 53, no. 3, pp. 267–296, 1990.

[17] S. Banerjee, K. Ramanathan, and A. Gupta, “Clustering short texts using
Wikipedia,” in Proc. SIGIR, 2007, pp. 787–788.

[18] T. Fuchi and S. Takagi, “Japanese morphological analyzer using word
co-occurrence—JTAG,” in Proc. COLING-ACL, vol. 1, 1998, pp. 409–
413.

335


