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Abstract—To impart a congruent emotional quality to synthetic
speech, it is expedient to leverage the overall polarity of the input
text. This is feasible inasmuch as speech generation complies with
the outcome of sentiment analysis. We have recently introduced
latent affective mapping [1]–[3], a new approach to emotion detec-
tion which exploits two separate levels of semantic information:
one that encapsulates the foundations of the domain considered,
and one that specifically accounts for the overall affective fabric
of the language. The ensuing framework exposes the emergent
relationship between these two levels in order to advantageously
inform affective evaluation. This paper applies latent affective
mapping to the narrower problem of sentiment analysis, in order
to achieve a more robust identification of the polarity of textual
data. Empirical evidence gathered on the “Affective Text” portion
of the SemEval-2007 corpus [4] shows that this approach is
promising for automatic sentiment prediction in text. This bodes
well as a first step in ensuring emotional congruence in text-to-
speech synthesis.

I. INTRODUCTION

A long-term objective of text-to-speech (TTS) synthesis is

to make synthetic speech as expressive as natural speech.

In order to attain that goal, the speech produced must be

emotionally congruent with the underlying textual input, at

least to the extent that such congruence is perceptually salient.

Given the current state of emotion detection from text, this is

not yet within reach. For all practical purposes, however, it

may be sufficient to avoid synthesizing speech with a grossly

inappropriate emotional quality. Under that hypothesis, it is

better to conform to the general sentiment of the input than

risk reflecting a more specific, but incorrect, emotional state.

To make progress in that direction, it is necessary to solve

two complementary sub-problems: (i) the overall polarity must

be identified from the given input text, and (ii) the correspond-

ing modifications must be effected in speech generation [5].

A number of techniques, often closely tied to the synthesis

framework adopted, have been explored to address (ii): cf.,

e.g., [6]. Comparatively less attention has been given to

(i), especially in a TTS context. Typical solutions perform

affective analysis based on an underlying emotional knowledge

database, i.e., affective information is either built entirely upon

manually selected vocabulary as in [7], or derived automati-

cally from data based on expert knowledge of the most relevant

features that can be extracted from the input text [8]. In both

cases, lexical features emerge as overwhelmingly dominant,

and the net effect is to rely on a few thousand annotated

“affective terms,” the presence of which triggers an emotional

label, and thereby the associated polarity value.

We have recently introduced a new framework for emotion

detection and classification [1]–[3], based on two separate

levels of semantic information: one that encapsulates the

foundations of the domain considered, and one that specifically

accounts for the overall affective fabric of the language. This

approach leverages the latent topicality of two distinct corpora,

as uncovered by a global latent semantic mapping (LSM)

analysis [9]. The emergent relationship between the two levels

is then exploited to expose the desired connection between

all terms and emotional categories. Because this connection

automatically takes into account the influence of the entire

training corpora, it is more encompassing than that based on

the relatively few “affective terms” typically considered in

conventional processing. As a result, it effectively bypasses

the need for any explicit external information.

In [1]–[3], latent affective mapping was observed to perform

better than standard emotion classification approaches based

on affective weights and similar expert knowledge. In this

paper, we apply that framework to the narrower problem of

sentiment analysis, in order to achieve a more robust classifi-

cation of the polarity of a given text. The paper is organized

as follows. After briefly reviewing the general approach in the

next section, we take a more detailed look than in [1]–[3] at

two mapping instantiations: latent folding in Section III, and

latent embedding in Section IV. Section V then describes the

mechanics of sentiment prediction given the resulting affective

description. Finally, in Section VI we report the outcome of

experimental evaluations conducted on the “Affective Text”

portion of the SemEval-2007 corpus [4].

II. LATENT AFFECTIVE MAPPING

Let TD, |TD| = ND, be a collection of training texts

(be they sentences, paragraphs, or documents) reflecting the

domain of interest, and VD, |VD| = MD, the associated set

of all words (possibly augmented with some strategic word

pairs, triplets, etc., as appropriate) observed in this collection.

Similarly, let TA, |TA| = NA, represent a separate collec-

tion of mood-annotated texts (again of arbitrary granularity),

representative of broad affective categories (such as JOY and

SADNESS). We denote by VA, |VA| = MA, the associated set

of words or expressions observed in this collection.
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Fig. 1. Affective Analysis Using Latent Affective Mapping.

Latent affective mapping proceeds as illustrated in Fig. 1.

First, we use LSM to encapsulate the semantic information

present in the domain corpus TD (which corresponds to

the LSM processing block on the figure). This is done by

constructing a (MD × ND) matrix WD, whose elements wij

suitably reflect the extent to which each word wi ∈ VD

appeared in each text tj ∈ TD. From [1], wij is given by:

wi,j = (1 − εi)
ci,j

nj
, (1)

where ci,j is the number of times wi occurs in text tj , nj is

the total number of words present in this text, and εi is the

normalized entropy of wi in VD (cf. [9]). We then perform a

singular value decomposition (SVD) [10]:

WD � UD SD V T
D , (2)

where UD is the (MD × RD) left singular matrix with row

vectors uD,i (1 ≤ i ≤ MD), SD is the (RD × RD) diagonal

matrix of singular values sD,1 ≥ sD,2 ≥ . . . ≥ sD,RD
> 0,

VD is the (ND × RD) right singular matrix with row vectors

vD,j (1 ≤ j ≤ ND), RD � MD, ND is the order of the

decomposition, and T denotes matrix transposition [9].

As is well known, both left and right singular matrices UD

and VD are column-orthonormal, i.e., U T
D UD = V T

D VD =
IRD

(the identity matrix of order RD). Thus, the column

vectors of UD and VD each define an orthornormal basis for

the space of dimension RD spanned by the uD,i’s and vD,j’s.

We refer to this space as the latent domain space LD. The

(rank-RD) decomposition (2) encapsulates a mapping between

the set of words wi and texts tj and (after appropriate scaling

by the singular values) the set of RD-dimensional vectors

yD,i = uD,iSD (for wi) and zD,j = vD,jSD (for tj).

The basic idea behind (2) is that the rank-RD decomposition

captures the major structural associations in WD and ignores

higher order effects. Hence, the relative positions of the input

words in the space LD reflect a parsimonious encoding of the

semantic concepts used in the domain under consideration.

This means that any new text mapped onto a vector “close”

(in some suitable metric) to a particular set of words can be

expected to be closely related to the concept encapsulated by

this set. Note that this approach is conceptually richer than
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Fig. 2. Affective Analysis Using Latent Affective Folding.

methods relying solely on keywords, since it automatically

leverages both co-occurrence analysis and dimensionality re-

duction.

Next, we exploit the affective corpus TA to automatically

derive, in a data-driven way, so-called affective anchors repre-

sentative of emotional categories in this domain space (which

corresponds to the latent affective processing block on Fig. 1).

This derivation depends on the specific mapping instantiation

considered: two alternatives are discussed in Sections III

and IV. Finally, once the affective anchors are computed, it

remains to compare the representation of a given input text to

each of these anchors, which leads to a quantitative assessment

for the overall affective affinity of the text.

III. LATENT AFFECTIVE FOLDING

Taking into account the two separate phases of training

and analysis, the first mapping instantiation, latent affective

folding, proceeds as illustrated in Fig. 2. First, we generate

a suitable representation in the LSM space LD of the texts

in TA. Although these texts were not seen in the training

corpus TD, we can invoke the same “folding” technique as

used in standard latent semantic analysis (LSA): see, e.g., [9]

and the references therein. Let us call tA,q (1 ≤ q ≤ NA) each

entry in TA. Treating it as a regular pseudo-document,1 we

compute for this text the weighted counts (1) with j = q. The

resulting feature vector, a column vector of dimension MD,

can be thought of as an additional column of the matrix WD.

Assuming the matrices UD and SD do not change appreciably,

the SVD expansion (2) therefore implies:

tA,q � UD SD v T
A,q , (3)

1This entails, in particular, using the values εi observed during training for
the words of tA,q that are part of VD . Words not present in VD are ignored.
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where the RD-dimensional vector v T
A,q acts as an additional

column of the matrix V T
D . Thus, the represention of this text

in the domain space can be obtained from νA,q = vA,qSD. On

Fig. 2, this process is called latent folding. The resulting set

of vectors νA,q (1 ≤ q ≤ NA) can be viewed as functionally

equivalent to the set of vectors zD,j (1 ≤ j ≤ ND), albeit for

affective rather than domain data.

Now let L be the number of affective categories considered.

We assume that human annotators have grouped all NA texts

in TA into L subsets T (�)
A , one for each distinct emotion.2 For

each 1 ≤ � ≤ L, the representation of the subset T (�)
A in the

space LD is therefore prototypical of that particular emotion.

This forms the basis for computing the region associated

with each affective category � in the domain space. From all

documents that have been labeled with the �th emotion, i.e.,

the subset T (�)
A , we gather the relevant representations νA,q in

the domain space. We then compute the centroid:

ẑD,� =
1

|T (�)
A |

∑

T (�)
A

νA,q , (4)

as the average of the associated text vectors for each pertinent

region in LD. This is turn defines the affective anchor repre-

senting each emotion � (1 ≤ � ≤ L) in the domain space. On

Fig. 2, this process is labelled centroid computation.

The notation ẑD,� is chosen to underscore the connection

with zD,j : in essence, ẑD,� represents the (fictitious) text in the

domain space that would be perfectly aligned with emotion �,

had it been seen the training collection TD.

IV. LATENT AFFECTIVE EMBEDDING

A potential drawback of the above implementation is that

(4) is patently sensitive to the distribution of words within TA,

which may be quite different from the distribution of words

within TD. In such a case, “folding in” the affective texts as

described above may well introduce a bias in the position of

the anchors in the domain space, which in turn could result in

an inability to satisfactorily resolve subtle distinctions between

emotional connotations. To remedy this situation, a possible

solution is to build a separate LSM space from the affective

training data. This leads to the latent affective embedding

procedure illustrated in Fig. 3.

Referring back to the L subsets T (�)
A , we first generate

a meta-corpus comprising only L documents, where the �th

document is the concatenation of all documents in T (�)
A . From

this meta-corpus, we then construct a (MA × L) matrix WA,

whose elements w′
p,� suitably reflect the extent to which each

word or expression w′
p ∈ VA appeared in each affective

category c�, 1 ≤ � ≤ L. This leads to the same form as

(1), albeit with domain texts replaced by affective categories.

We then perform the SVD of WA in a similar vein as (2):

WA � UA SA V T
A , (5)

2Note that, in the case of multiple emotional annotations, each text could
conceivably contribute to several such subsets.
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Fig. 3. Affective Analysis Using Latent Affective Embedding.

where again all definitions are analogous. This yields the

second LSM training block depicted in Fig. 3. As before,

both left and right singular matrices UA and VA are column-

orthonormal, and their column vectors each define an or-

thornormal basis for the space of dimension RA spanned

by the uA,p’s and vA,�’s. We refer to this space as the

latent affective space LA. The (rank-RA) decomposition (5)

encapsulates a mapping between the set of words w′
p and

categories c� and (after appropriate scaling by the singular

values) the set of RA-dimensional vectors yA,p = uA,pSA

and zA,� = vA,�SA.

Thus, each vector zA,� can be viewed as the centroid of

an emotion in LA, or, said another way, an affective anchor

in the affective space. Since their relative positions reflect a

parsimonious encoding of the affective annotations observed in

the emotion corpus, these affective anchors now properly take

into account any accidental skew in the distribution of words

which contribute to them. All that remains to do is map them

back to the domain space.

This is done on the basis of entities that are common to

both the affective space and the domain space. Let VDA,

|VDA| = MDA, represent the intersection between VD and

VA. We denote their representations in LD and LA by λD,k

and λA,k, respectively (1 ≤ k ≤ MDA).

The first step in deriving the cross-space transformation is

to temporarily map both of these vectors to the unit sphere. Let

μD, μA and ΣD, ΣA denote the mean vector and covariance

matrix for all observations λD,k and λA,k in the two spaces,

respectively. We first transform each vector as:

λ̄D,k = Σ−1/2
D (λD,k − μD) , (6)

λ̄A,k = Σ−1/2
A (λA,k − μA) , (7)
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so that the resulting sets {λ̄D,k} and {λ̄A,k} each have zero

mean and identity covariance matrix.

For this purpose, the inverse square root of each covariance

matrix can be obtained as:

Σ−1/2 = QΛ−1/2QT , (8)

where Q is the eigenvector matrix of the covariance matrix

Σ, and Λ is the diagonal matrix of corresponding eigenvalues.

This applies to both domain and affective data.

The next step is to derive the (RD × RA) cross-space

transformation matrix Γ such that:

λ̄D,k = Γ λ̄A,k . (9)

Details on how to proceed are provided in the Appendix.

Once the transformation Γ is computed, we need to apply

it to the centroids of the affective categories in the affective

space, so as to map them to the domain space. On Fig. 3, this

process is referred to as latent embedding. We first project

each vector zA,� (1 ≤ � ≤ L) into the unit sphere, resulting

in:

z̄A,� = Σ−1/2
A (zA,� − μA) , (10)

as prescribed in (7). We then synthesize from z̄A,� a unit sphere

vector corresponding to the estimate in the normalized domain

space. From the foregoing, this estimate is given by:

ˆ̄zD,� = Γ z̄A,� . (11)

Finally, we restore the resulting contribution at the appropriate

place in the domain space, by reversing the transformation (6):

ẑD,� = Σ1/2
D

ˆ̄zD,� + μD . (12)

Combining the three steps (10)–(12) together, the overall

mapping can be written as:

ẑD,� = (Σ1/2
D ΓΣ−1/2

A ) zA,� + (μD − Σ1/2
D ΓΣ−1/2

A μA) .
(13)

This expression stipulates how to leverage the observed affec-

tive anchors zA,� in the affective space to obtain an estimate

of the unobserved affective anchors ẑD,� in the domain space,

for 1 ≤ � ≤ L. The overall procedure is illustrated in Fig. 4

(in the simple case of two dimensions).

V. SENTIMENT PREDICTION

To summarize, using either latent affective folding or latent

affective embedding, we end up with an estimate ẑD,� of the

affective anchor for each category � in the domain space LD.

What remains to be described is how to perform sentiment

prediction in that space.

The first step is to map into the space LD any new input

text to be processed. Proceeding along the lines of (3), each

new text t is again treated as a pseudo-document, leading to:

t = UD SD v T , (14)

where, as before, the RD-dimensional vector v T acts as an

additional column of the matrix V T
D . The represention of the
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Fig. 4. Illustration of Affective Anchor Embedding (2-D Case).

new text in the domain space is therefore obtained from z =
vSD. On Figs. 2 and 3, this process is called LSM mapping.

The second step is to compare this representation to each

affective anchor ẑD,�, bringing to bear a closeness measure

consistent with the LSM paradigm. From [9], [11], among

others, a natural metric to consider is the cosine of the angle

between the two vectors. This yields:

C(z, ẑD,�) =
z ẑ T

D,�

‖z‖ ‖ẑD,�‖
, (15)

for any 1 ≤ � ≤ L. Using (15), it is a simple matter

to directly compute the relevance of the input text to each

affective category. Referring back to Figs. 2 and 3 one last

time, this process is known as similarity computation. In

essence, the resulting set of relevance scores (one for each

affective anchor) leads to a quantitative assessment for the

overall affective affinity of the text. It is important to note that

in this assessment any word weighting is now implicitly taken

into account by the LSM formalism.

VI. EXPERIMENTAL EVALUATION

A. Test Database

The “Affective Text” task from SemEval 2007 was focused

on the emotion classification of news headlines [4]. Headlines

normally consist only of a few words and are often written

by creative people with the intention to “provoke” emotions,

and consequently attract the readers’ attention. These charac-

teristics make this kind of data particularly suitable for use

in an automatic sentiment prediction setting, as a variety of

emotional overtones tend to be present despite the brevity of

each headline.

The test data accordingly consisted of 1,250 news headlines

extracted from news web sites (such as Google news, CNN)

and/or newspapers, and annotated along Ekman’s standard

L = 6 “universal” emotions (ANGER, DISGUST, FEAR, JOY,

SADNESS, and SURPRISE [12]) by 6 different annotators. The
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TABLE I
DISTRIBUTION OF EMOTIONAL MASS IN SEMEVAL-2007 “AFFECTIVE

TEXT” TEST CORPUS.

Possible Emotion Overall Probability of Occurrence
ANGER 11.0 %
DISGUST 7.0 %
FEAR 18.6 %
JOY 21.7 %
SADNESS 22.0 %
SURPRISE 19.7 %

reader is referred to [4] for detailed information on data anno-

tation, including studies on inter-annotator agreement. Taking

into account the different degrees of emotional load assigned

to each headline, the overall distribution of “emotional mass”

observed across the entire test data is reported in Table I.

B. Baseline Systems

For baseline purposes, we selected two different kinds of

systems: (i) based entirely upon manually selected vocabulary

as in [7], and (ii) based on standard LSA trained on a large

corpus of generic texts as in [13]. For (i), we followed a simple

word accumulation strategy, which annotates the emotions in a

text based on the presence of words from the WordNet-Affect

lexicon [14].

For (ii), we implemented three conventional LSA-based

systems, which differ solely in the way each emotion is

represented in the generic LSA space: either based on a

specific word only (e.g., JOY), or the word plus its WordNet

synset, or the word plus all WordNet synsets labelled with

that emotion in WordNet-Affect [4]. In all three cases, the

underlying LSA space was based on the Wall Street Journal

text collection, comprising about 86,000 articles.

C. Latent Affective Training

For the latent affective framework, we needed to select

two separate training corpora. For the “domain” corpus, we

selected a collection of about ND = 8, 500 relatively short En-

glish sentences (with a vocabulary of roughly MD = 12, 000
words) originally compiled for the purpose of a building a

concatenative text-to-speech voice. Though not completely

congruent with news headlines, we felt that the type and range

of topics covered was close enough to serve as a good proxy

for the domain.

For the “affective” corpus, we relied on about NA = 5, 000
mood-annotated blog entries from LiveJournal.com, with a

filtered3 vocabulary of about MA = 20, 000 words. The

indication of mood being explicitly specified when posting

on LiveJournal, without particular coercion from the interface,

mood-annotated posts are likely to reflect the true mood of the

blog authors [14]. The moods were then mapped to the L = 6
categories adopted in the affective description.

3Extensive text pre-processing is typically required on blog entries, to
address typos and assorted creative license.

TABLE II
SENTIMENT PREDICTION RESULTS ON SEMEVAL-2007 “AFFECTIVE

TEXT” TEST CORPUS.

Approach Considered Sentiment Recognition Rate
Baseline Word Accumulation 63.9 %
LSA (Specific Word Only) 67.5 %
LSA (With WordNet Synset) 68.2 %
LSA (With All WordNet Synsets) 67.8 %
Latent Affective Folding 70.3 %
Latent Affective Embedding 74.6 %

Finally, we formed the domain and affective matrices WD

and WA and processed them as in (2) and (5). We used RD =
100 for the dimension of the domain space LD and RA = L =
6 for the dimension of the affective space LA, and computed

the affective anchors as per (4) and (13), respectively.

D. Experimental Results

Recall from [2]–[3] that emotion detection results ob-

tained with the above setup, while encouraging, were not

entirely satisfactory. Although the two latent affective mapping

techniques provided significant improvements in performance

compared to all four baseline approaches, the best F-measures

observed were in the 30-to-35 range, which is arguably too low

to assign a specific emotion with enough confidence.4 Part of

the problem is that all systems based on latent semantics tend

to achieve high recall but fairly low precision, which is likely

due to the fact that LSA/LSM is good at handling synonyms,

but known to be otherwise hindered by polysemy [9], [15].

On the other hand, as we argued earlier, it may not be

necessary to precisely identify the exact emotion in order to

achieve satisfactory emotional congruence in TTS. Since what

matters most is to avoid synthesizing speech with the wrong

emotional quality, it may be enough to conform to the overall

polarity of the input. After all, only a small percentage of input

material may plausibly lead to salient congruence problems in

the first place, primarily because they sit at the extreme of

the affective range. In such cases sentiment analysis would be

sufficient to enable the correct course of action.

To assess how well we could predict the most likely

sentiment associated with each news headline in the test data,

we thus adopted sentiment recognition rate as the evaluation

criterion. The results are summarized in Table II for the various

affective descriptions detailed above. We observe that the two

latent affective techniques provide significant (p < 0.001
using the Wilcoxon test) reductions in sentiment error rate

compared to all four baseline approaches. Moreover, it appears

the techniques can be confidently applied to a large fraction

of the input material.

4In terms of individual emotions, we observed the same general behavior
as reported in [14], in that JOY yields the highest classification performance,
followed by FEAR and SADNESS, then ANGER and SURPRISE, and finally
DISGUST, which appears to be the most difficult to classify. Of course, the
latter may be partly disadvantaged by its relative under-representation in
the data (cf. Table I), which entails comparatively coarse scores within this
emotional category.
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Of the two latent affective implementations, latent em-

bedding performs better, presumably because the embedded

affective anchors are less sensitive than the folded affective

anchors to any difference in word distributions that may exist

between the two corpora. Both techniques seem to benefit

from a richer description of the affective space, with positive

repercussions on ensuing sentiment prediction.

VII. CONCLUSION

We have proposed a fully data-driven strategy for sentiment

analysis in text. This strategy articulates around two coupled

phases: (i) separately encapsulate both the foundations of the

application domain and the overall affective fabric of the

language, and (ii) exploit the emergent relationship between

these two levels of semantic description in order to inform

the sentiment prediction process. We address (i) by leveraging

the latent topicality of two distinct corpora, as uncovered

by a global LSM analysis of domain-oriented and emotion-

oriented training documents. The two descriptions are then

superimposed to produce the desired connection between

all terms and affective categories. Because this connection

automatically takes into account the influence of the entire

training corpora, it is more encompassing than that based

on the relatively few affective terms typically considered in

conventional processing.

Empirical evidence gathered on the “Affective Text” portion

of the SemEval-2007 corpus [4] confirms the effectiveness of

the proposed strategy. Sentiment recognition performance with

latent affective embedding is slightly better than with latent

affective folding, presumably because of its ability to more

richly describe the affective space. Both techniques outperform

affectively weighted word accumulation, as well as standard

LSA approaches based on expert knowledge of emotional

keywords. Latent affective mapping thus appears to be a

promising solution for automatic sentiment prediction, which

bodes well as a first step in ensuring emotional congruence in

TTS.
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APPENDIX

Computation of the Transformation Γ
The cross-space transformation Γ in (9) is derived from a

relative measure of how latent domain and latent affective

spaces are correlated with each other, as accumulated on

a common word basis. Since min(RD, RA) = RA, it is

necessary to first project each λ̄D,k in (6) into the unit sphere

of same dimension as λ̄A,k in (7). This assumes that the

(RA×RD) associated projection matrix, P , has been properly

designed so as to minimize any information loss.

Once this is done, we compute the (normalized) cross-

covariance matrix between the two unit sphere representations,

specified as:

KDA =
MDA∑

k=1

(Pλ̄D,k) λ̄T
A,k . (16)

Note that KDA is typically full rank as long as MDA > R2
A.

Performing the (full-rank) SVD of KDA yields the expression:

KDA = ΦΩ ΨT , (17)

where as before Ω is the diagonal matrix of singular values,

and Φ and Ψ are both unitary in the unit sphere of dimension

RA. This in turn leads to the entity:

Ξ = ΦΨT , (18)

which can be shown (see, for example, [16]) to represent the

(RA ×RA) least squares rotation matrix that must be applied

(in that unit sphere) to λ̄A,k to obtain an estimate of Pλ̄D,k.

It then remains to pre-multiply by P T to get back to the unit

sphere of dimension RD, i.e.:

Γ = P T Ξ , (19)

is the (RD × RA) transformation matrix sought.
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