
Efficient Determinization of Tagged Word Lattices
using Categorial and Lexicographic Semirings

Izhak Shafran, Richard Sproat, Mahsa Yarmohammadi and Brian Roark

{zak,rws,mahsa,roark}@cslu.ogi.edu

Abstract—Speech and language processing systems routinely
face the need to apply finite state operations (e.g., POS tagging)
on results from intermediate stages (e.g., ASR output) that are
naturally represented in a compact lattice form. Currently, such
needs are met by converting the lattices into linear sequences
(n-best scoring sequences) before and after applying the finite
state operations. In this paper, we eliminate the need for this
unnecessary conversion by addressing the problem of picking
only the single-best scoring output labels for every input se-
quence. For this purpose, we define a categorial semiring that
allows determinzation over strings and incorporate it into a
〈Tropical, Categorial〉 lexicographic semiring. Through examples
and empirical evaluations we show how determinization in
this lexicographic semiring produces the desired output. The
proposed solution is general in nature and can be applied to
multi-tape weighted transducers that arise in many applications.

I. INTRODUCTION AND MOTIVATION

Automatic speech recognition and statistical machine trans-

lation systems often employ a cascade of coarse-to-fine stages,

each stage refining the output of the previous stage with more

complex models. The output of the intermediate stages are

represented as n-best scoring sequences, where n is carefully

chosen for each stage — a higher value of n reduces the

risk of pruning the correct output and a lower value improves

the efficiency of the system. The intermediate n-best scoring

sequences in most cases have a large number of overlapping

subsequences, making it efficient to represent them using

lattices or weighted finite state transducers (WFST). Moreover,

the WFST representation allows easy manipulation of the

intermediate sequences through efficient and modular WFST

operations of intersection, shortest path, determinization, and

minimization, operations that are now routinely applied to

process intermediate sequences.
Among the operations that are routinely needed to process

intermediate results, consider a task such as that of estimating

the part-of-speech (POS) of words in an ASR lattice or WFST

(W) using a WFST-based tagger (P). All possible candidate

POS-tags for all the word sequences in the lattice can be

easily obtained by composing the two transducers, W ◦ P .

However, computing only the best scoring analysis for every
word sequence in W is non-trivial. Picking the n-best scoring

paths of W ◦ P does not solve the problem since the output

may contain multiple analysis of same word sequence and all

analyses of certain word sequences may be discarded as in the

case of fine mead in Figure I. Currently, the solution requires

enumerating all the unique word sequences in W , computing

the best analysis for each sequence and then converting the

0

1fine:VB/2

2

fine:JJ/1 3

me:PRP/3

mead:NN/7

me:PRP/5

mead:NN/6

Fig. 1. In this simple illustrative POS-tagged WFST, 2-best scoring path
discards all analyses of fine mead.

resulting sequences back into a WFST. This problem arises not

only in POS tagging but also while processing WFSTs with

any finite state tagging model such as named entity detectors or

morphological analyzers. This problem also surfaces in spoken

term detection or in discriminative training, when one needs

to identify or extract the most appropriate time boundaries,

acoustic model scores, language model scores, pronunciation

scores, and pronunciations for each unique word sequence in

an ASR lattice.

In this paper, we define two new semirings to efficiently

solve the above described problem of computing the shortest

transduction path for all unique input sequences. In Section II,

we briefly describe the relevant terminology and notations

from the finite state machine literature necessary for de-

veloping our solution. Then, we define the new semirings,

illustrate their function with examples and sketch a proof of

correctness in Section III. A few pre- and post-processing steps

are necessary to present the lattices in a readable form, which

are described in Section IV. Through empirical evaluation, we

demonstrate the correctness of our solution in Section VI and

then conclude.

II. BACKGROUND AND NOTATIONS

Adopting the notation often used in the literature [1], a

semiring is 4-tuple (K,⊕,⊗, 0̄, 1̄) with a nonempty set K on

which two binary operations are defined, namely the semiring

plus ⊕ and semiring times ⊗, such that:

1) (K,⊕) is a commutative monoid with identity 0̄;

2) (K,⊗) is a monoid with identity 1̄;

3) ⊗ distributes over ⊕; and

4) 0̄⊗ k = k ⊗ 0̄ = 0̄ ∀k ∈ K.

Typically, 1̄ �= 0̄ is assumed to avoid trivial semirings. The

tropical semiring is an example of a well-known semiring and

is defined as (� ∪ {∞}, min,+,∞, 0).

283978-1-4673-0367-5/11/$26.00 ©2011 IEEE ASRU 2011

A weighted finite-state transducer T over a semiring

(K, +, ∗, 0, 1) is an 8-tuple (Σ, Δ, Q, I, F, E, λ, ρ) where Σ
and Δ are the finite input and output alphabets respectively,

Q is a finite set of states of which I and F are initial and final

subsets of states respectively, E is a finite set of transitions

between pairs of states with an input and an output alphabet as

well as a semiring weight E ⊆ Q×(Σ∪ε)×(Δ∪ε)×K×Q, ε
is an empty element in the alphabet, and λ and ρ are semiring

weights associated with initial and final states respectively. A

weighted finite-state acceptor can be regarded as a special case

where either the input or the output alphabet is an empty set.

A weighted finite-state automaton (WFSA) or transducer

is deterministic if it has a unique initial state and no two

transitions leaving the same state have the same input label. A

generic determinization algorithm can transform a weighted

finite-state acceptor or transducer into its deterministic form if

such a form exists. For details on the algorithm and conditions

for determinization, see Section 6.2 in [1]. The condition most

relevant for our purpose is that the algorithm works with any

weakly divisible semiring. Briefly, a semiring (K,⊕,⊗, 0̄, 1̄)
is said to be divisible if all non-0̄ elements admit an inverse,

that is, (K − 0̄) is a group. A semiring is weakly divisible if

for any x and y in K such that x⊕ y �= 0̄ there exists at least

one z such that (x⊕ y)⊗ z = x. The ⊗ is cancellative if z is

unique and can be written as z = (x+y)−1x. The non-unique

case is not relevant here.

III. THE 〈T, C〉 LEXICOGRAPHIC SEMIRING

The problem of computing the single-best scoring transduc-

tion paths for all unique input sequences calls for some form

of weighted determinization of an acceptor with input label

sequences. For example, in Figure I, we need to determinize

such that only the two paths — [fine:VB\1 me:PRP\2] and

[fine:JJ\1 mead:NN\5]— are preserved. The outline of our

solution is to convert the given weighted transducer into an

equivalent weighted automaton that accepts the same input

sequences. The original output symbols, however, are encoded

as weights along with the original arc weights using a new

semiring. This semiring is defined in a way that determiniza-

tion only preserves the lowest scoring output symbols. After

determinization, the result is transformed back into WFST in

the original semiring. Note that the standard determinization

for weighted transducers, such as the the one implemented

in OpenFst [2], does not suffice for this: indeed, if a given

word sequence has more than one possible tag sequence, and

the transducer is thus non-functional — precisely the case we

care most about, the transducer cannot be determinized.

Consider a semiring with a pair of weights, encoding the

original arc weights (e.g., the probability of the arc) and the

output arc symbols (e.g., the POS tag). Determinization in

the transformed WFSA should clearly have the property that

for any given input sequence, the single-best scoring output

sequence is preserved and as such the tropical semiring is a

natural choice for the first weight.

Choosing the semiring for the second weight however is

non-trivial. The purpose of this weight is to save the output

symbols of the single-best scoring path during determinization

of the transformed WFSA. Note that this weight will also be

subjected to operations of the determinization algorithm and

hence the semiring chosen to represent this weight needs to be

weakly divisible. For a string weight, this can be achieved by

recording the division so that a subsequent ⊗ operation with

the appropriate (inverse) string is cancellative. A natural model

for this is categorial grammar [3]. In categorial grammar, there

are a set of primitive categories, such as N, V, NP, as well as

a set of complex types constructed out of left (\) or right (/
) division operators. An expression X\Y denotes a category

that, when combined with an X on its left, makes a Y . For

example, a verb phrase in English could be represented as a

NP\S, since when combined with an NP on the left, it makes

an S. Similarly a determiner is NP/N, since it combines with

an N on the right to make an NP.

The Categorial Semiring (Definition): We define the left-
categorial semiring (Σ∗,⊕,⊗,∞s, ε) over strings Σ∗ with∞s

and ε as special infinity and null string symbols respectively.

The ⊗ operation accumulates the symbols along a path using

standard string catenation. The ⊕ operation simply involves

a string comparison between the string representations of

(possibly accumulated versions of) the output symbols or tags

using lexicographic less-than (<L). The � operation records

the left-division in the same sense as categorial grammar:

w1 ⊕ w2 =
{

w1 if w1 <L w2

w2 otherwise

w1 ⊗ w2 = w1 · w2

w1 � w2 = w2\w1

Obviously, a right-categorial semiring can also be defined in

a similar fashion with a right-division operator.

One difference between the categorial semiring and standard

categorial grammar is that in the categorial semiring division

may involve complex categorial weights that are themselves

concatenated. For example one may need to left-divide a cate-

gory NN by a complex category that itself involves a division

and a multiplication. Denoting catenation here by ‘ ’, we

might thus produce a category such as 〈VB\JJ NN〉\NN. We

assume division has precedence over times (concatenation), so

in order to represent this complex category, the disambiguating

brackets 〈〉 are needed. The interpretation of this category is

something that, when combined with the category VB\JJ NN
on the left, makes an NN.

Having chosen the semirings for the first and second weights

in the transformed WFSA, we now need to define a joint

semiring over both the weights and specify its operation.

The 〈T, C〉 Lexicographic Semiring (Definition):
We define the 〈T, C〉 Lexicographic Semiring
(〈� ∪ {∞}, Σ∗〉,⊕,⊗, 0̄, 1̄) over a tuple of tropical and

left-categorial weights, inheriting their corresponding identity

elements. The ⊕ and ⊗ operator of this lexicographic semiring

is defined in terms of the standard arithmetic less-than < and

284

lexicographic less-than <L as:

〈w1, w2〉 ⊕ 〈w3, w4〉 =

⎧⎪⎪⎨
⎪⎪⎩

〈w1, w2〉 if w1 < w3; else

〈w3, w4〉 if w1 > w3; else

〈w1, w2〉 if w2 <L w4; else

〈w3, w4〉
〈w1, w2〉 ⊗ 〈w3, w4〉 = 〈w1 + w3, w2 · w4〉

Note that for a lexicographic semiring to be valid, each of

the underlying semirings must observe the path property [4],

[5]. The path property of a semiring K is defined in terms of

the natural order on K such that: a <K b iff a⊕ b = a. For

example, the tropical semiring respects the path property. In

the case of lexicographic semiring, it must always return one

of the input weights, (w1, w2) or (w3, w4). Thus the result of

w1 ⊕w3 must be either w1 or w3, and not some other value;

and similarly for w2 and w4.

A Sketch of a Proof of Correctness: The correctness of

this lexicographic semiring for our problem can be proved by

tracing the results of operation in a generic determinization al-

gorithm (e.g., [1]). Instead, here we provide an intuition using

the example in Figure I. The two input strings fine me and fine
mead share the prefix fine. In the first case fine is a verb (VB),

whereas in the second it is a adjective (JJ). When two outgoing

arcs have same input symbols, the determinization algorithm

chooses the arc with the lowest weight, 〈1, JJ〉. For potential

future use (residual), the other weight 〈2, VB〉 is divided by the

lowest weight 〈1, JJ〉 and the result 〈1, JJ\VB〉 is saved. Note

that the divide operation for the tropical semiring is arithmetic

subtraction. When processing the next set of arcs, the deter-

minization algorithm will encounter two paths for the input

fine mead. The accumulated weight on the path through nodes

0-2-3 is straightforward and is 〈1, JJ〉⊗〈6, NN〉 = 〈7, JJ NN〉.
The accumulated weight computed by the determinization

algorithm through 0-1-3 consists of three components – the

lowest weight for fine, the saved residual and the arc weight

for mead from 1-3. Thus, the accumulated weight for 0-1-3 for

fine mead is 〈1, JJ〉⊗〈1, JJ\VB〉⊗〈7, NN〉, which will reduce

to 〈9, VB NN〉. From the two possible paths that terminate

at node 3 with input string fine mead, the determinization

algorithm will pick one with the lowest accumulated weight,

〈7, JJ NN〉 ⊕ 〈9, VB NN〉 = 〈7, JJ NN〉, the expected result.

Similarly, the determinization algorithm for the input fine
me will result in picking the weight 〈5, VB PRP〉. Thus, the

determinization algorithm will produce the desired result for

both input strings in Figure I and this can be shown to be true

in general.

After determinization, the output symbols (tags) on the

second weight may accumulate in certain paths, as in the

example above. These weights need to be mapped back to

associated input symbols (words). This mapping and the

complete procedure for computing the single-best transduction

paths for all unique input sequences for a given WFST (word

lattice) using the 〈T, C〉 lexicographic semiring is described

in the next section.

IV. LATTICE REPRESENTATION

Consider a lattice transducer where input labels are words

(e.g., generated by a speech recognizer), output labels are tags

(e.g. generated by a part-of-speech tagger), and weights in

the tropical semiring represent negative log probabilities. In

general for any given word sequence, there may be many paths

in the lattice with that word sequence, with different costs

corresponding to different ways of deriving that word sequence

from the acoustic input, as well as different possible ways of

tagging the input.
The procedure for removing the redundant paths is as

follows. We convert the weighted transducer to an equivalent

acceptor in the 〈T, C〉-lexicographic semiring as in Figure 2.

This acceptor is determinized in the 〈T, C〉-lexicographic

CONVERT(L)

1 L′ ← new FST

2 for s in States(L) do
3 add state s′ to L′

4 if s is Start(L) then
Start(L′) ← s′

5 if Final(s, L) = ∞ then
Final(s′, L′) ← 〈∞,∞s〉

6 else Final(s′, L′) ← 〈Final(s, L), ε〉
7 for arc in Arcs(s, L) do
8 add arc′ to Arcs(s′, L′)
9 in-label(arc′) ← in-label(arc)

10 next-state(arc′) ← next-state(arc)

11 weight(arc′) ← 〈weight(arc), out-label(arc)〉
12 return L′

Fig. 2. Pseudo code for converting POS-tagged word lattice into an equivalent
〈T, C〉 lexicographic acceptor.

semiring, to yield a lattice where each distinct sequence of

input-labels (words) corresponds to a single path. The resulting

deterministic acceptor is converted back to a transducer (L′)
in the original tropical semiring, keeping the input labels the

same, but assigning the first weight as arc costs and possibly

complex tags in the second weight as arc output labels. The

conversion is performed by an algorithm that is essentially

the inverse of the algorithm in Figure 2. Since the output tags

may be complex categorial tags, one further step is needed

to complete the process, namely to build a mapper FST (M)

that converts sequences of complex tags back to sequences

of simple tags. The algorithm for constructing this mapper

is given in Figure 3, and an illustration can be found in

Figure 6. Finally, the determinized transducer is composed

with the mapper, (L′ ◦M), to yield the desired result. Note,

crucially, that the mapper will in general change the topology

of the determinized acceptor, splitting states as needed. This

can be seen by comparing Figures 5 and 7 below.
A simple example will serve to illustrate the algorithms.

Consider the toy lattice in Figure 4. Note that there are four

paths through the lattice, with two possible tags for the word

sequence Time flies like an arrow. We would like to derive a

285

BUILDMAPPER(L)

1 for s in States(L) do
2 for arc in Arcs(s, L) do
3 SYMBOLS ← output-label(arc)

4 M ← new FST

5 Start(M) ← 0

6 Final(M) ← 0

7 for l in SYMBOLS do
8 if IsSimple(l) then AddArc(M, 0, Arc(0, l, l))
9 else MAKEPATH(M, l)
10 return M

MAKEPATH(M, l)

1 Split l into vector inputs on \, but treat any string in l enclosed in 〈〉 as a single unit.

2 Split the final element of inputs on into vector outputs
3 Replace the final element of inputs with l
4 Right-pad outputs with ε labels so that |inputs| = |outputs|
5 Right-pad inputs with ε labels so that |inputs| = |outputs|
6 Create a path in M starting at state 0 and ending in 0 where the ith arc has labels inputsi : outputsi

7 return

Fig. 3. Pseudo code for construction of mapper transducer. The function IsSimple returns true in case the tag is a simple tag, not a complex categorial tag.

0

1time:NN/0.25

6time:NN/0.25

9
time:VB/0.5

12
time:NN/0.25

2flies:VBZ/1

7flies:NNS/0.9

10
flies:NNS/0.7

13
flies:NNS/1

3
like:RB/0.9

4
an:DT/0.8

5

arrow:NN/0.2

8
like:VB/0.7 meat:NN/0.5

11
like:VB/0.3

wasps:NNS/1.2

14
like:RB/2.5

15
an:DT/0.8

arrow:NN/0.2

Fig. 4. Sample input lattice.

0 1
time:NN/0.25

2
flies:NNS/0.9

3
like:NNS\NN\VB_NNS_VB/0.3498

4an:<NNS\NN\VB_NNS_VB>\NNS\VBZ_RB_DT/1.4494

5
meat:<NNS\NN\VB_NNS_VB>\VB_NN/0.85059

wasps:NNS/1.2

arrow:NN/0.2

Fig. 5. Lattice after conversion to the 〈T, C〉 semiring, and determinization.

lattice that has just three paths, retaining a single best scoring

path for the latter word sequence. The result of converting

the lattice in Figure 4 to the 〈T, C〉 semiring, followed by

determinization, and conversion back to the tropical semiring,

is shown in Figure 5. Note now that there are three paths, as

desired, and that the tags on several of the paths are complex

categorial tags. To understand the semantics of the categorial

weights, consider the path that contains the words time
flies like meat, which has the categorial sequence NN, NNS,

NNS\NN\VB NNS VB, 〈NNS\NN\VB NNS VB〉\VB NN.

Notionally, the cancellation, working from right

to left, first reduces NNS\NN\VB NNS VB with

〈NNS\NN\VB NNS VB〉\VB NN, yielding VB NN.

This then is concatenated with the first two categories to yield

the sequence NN NNS VB NN. The actual cancellation

is performed by the mapper transducer in Figure 6; the

cancellation just described can be seen in the path that exits

state 0, passes through state 5, and returns to state 0.

The 〈T, C〉-semiring can be generalized to compute the

single-best path in multi-tape weighted transducers. For ex-

286

0

NNS:NNS
NN:NN
VB:VB

3

NNS:VBZ

1

NN:VB

5
NNS\NN\VB_NNS_VB:VB

4

NNS\NN\VB_NNS_VB:RB

2NNS:NNS

<NNS\NN\VB_NNS_VB>\VB_NN:NN

NNS\NN\VB_NNS_VB:VB

<NNS\NN\VB_NNS_VB>\NNS\VBZ_RB_DT:DT

Fig. 6. After conversion of the 〈T, C〉 lattice back to the tropical, this mapper will convert the lattice to its final form.

0

2time:NN/0.25

1
time:VB/0.25

5flies:VBZ/0.9

4flies:NNS/0.9

3
flies:NNS/0.9

6
like:VB/0.3498

8like:RB/0.3498

7
like:VB/0.3498

9
wasps:NNS/1.2

meat:NN/0.85059

10an:DT/1.4494
arrow:NN/0.2

Fig. 7. Final output lattice with the desired three paths.

ample, by encoding the arc likelihoods, the phone sequence,

the clustered allophone sequence, acoustic state sequence, and

acoustic segmental duration associated with word sequence

as a 〈T, C, C,C, T 〉 lexicographic semiring and determinizing

the resulting automaton, we can extract the tags corresponding

to the single-best word sequence. Thus, our method is much

more flexible and powerful than algorithms developed specif-

ically for determinizing POS-tagged word lattices as in [6] or

approximations specific to applications as in [7].

V. SKETCH OF ARGUMENT FOR EFFICIENCY

Consider an input lattice with Vlat states, Elat arcs,

and maximum out-degree of Dlat. We first tag the lattice

by composing with a POS-tagger, which has complexity

O(VlatVposDlatlog(Dpos + Mpos), where Mpos is the max-

imum number of times an (input) symbol repeats at some

state in the tagger.1 The result is then converted to the

〈T, C〉 semiring, which is linear in V + E. The resulting

acceptor is then determinized, an operation that is exponential

in the size of the machine. Construction of the mapper

transducer is linear in the size of the categorial label set.

1http://www.openfst.org/twiki/bin/view/FST/ComposeDoc

Finally, composition of the result with the mapper transducer

is O(VlatVmapDlat(logDmap + Mmap)).
Now consider the complexity of the alternative algorithm

that we sketched in the introduction. First one must extract

each of the individual paths in the lattice, which is exponential

in Dlat. Then each of these paths must be composed with

the tagger, requiringO(VpathVposDpathlogDpos). The shortest

path must then be computed for each — O(VpathlogVpath +
Epath). Finally the paths must be unioned back together,

which is linear in the size of each path. The time (as well

as storage) requirements of pulling out what can potentially

be a very large number of paths will dominate this approach

and render it far less efficient than the algorithm proposed

here.

VI. EXPERIMENTS

The proposed solution was empirically evaluated on 4,664

lattices from the NIST RT Dev04 test set. The lattices were

generated using a state-of-the-art speech recognizer, similar

to [8], trained on about 2000 hours of data, that performed at

a word error rate of about 24%. The utterances were decoded

in three stages using speaker independent models, vocal-tract

length normalized models and speaker-adapted models. The

three sets of models were similar in complexity with 8000

287

clustered pentaphone states and 150K Gaussians with diagonal

covariances.

The lattices from the recognizer were tagged using a

weighted finite state tagger. The tagger was trained on the

Switchboard portion of the Penn Treebank [9]. Treebank

tokenization is different from the recognizer tokenization in

some instances, such as for contractions (“don’t” becomes “do

n’t”) or possessives (“aaron’s” becomes “aaron ’s”). Further,

many of the words in the recognizer vocabulary of 93k

words are unobserved in tagger training, and are mapped

to an OOV token “〈unk〉”. Words in the treebank not in

the recognizer vocabulary are also mapped to “〈unk〉”, thus

providing probability mass for that token in the tagger. A

tokenization transducer T was created to map from recognizer

vocabulary to tagger vocabulary.

A bitag HMM model is estimated and encoded in a tagging

transducer P . In this model, the transition probability is

conditioned just on the previous word’s tag. The transition

probabilities are smoothed using Witten-Bell smoothing. For

each word in the tagger input vocabulary, only POS-tags

observed with each word are allowed for that word, i.e., emis-

sion probability is not smoothed and is zero for unobserved

tag/word pairs. For a given word lattice L, it is first composed

with the tokenizer T , then with the POS-tagger P to produce

a transducer with original lattice word strings on the input side

and tag strings on the output side.

This model was validated on a 2,000 sentence held-aside

subset of the Switchboard treebank, and it achieved 91.5%

tagging accuracy. This is several points lower than the kinds

of accuracies that are typically reported for POS-tagging,

although recent work on tagging conversational speech [10]

reported accuracy of 92.4% for an HMM tagger on the task.

That result is on a different validation set, but the result

indicates that this is a harder tagging task than more typical

text domains. Our system also likely suffers from using a

single “〈unk〉” category, which is quite coarse and does not

capture informative suffix and prefix features that are common

in such models for tagging OOVs. For the purposes of this

paper, however, the model serves to demonstrate the utility of

the semiring using a large model. A similar WFST topology

can be used for discriminatively trained models using richer

feature sets, which would achieve higher accuracy on the task.

The tagged lattices, obtained from composing ASR lattice

with the POS tagger, were then converted to the 〈T, C〉-
lexicographic semiring, determinized in this lexicographic

semiring and then converted back using the mapper transducer

as discussed in Section IV. As we argued in section V, this

is far more efficient than the alternative of enumerating all

the word sequences, tagging each individually, computing the

shortest path, and then unioning the result back together.

The results of this operation were compared with the method

of taking the 1,000 best paths through the original lattice, and

removing any path where the path’s word sequence had been

seen in a lower-cost path. This generally resulted in a rank-

ordered set of paths with n < 1000 members.

In all cases the n-best paths produced by the method

proposed in this paper were identical to the n-best paths

produced by the method just described. The only differences

were due to minor floating-point number differences (expected

due to weight-pushing in determinization), and cases where

equivalent weighted paths were output in different orders.

VII. CONCLUSION

In this paper we introduced the categorial semiring, using

which we created a novel 〈T, C〉 lexicographic semiring.

Through illustrative examples and empirical evaluations, we

show how this lexicographic semiring can be employed to

extract the single-best scoring path for every input sequence

in a weighted finite state transducer. The proposed solution is

general in nature and can be extended to extract multiple tags

corresponding to the best scoring path by tailoring the tuple

weights in the lexicographic semiring, with tropical semiring

for costs and categorial semiring for tags.

VIII. ACKNOWLEDGEMENTS

This research was supported in part by NSF Grants #IIS-

0811745, #IIS-0905095 and #IIS-0964102, and DARPA Grant

#HR0011-09-1-0041. Any opinions, findings, conclusions or

recommendations expressed in this publication are those of the

authors and do not necessarily reflect the views of the NSF or

DARPA. We also thank Cyril Allauzen for useful discussion.

REFERENCES

[1] M. Mohri, “Weighted automata algorithms,” in Handbook of Weighted
Automata, ser. Monographs in Theoretical Computer Science, M. Droste,
W. Kuich, and H. Vogler, Eds. Springer, 2009, pp. 213–254.

[2] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri, “OpenFst:
A general and efficient weighted finite-state transducer library,” in
Proceedings of the Ninth International Conference on Implementation
and Application of Automata, (CIAA 2007), ser. Lecture Notes in
Computer Science, vol. 4783. Springer, 2007, pp. 11–23. [Online].
Available: http://www.openfst.org

[3] J. Lambek, “The mathematics of sentence structure,” American Mathe-
matical Monthly, vol. 65, no. 3, pp. 154–170, 1958.

[4] M. Mohri, “Semiring framework and algorithms for shortest-distance
problems,” Journal of Automata, Languages and Combinatorics, vol. 7,
no. 3, pp. 321–350, 2002.

[5] B. Roark, R. Sproat, and I. Shafran, “Lexicographic semirings for exact
automata encoding of sequence models,” in Proceedings of ACL-HLT,
2011. Portland, OR: Association for Computational Linguistics, 2011.

[6] E. Roche and Y. Schabes, “Deterministic part-of-speech tagging
with finite-state transducers,” Computational Linguistics, vol. 21, pp.
227–253, June 1995. [Online]. Available: http://portal.acm.org/citation.
cfm?id=211190.211200

[7] M. Shugrina, “Formatting time-aligned ASR transcripts for readability,”
in Human Language Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for Computational
Linguistics, ser. HLT ’10. Stroudsburg, PA, USA: Association for
Computational Linguistics, 2010, pp. 198–206. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1857999.1858022

[8] H. Soltau, B. Kingsbury, L. Mangu, D. Povey, G. Saon, and G. Zweig,
“The IBM 2004 conversational telephony system for rich transcription,”
in International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 2005.

[9] M. Marcus, B. Santorini, and M. Marcinkiewicz, “Building a large anno-
tated corpus of English: The Penn Treebank,” Computational Linguistics,
vol. 19, no. 2, pp. 313–330, 1993.

[10] V. Eidelman, Z. Huang, and M. Harper, “Lessons learned in part-of-
speech tagging of conversational speech,” in Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2010, pp. 821–831.

288

