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Abstract—We describe the Arabic broadcast transcription
system fielded by IBM in the GALE Phase 5 machine translation
evaluation. Key advances over our Phase 4 system include a
new Bayesian Sensing HMM acoustic model; multistream neural
network features; a MADA vowelized acoustic model; and the
use of a variety of language model techniques with significant
additive gains. These advances were instrumental in achieving a
word error rate of 7.4% on the Phase 5 evaluation set, and an
absolute improvement of 0.9% word error rate over our 2009
system on the unsequestered Phase 4 evaluation data.

Index Terms—large vocabulary speech recognition

I. INTRODUCTION

The goal of the DARPA Global Autonomous Language
Exploitation (GALE) program is to make Arabic and Chinese
speech and text accessible to monolingual English speakers.
The GALE program has sponsored annual evaluations of
machine translation systems in which speech transcription
is the first step when dealing with broadcast material. In
this paper we describe IBM’s 2011 transcription system for
Arabic broadcasts, which was fielded in the GALE Phase
5 machine translation evaluation. Like most systems fielded
in competitive evaluations, our system relies upon multi-
ple passes of decoding, acoustic model adaptation, language
model rescoring, and system combination to achieve the lowest
possible word error rate. Because the 2011 system is similar
to our previous evaluation system [1], we devote most of this
paper to the novel aspects of the 2011 system. In Section II
we describe the acoustic models used in our system, with
an emphasis on the three new ones: Bayesian Sensing HMM
acoustic model; acoustic models which use multistream neural
network features; and a MADA vowelized acoustic model.
Section III describes the various language models used for
decoding, lattice or n-best rescoring, including an enhanced
classing Model M, word and syntactic neural network, and dis-
criminative language models. The system combination strategy
and the overall system architecture are described in Section IV
and Section V. We conclude in Section VI.

II. ACOUSTIC MODELS

We use an acoustic training set composed of approximately
1800 hours of transcribed Arabic broadcasts provided by the
Linguistic Data Consortium (LDC) for the GALE evaluations.
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Unless otherwise specified, all our acoustic models use 40-
dimensional features that are computed by an LDA projec-
tion of a supervector composed from 9 successive frames
of 13-dimensional mean- and variance-normalized PLP fea-
tures followed by diagonalization using a global semi-tied
covariance transform [2], use pentaphone cross-word context
with a “virtual” word-boundary phone symbol that occupies
a position in the context description, but does not generate
an acoustic observation. Speaker-adapted systems are trained
using VTLN and fMLLR. All the models use variable frame
rate processing [3].

Given that the short vowels and other diacritic markers
are typically not orthographically represented in Arabic texts,
we have a number of choices for building pronunciation
dictionaries: 1) Unvowelized (graphemic) dictionaries in which
the short vowels and diacritics are ignored 2) Vowelized dic-
tionaries which use the Buckwalter morphological analyzer [4]
for generating possible vowelized pronunciations and 3) Vow-
elized dictionary which uses the output of a morphological
analysis and disambiguation tool (MADA) [5]; the assignment
of such diacritic markers is based on the textual context
of each word (to distinguish word senses and grammatical
functions). Our 2011 transcription system uses the acoustic
models described below.

o SI A speaker-independent, unvowelized acoustic model
trained using model-space boosted maximum mutual in-
formation [6]. The PLP features for this system are only
mean-normalized. The SI model comprises 3K states and
151K Gaussians.

o U A speaker-adapted, unvowelized acoustic model trained
using both feature- and model-space BMMI. The U
model comprises 5K states and 803K Gaussians.

e SGMM A speaker-adapted, Buckwalter vowelized sub-
space Gaussian mixture model [7], [8] trained with
feature- and model-space versions of a discriminative cri-
terion based on both the minimum phone error (MPE) [9]
and BMMI criteria. The SGMM model comprises 6K
states and 150M Gaussians that are represented using an
efficient subspace tying scheme.

e« V A speaker-adapted, Buckwalter vowelized acoustic
model trained using the feature-space BMMI and model-
space MPE criteria. The changes in this model compared
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to all the other models: 1) the “virtual” word boundary
phones are replaced with word-begin and word-end tags
2) it uses a dual decision tree that specifies 10K different
Gaussian mixture models, but 50K context-dependent
states, 3) it uses a single, global decision tree and 4)
expands the number of phones on which a state can be
conditioned to £3 within words. This model has 801K
Gaussians.

« BS A speaker-adapted, unvowelized acoustic model us-
ing Bayesian sensing HMMSs where the acoustic feature
vectors are modeled by a set of state-dependent basis
vectors and by time-dependent sensing weights [10].
The Bayesian formulation comes from assuming state-
dependent Gaussian priors for the weights and from using
marginal likelihood functions obtained by integrating out
the weights. The marginal likelihood is Gaussian with a
factor analyzed covariance matrix with the basis provid-
ing a low-rank correction to the diagonal covariance of
the reconstruction error [11]. The details of this model
are given in Section II-A.

o« M A speaker-adapted system, MADA vowelized system,
with an architecture similar to V. The details of this
model are given in Section II-B.

« NNU, NNM Speaker-adapted acoustic models which use
neural network features. They were built using either the
unvowelized lexicon (NNU) or the MADA one (NNM).
Section II-C describes these models in more detail.

A. Bayesian Sensing HMMs (BS)

1) Model description: Here, we briefly describe the main
concepts behind Bayesian sensing hidden Markov models [10].
The state-dependent generative model for the D-dimensional
acoustic feature vectors x; is assumed to be

Xy = (I)th + €4 (1)

where ®; = [¢i1,...,¢in] is the basis (or dictionary) for
state 7 and w; = [wy1, ..., wn]7T is a time-dependent weight
vector. The following additional assumptions are made: (1)
when conditioned on state 7, the reconstruction error is zero-
mean Gaussian distributed with precision matrix R;, i.e.
€lsy = i ~ N(0,R; 1y and (2) the state-conditional prior
for w; is also zero-mean Gaussian with precision matrix A;,
that is w¢|s; = i ~ N(0, A;"). It can be shown that, under
these assumptions, the marginal state likelihood p(x¢|s: = 7)
is also zero-mean Gaussian with the factor analyzed covariance
matrix [11]

S 2R+ & A 0T )

In summary, the state-dependent distributions are fully char-
acterized by the parameters {®;, R;, A;}. In [10], we discuss
the estimation of these parameters according to a maximum
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likelihood type 1II criterion, whereas in [12] we derive param-
eter updates under a maximum mutual information objective
function.

2) Automatic relevance determination: For diagonal A; =
diag(cv1, - - ., ain), the estimated precision matrix values Qi
encode the relevance of the basis vectors ¢;; for the dictionary
representation of x;. This means that one can use the trained
a;; for controlling model complexity. One can first train a
large model and then prune it to a smaller size by discarding
the basis vectors which correspond to the largest precision
values of the sensing weights.

3) Initialization and training: We first train a large acoustic
model with 5000 context-dependent HMM states and 2.8M
diagonal covariance Gaussians using maximum likelihood in
a discriminative FMMI feature space. The means of the GMM
for each state are then clustered using k-means. The initial
bases are formed by the clustered means. The resulting number
of mixture components for the Bayesian sensing models after
the clustering step was 417K. The precision matrices for the
sensing weights and the reconstruction errors are assumed to
be diagonal and are initialized to the identity matrix.

The models are trained with 6 iterations of maximum
likelihood type II estimation. Next, we discard 50% of the
basis vectors corresponding to the largest precision values of
the sensing weights and retrain the pruned model for two
additional ML type II iterations. We then generate numerator
and denominator lattices with the pruned models and perform
4 iterations of boosted MMI training of the model parameters
as described in [12]. The effect of pruning and discriminative
training is discussed in more details in [11].

B. MADA-based acoustic model (M)

This acoustic model is similar to the V model. It uses a
global tree, word position tags, and a large phonetic context
of +3 . While the MADA-based model uses approximately
the same number of Gaussians, the decision tree uses only
one level, keeping the number of HMM states to 10, 000.
Since the MADA-based model uses a smaller phone set than
the Buckwalter vowelized models, we were able to reuse the
Vowelized alignments and avoid the flatstart procedure. In this
section we describe the strategy used for constructing training
and decoding pronunciation dictionaries, the main difference
between this system and the V system. Both pronunciation
dictionaries are generated following [13] with some slight
modification.

1) Training Pronunciation Dictionary: Here we describe an
automatic approach to building a pronunciation dictionary that
covers all words in the orthographic transcripts of the training
data. First, for each utterance transcript, we run MADA to
disambiguate each word based on its context in the transcript.
MADA outputs all possible fully-diacritized morphological
analyses for each word, ranked by their confidence, the MADA
confidence score. We thus obtain a fully-diacritized ortho-
graphic transcription for training. Second, we map the highest-
ranked diacritization of each word to a set of pronunciations,
which we obtain from the 15 pronunciation rules described in



[13]. Since MADA may not always rank the best analysis as its
top choice, we also run the pronunciation rules on the second
best choice returned by MADA, when the difference between
the top two choices is less than a threshold determined empiri-
cally (in our implementation we chose 0.2). The IBM system is
flexible enough to allow specifying multiple diacritized word
options at the (training) transcript level. A sentence can be
a sequence of fully diacritized word pairs as opposed to a
sequence of single words. This whole process gives us fully
disambiguated and diacritized training transcripts with more
than one or two options per word.

2) Decoding Pronunciation Dictionary: For building the
decoding dictionary we run MADA on the transcripts of the
speech training data as well as on the Arabic Gigaword corpus.
In this dictionary, all pronunciations produced (by the pronun-
ciation rules) for all diacritized word instances (from MADA
first and second choices) of the same undiacritized form are
mapped to the undiacritized and normalized word form. Word
normalization here refers to removing diacritic markers and
replace Buckwalter normalized Hamzat-Wasl ({), <, and > by
the letter ‘A’. Note that it is standard to produce undiacritized
transcripts when recognizing MSA. Diacritization is generally
not necessary to make the transcript readable by Arabic-literate
readers. Therefore, entries in the decoding pronunciation dic-
tionary need only to consist of undiacritized words mapped to
a set of phonetically-represented diacritizations.

A pronunciation confidence score is calculated for each
pronunciation. We compute a pronunciation score s for a
pronunciation p as the average of the MADA confidence
scores of the MADA analyses of the word instances that this
pronunciation was generated from. We compute this score for
each pronunciation of a normalized undiacritized word. Let m
be the maximum of these scores. Now, the final pronunciation
confidence score for p is —logio(c/m). This basically means
that the best pronunciation receives a penalty of 0 when
chosen by the ASR decoder. This dictionary has about 3.6
pronunciations per word when using the first and second
MADA choices.

C. Neural Network acoustic models (NNU and NNM)

The neural network feature extraction module uses two
feature streams computed from mean and variance normalized,
VTLN log Mel spectrograms, and is trained in a piecewise
manner, in which (1) a state posterior estimator is trained
for each stream, (2) the unnormalized log-posteriors from all
streams are summed together to combine the streams, and
(3) features for recognition are computed from the bottleneck
layer of an autoencoder network. One stream, the lowpass
stream, is computed by filtering the spectrograms with a
temporal lowpass filter, while the other stream, the bandpass
stream, is computed by filtering the spectrograms with a
temporal bandpass filter. Both filters are 19-point FIR filters.
The lowpass filter has a cutoff frequency of 24 Hz. The
bandpass filter has a differentiator-like (gain proportional to
frequency) response from 0-16 Hz and a high-pass cutoff
frequency of 27 Hz. The posterior estimators for each stream

274

features

autoencoder

141x76

lowpass stream bandpass stream
posterior posterior
estimator estimator
| 2048x141 | | 2048x141 |
[ 2048x2048 | [ 2048x2048 |
[ (19x40)x2048 | [ (19x40)x 2048 |
A A
| |
lowpass log bandpass log
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Fig. 1. Structure of the multistream, discriminatively trained neural network
feature extraction module. The dotted boxes enclose modules that are trained
separately.

compute the probabilities of 141 context-independent HMM
states given an acoustic input composed from 19 frames of 40-
dimensional, filtered spectrograms. They have two 2048-unit
hidden layers, use softsign nonlinearities [14] between layers,
and use a softmax nonlinearity at the output. The softsign
nonlinearity is y = /(1 + |x|). Initial training optimizes the
frame-level cross-entropy criterion. After convergence, the
estimators are further refined to discriminate between state
sequences using the minimum phone error criterion [15],
[16]. Stream combination is performed by discarding the
softmax output layer for each stream posterior estimator, and
summing the resulting outputs, which may be interpreted as
unnormalized log-posterior probabilities. We then train another
neural network, containing a 40-dimensional bottleneck layer,
as an autoencoder, and use the trained network to reduce the
dimensionality of the neural network features. The original au-
toencoder network has a first hidden layer of 76 units, a second
hidden layer of 40 units, a linear output layer, and uses softsign
nonlinearities. The training criterion for the autoencoder is the
cross-entropy between the normalized posteriors generated by
processing the autoencoder input and output vectors through
a softmax nonlinearity. Once the autoencoder is trained, the
second layer of softsign nonlinearities and the weights that
expand from the 40-dimensional bottleneck layer back to the
141-dimensional output are removed. The overall struture of
the neural network feature extraction module is illustrated in
Figure 1.

Once the features are computed, the remaining acoustic



modeling steps are conventional, using 600K 40-dimensional
Gaussians modeling 10K quinphone context-dependent states,
where we do both feature- and model-space discriminative
training using the BMMI criterion. Two acoustic models
were trained using the neural-net features: one (NNM) used
a MADA-vowelized lexicon, while the other (NNU) used
an unvowelized lexicon. Note that the posterior estimators
used in feature extraction were trained with MADA-vowelized
alignments.

III. LANGUAGE MODELS

For training language models we use a collection of 1.6
billion words, which we divide into 20 different sources.
The two most important components are the broadcast news
(BN) and broadcast conversation (BC) acoustic transcripts
(7.5 million words each) corresponding to 1800h of speech
transcribed by LDC for the GALE program. Other notable
sources: Arabic Gigaword corpus, 29M words of transcripts
harvested from the web (Archive), Arabic text from parallel
corpora used for machine translation, etc. We use a vocabulary
of 795K words, which is based on all available corpora, and
is designed to completely cover the acoustic transcripts. To
build the baseline language model, we train a 4-gram model
with modified Kneser-Ney smoothing [17] for each source, and
then linearly interpolate the 20 component models with the
interpolation weights chosen to optimize perplexity on a held-
out set. We combine all the 20 components into one language
model using entropy pruning [18]. By varying the pruning
thresholds we create 1) a 913M n-gram LM (no pruning) to
be used for lattice rescoring (Base) and 2) a 7M n-gram LM
to be used for the construction of static, finite-state decoding
graphs.

In addition to the baseline language models described above,
we investigated various other techniques which differ in either
the features they employ or the modeling strategy they use.
These are described below.

o ModelM A class-based exponential model [20]. Com-
pared to the models used in the previous evaluation,
we use a new enhanced word classing [21]. The bigram
mutual information clustering method used to derive word
classes in the original Model M framework is less than
optimal due to mismatches between the classing objective
function and the actual LM, so the new method attempts
to address this discrepancy. Key features of the new
method include: a) a class-based model that includes
word n-gram features to better mimic the nature of
the actual language modeling, b) a novel technique for
estimating the likelihood of unseen data for the clustering
model, and c) n-gram clustering compared to bigram
clustering in the original method. We build Model M
models with improved classing on 7 of the corpora with
the highest interpolation weights in the baseline model.

¢ WordNN A 6-gram neural network language model using
word features; Compared to the model used in the P4
evaluation [1], we train on more data (44 milion words
of data from BN, BC and Archive). We also enlarge the

275

neural network architecture (increased the feature vector
dimension from 30 to 120 and the number of hidden
units from 100 to 800) and normalize the models. We
create a new LM for lattice rescoring by interpolating
this model with the 7 ModelM models and Base, with
the interpolation weights optimized on the held-out set. In
the previous evaluation we did not get an improvement by
interpolating the wordNN model with model M models,
but the changes made this year result in significant
improvements.

o SyntaxNN A neural network language model using syn-
tactic and morphological features [19]. The syntactic fea-
tures include exposed head words and their non-terminal
labels, both before and after the predicted word. For this
neural network model we used the same training data and
the same neural network architecture as the one described
for WordNN. This language model is used for n-best
rescoring.

o« DLM A discriminative language model trained using the
Minimum Bayes Risk (MBR) criterion [22]. Unlike the
other LMs, a DLM is trained on patterns of confusion
or errors made by the speech recognizer. Our potential
features consist of unigram, bigram, and trigram morphs,
and we used the perceptron algorithm to select a small
set of useful features. With the selected features, we
trained the DLM using an MBR-based algorithm, which
minimizes the expected loss, calculated using the word
error information and posterior probabilities of the N-
best hypotheses of all the training sentences. To prepare
data for DLM training, we used a Phase 3 unvowelized
recognizer trained on 1500 hr. of acoustic data to decode
an un-seen 300 hr. set. This un-seen training set was
provided in Phase 4, but adding this data to acoustic
or language model training did not improve the system,
so it is an ideal set for DLM training. During the
evaluation, a single MBR DLM thus trained was used
to rescore the N-best hypotheses from all the systems.
Although there is a mismatch between training and test
conditions, improvements were still observed. Details of
these experiments as well as post-eval experiments are
presented in [22].

Having many diverse language models, the challenge is to
be able to combine them while achieving additive gains, and
Section V describes our strategy.

IV. SYSTEM COMBINATION

We employ three different techniques for system combina-
tion. The first technique is cross-adaptation (x), where the
fMLLR and MLLR transforms required by a speaker-adapted
acoustic model are computed using transcripts from some
other, different speaker-adapted acoustic model. The second
technique is tree-array combination (+), a form of multi-stream
acoustic modeling in which the acoustic scores are computed
as a weighted sum of scores from two or more models that can
have different decision trees [23]. The only requirement for the
tree-array combination is that the individual models are built



using the same pronunciation dictionary. The third technique
is hypothesis combination using the nbest-rover [24]
tool from the SRILM toolkit [25]. In all these combination
strategies, the choice of systems to combine was based on
performance on a variety of development sets.

V. SYSTEM ARCHITECTURE

The IBM’s 2011 GALE Arabic transcription system is
a sequence of multiple passes of decoding, acoustic model
adaptation, language model rescoring, and system combination
steps. In this section, we show how all the models described
in the previous sections are combined to generate the final
transcripts. We report results on several data sets: DEV’07
(2.5 hours); DEV’09 (2.8 hours); EVAL’ 09, the unsequestered
portion of the GALE Phase 4 evaluation set (4.2 hours);
and EVAL’11, the GALE Phase 5 evaluation set (3 hours).
EVAL’11 is unseen data on which no tuning was done. In our
2011 evaluation system we have the following steps.

1) Cluster the audio segments into hypothesized speakers.

2) Decode with the SI model.

3) Compute VTLN warp factors per speaker using tran-

scripts from (2)

4) Decode using the U model cross-adapted on SI

5) Decode using the SGMM model cross-adapted on (4)

6) Compute best frame rates per utterance using transcripts

from (5),
7) Decode using the SGMM model cross-adapted on U
and frame rates from (6)

8) a) Using the U model and transcripts from (5), com-

pute fMLLR and MLLR transforms.

b) Using the BS model and transcripts from (5),

compute fMLLR and MLLR transforms.

c) Using the NNU model and transcripts from (5),

compute fMLLR and MLLR transforms.

d) Decode and produce lattices using a tree-array
combination of the U model with transforms from
(8a), the BS model with transforms from (8b) and
NNU with transforms from (8c)

Using the M model and transcripts from (5), com-

pute fMLLR and MLLR transforms.

b) Using the NNM model and transcripts from (5),
compute fMLLR and MLLR transforms.

¢) Decode and produce lattices using a tree-array
combination of the M model with transforms from
(9a) and the NNM model with transforms from
(9b)

10) Decode and produce lattices using the V model, frame
rates from (6) and fMLLR and MLLR transforms com-
puted using transcripts from (5).

11) Using an interpolation of Base, 7 ModelM and one
WordNN language models

9) a)

a) rescore lattices from (8d), extract 50-best hypothe-
ses

b) rescore lattices from (9c), extract 50-best hypothe-
ses
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Step Decoding Pass DEV’09 | EVAL'09 | EVAL'11
(8d) (U+BS+NNU)xSGMMxU 12.6% 9.5% 8.9%
(9¢) (M+NNM)xSGMMxU 13.3% 9.8% 9.2%
(10) VxSGMMxU 13.5% 9.8% 9.5%
(14a) | (8d) + simplex 11.4% 8.4% 7.8%
(14b) | (9c) + simplex 11.9% 8.6% 8.1%
(14c) | (10) + simplex 12.5% 9.2% 8.4%
(15) (14a) + (14b) + (14c) 11.1% 8.1% 7.4%
TABLE 1

WORD ERROR RATES FOR THE FINAL THREE COMBINED MODELS BEFORE
AND AFTER ADDING LM RESCORING PASSES

Step | Language Model DEV’09 | EVAL'09 | EVAL' 11

(8d) | Base 12.6% 9.5% 8.9%

(11) | + ModelM and WordNN 11.7% 8.8% 8.2%

(12) | + SyntaxNN 11.6% 8.6% 7.9%

(13) | + DLM 11.5% 8.6% 8.0%

(14) | + SyntaxNN and DLM 11.4% 8.4% 7.8%
TABLE II

WORD ERROR RATES FOR DIFFERENT LM RESCORING STEPS ON THE
(U+BS+NNU)XxSGMM x U.VFR (8D) SET OF LATTICES

c¢) rescore lattices from (10), extract 50-best hypothe-
ses

Parse the 50-best lists from (11) and score them with
a SyntaxNN language model; produce new language
model scores for each hypothesis
Score the 50-best lists from (11) with a discriminative
language model and produce new language model scores
for each hypothesis.
Combine acoustic scores, language model scores from
(11), syntax LM scores from 12) and discriminative LM
scores from 13 using simplex

a) add the new scores to the hypotheses from (11a)

b) add the new scores to the hypotheses from (11b)

c) add the new scores to the hypotheses from (11c)
Combine the hypotheses from (14a), (14b), and (14c)
using the nbest-rover tool from the SRILM
toolkit [25]. This is the final output.

Table II shows the word error rates obtained after adding
new language models either for lattice or n-best rescoring for
the (8d) system. It can be seen that each additional rescoring
pass improves the performance, and that the total improvement
from language modeling rescoring is 1.1-1.2% absolute on all
the sets. Similar improvements have been obtained on the other
two systems that are part of the final system combination ((9c)
and (10)).

12)

13)

14)

15)

A. Simplified Architecture

After the P5 evaluation we investigated an alternative sim-
pler system architecture in which we eliminate the tree-array
combination and cross-adaptation steps. In the new simplified
system we combine the 50-best hypotheses from U, BS, V, M,
NNM and SGMM using n-best rover. For this comparison
experiment we use the language model from (11). In order
to have a fair comparison we redid all the steps in the PS5



Architecture | DEV’07 | DEV’09 | EVAL'09

Eval P5 7.1% 11.5% 8.5%

Simplified 7.2% 11.5% 8.5%
TABLE III

COMPARISON OF THE SYSTEM ARCHITECTURE USED IN THE P5
EVALUATION AND THE SIMPLIFIED ONE

evaluation using this language model. Table III shows that
almost the same results are obtained in both cases, suggesting
that the gains are coming from system diversity not from the
combination method. Also, by comparing the Eval P5 final
WER number with the one from the actual evaluation we see
that it was worth using more expensive processing for LM (i.e.
generating N-bests, using syntax LM, DLM); it actually helps
by 0.4% to the bottom line performance.

VI. SUMMARY

In this paper we present IBM’s 2011 GALE Arabic speech
transcription system, describing improvements made over the
past year that led to a word error rate of 7.4% on the 2011
evaluation data and a year-to-year, absolute reduction of 0.9%
word error rate on the unsequestered 2009 evaluation data.
New techniques that contributed to this improvement include
Bayesian Sensing HMM acoustic models, improved neural
network acoustic features, MADA vowelized acoustic model,
improved word and syntax neural network language models
and enhanced classing Model M and discriminative language
models.
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