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Abstract—We report a series of experiments about how we
can progress from Modern Standard Arabic (MSA) to Levantine
ASR, in the context of the GALE DARPA program. While our
GALE models achieved very low error rates, we still see error
rates twice as high when decoding dialectal data. In this paper,
we make use of a state-of-the-art Arabic dialect recognition
system to automatically identify Levantine and MSA subsets in
mixed speech of a variety of dialects including MSA. Training
separate models on these subsets, we show a signi cant reduction
in word error rate over using the entire data set to train
one system for both dialects. During decoding, we use a tree
array structure to mix Levantine and MSA models automatically
using the posterior probabilities of the dialect classi er as soft
weights. This technique allows us to mix these models without
sacri cing performance for either varieties. Furthermore, using
the initial acoustic-based dialect recognition system’s output, we
show that we can bootstrap a text-based dialect classi er and use
it to identify relevant text data for building Levantine language
models. Moreover, we compare different vowelization approaches
when transitioning from MSA to Levantine models.

I. INTRODUCTION

One of the key challenges in Arabic speech recognition
research is how to handle the differences between Arabic
dialects. Most recent work on Arabic ASR have addressed the
problem of recognizing Modern Standard Arabic (MSA). Little
work has focused on dialectal Arabic [1], [2]. Arabic dialects
differ from MSA and each other in many dimensions of the
linguistic spectrum, morphologically, lexically, syntactically,
and phonologically. What makes Arabic dialect challenging
in particular is the lack of a well-de ned spelling system,
resources (i.e., acoustic and LM training data) as well as tools
(such as morphological analyzers and disambiguation tools).

In this paper, we build an Arabic ASR system that can
handle Levantine dialects as well as MSA, by building
Levantine/MSA-speci c models. To do that, we rst make use
of an automatic dialect recognition system to annotate our
GALE acoustic data with dialect IDs. We also build a text-
based dialect ID system to identify Levantine LM training
data in our pool of text data. For pronunciation modeling, we
experiment with multiple techniques to compensate for the
lack of a Levantine morphological analyzer.

The details of our GALE system are described in [3], [4],
[5]. The acoustic training data consists of 1800 hours of
broadcast news and conversations. Brie y, we use the follow-
ing set of acoustic models, employing different pronunciation
modeling approaches for Arabic:

• Unvowelized:
This is a letter-to-sound mapping; short vowels and other
diacritic markers are ignored. While these models don’t
perform as well as vowelized models at the ML level,
discriminative training reduces the gap to a very large
extent.

• Buckwalter Vowelized:
The Buckwalter morphological analyzer [6] is used to
generate candidates of vowelized (diacritized) pronunci-
ations in a context independent way. This is also a letter-
to-sound mapping, but we map each letter and diacritic
marker (except for shadda marker, where consonants are
doubled) to a phoneme. On average there are 3.3 pronun-
ciations per words. For decoding, we use pronunciation
probabilities that are obtained from the training data.

• MADA Vowelized:
As an alternative to Buckwalter, we use MADA [7]
to generate context-dependent diacritized candidates. In
this approach, we apply the 15 linguistically-motivated
pronunciation rules, to map diacritized words to true
phonemes, described in [8]. On average there are 2.7
pronunciations per words. Pronunciation probabilities are
derived from the MADA output. The details of generating
the training and decoding pronunciation lexicons for this
system are described in [9].

All models are based on context expanded PLP features with
cepstral mean and variance normalization (CMVN) plus LDA
and STC. Speaker adaptation consists of VTLN, FMLLR,
and MLLR regression trees. Discriminative training uses both
feature space (fBMMI) and model space (BMMI) training. A
more detailed description of our training recipe and toolkit can
be found in [10].

We use a 795K word vocabulary, which has OOV rates of
less than 1% for all the GALE test sets. The language model
is an unpruned 4-gram with 913M n-grams.

The paper is organized as follows. First, we describe the
dialect recognition system, which enables us to de ne a
Levantine test set (veri ed manually by the LDC). Second,
we compare different pronunciation modeling strategies on the
task of Levantine ASR. We then use the dialect classi er to
nd relevant subsets of our training data (both acoustic and

text) to improve our models on Levantine.
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II. DIALECT IDENTIFICATION

As mentioned above, we are interested in building
Levantine-speci c models using the available GALE data.
Recall that this data contains a mix of dialects in addition to
MSA and that this data has no speci c dialect annotations. To
build a Levantine-speci c ASR system, we need dialect anno-
tations for each utterance since Arabic speakers, in broadcast
conversations (BC), tend to code mix/switch between MSA
and their native dialects across utterances and even within the
same utterance.1 In this work, we build a dialect recognition
system to identify dialects at the utterance level.

Biadsy et al. [9], [11] have previously shown that a dialect
recognition approach that relies on the hypothesis that certain
phones are realized differently across dialects achieve state-
of-the-art performance for multiple dialect and accent tasks
(including Arabic). In this paper, we make use of this system
(described next) to annotate some of our Arabic GALE data.

A. Phone Recognizer and Front-End

The dialect recognition approach makes use of phone hy-
potheses. Therefore, we rst build a triphone CD- phone
recognizer. The phone recognizer is trained on MSA using
50h of GALE speech data of broadcast news and conversations
with a total of 20,000 Gaussians. We use one acoustic model
for silence, one for non-vocal noise and another to model vocal
noise. The front-end is a 13-dimensional PLP front-end with
CMVN. Each frame is spliced together with four preceding
and four succeeding frames and then LDA is performed to
yield 40d feature vectors. We utilize a unigram phone model
trained on MSA to avoid bias for any particular dialect.2 We
also use FMLLR adaptation using the top CD-phone sequence
hypothesis. Our phone inventory includes 34 phones, 6 vowels
and 28 consonants.

B. Phone GMM-UBM and Phonetic Representation

The rst step in the dialect recognition approach is to build a
‘universal’acoustic model for each context-independent phone
type. In particular, we rst extract acoustic features (40d fea-
ture vectors after CMVN and FMLLR) aligned to each phone
instance in the training data (a mix of dialects). Afterwards,
using the frames aligned to the same phone type (in all training
utterances), we train a Gaussian Mixture Model (GMM), with
100 Gaussian components with diagonal covariance matrices,
for this phone type, employing the EM algorithm. Therefore,
we build 34 GMMs. Each phone GMM can be viewed as
a GMM-Universal Background Model (GMM-UBM) for that
phone type, since it models the general realization of that
phone across dialect classes [12]. We call these GMMs phone
GMM-UBMs.

Each phone type in a given utterance (U ) is represented
with a single MAP (Maximum A-Posteriori) adapted GMM.

1In this work, we do not attempt to identify code switching points; we
simply assume that an utterance is spoken either in MSA or in purely a
regional dialect.

2We use true phonetic labels here by generating pronunciation dictioanries
using MADA, following [9].

Speci cally, we rst obtain the acoustic frames aligned to
every phone instance of the same phone type in U . Then these
frames are used to MAP adapt the means of the corresponding
phone GMM-UBM using a relevance factor of r = 0.1. The
resulting GMM of phone type φ is called the adapted phone-
GMM (fφ). The intuition here is that fφ ‘summarizes’ the
variable number of acoustic frames of all the phone instances
of a phone-type φ in a new distribution speci c to φ in U
[11].

C. A Phone-Type-Based SVM Kernel

Now, each utterance U can be represented as a set SU

of adapted phone-GMMs, each of which corresponds to one
phone type. Therefore, the size of SU is at most the size
of the phone inventory (|Φ|). Let SUa

= {fφ}φ∈Φ and
SUb

= {gφ}φ∈Φ be the adapted phone-GMM sets of utterances
Ua and Ub, respectively. Using the kernel function in equation
(1), designed by [11] which employed the upper bound of
KL-divergence-based kernel (2), proposed by [13], we train a
binary SVM classi er for each pair of dialects. This kernel
function compares the ‘general’ realization of the same phone
types across a pair of utterances.

K(SUa , SUb
) =

∑

φ∈Φ

Kφ(f ′
φ, g′φ) (1)

where f ′
φ is the same as fφ but we subtract from its Gaussian

mean vectors the corresponding Gaussian mean vectors of
the phone GMM-UBM (of phone type φ). g′φ is obtained
similarly from gφ. The subtraction forces zero contributions
from Gaussians that are not affected by the MAP adaptation.
And,

Kφ(fφ, gφ) =
∑

i

(
√

ωφ,iΣ
− 1

2
φ,i μf

i )T (
√

ωφ,iΣ
− 1

2
φ,i μg

i ) (2)

where, ωφ,i and Σφ,i respectively are the weight and diagonal
covariance matrix of Gaussian i of the phone GMM-UBM of
phone-type φ; μf

i and μg
i are the mean vectors of Gaussian i

of the adapted phone-GMMs fφ and gφ, respectively.
It is interesting to note that, for (1), when Kφ is a linear

kernel, such as the one in (2), each utterance SUx can be
represented as a single vector. This vector, say Wx, is formed
by stacking the mean vectors of the adapted phone-GMM
(after scaling by

√
ωφΣ− 1

2
φ and subtracting the corresponding

μφ) in some (arbitrary) xed order, and zero mean vectors for
phone types not in Ux. This representation allows the kernel
in (1) to be written as in (3). This vector representation can
be viewed as the ‘phonetic nger print’ of the speaker. It
should be noted that, in this vector, the phones constrain which
Gaussians can be affected by the MAP adaptation (allowing
comparison under linguistic constraints realized by the phone
recognizer), whereas in the GMM-supervector approach [14],
in theory, any Gaussian can be affected by any frame of any
phone.

K(SUa , SUb
) = WT

a Wb (3)
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III. ASR AND DIELCT ID DATA SELECTION

As noted above, the GALE data is not annotated based
on dialects. Moreover, to the best of our knowledge, there
is no Arabic dialect corpus of similar domain and/or acoustic
condition as BC. Fortunately, there are telephone conversation
corpora available from the LDC for four Arabic dialects
(Egyptian, Levantine, Gulf, and Iraqi). To address the acoustic
recording and domain issues we build two systems.

In our rst system, we train our dialect recognition on
dialect data taken from spontaneous telephone conversations
from the following Appen corpora: Iraqi Arabic (478 speak-
ers), Gulf (976), and Levantine (985). For Egyptian, we use the
280 speakers in CallHome Egyptian and its supplement. We
train the system on 30 s cuts. Each cut consists of consecutive
speech segments totaling 30 s in length (after removing
silence). Multiple cuts are extracted from each speaker. 3

We run this system to annotate a portion of our GALE BC
data (after downsampling to 8Khz). The dialect recognition
system classi ed 54h of Levantine speech with a relatively
high con dence. Since the dialect ID system is trained on
telephone conversations as opposed to broadcast conversations,
we asked the LDC to validate/ lter the output of the system.
We nd that about 36h out of 54h are tagged as “mostly
Levantine”, a 10h set contains code switching between MSA
and Levantine at the utterance level, and an 8h set contains
either other dialects or MSA. Recall our system is not trained
to identify MSA.

We extract a 4h test set (LEV 4h) to be used for report-
ing results in all the Levantine ASR experiments. From the
remaining 32h we extract all the utterances longer than 20
seconds, this yields approximately 10h of data (LEV 10). Part
of the transcripts released by LDC for the GALE program
have “non-MSA” annotations. This allows us to select a 40h
MSA corpus by choosing speakers whose utterances have no
such markings. From this set we select 4h for our MSA ASR
experiments (MSA 4h). From the remining, we further select
a 10h set with utterances longer than 20 seconds (MSA 10).

IV. DIALECT IDENTIFICATION ON GALE DATA

Given that now we have gold standard BC MSA and
Levantine data (MSA 10 and LEV 10), we can train another
dialect recognition system to distinguish MSA vs. Levantine
for BC acoustic conditions. We divide LEV 10 into 9h for
training and 1h for testing our dialect recognition system.
Similarly MSA 10 is divided into 9h for training and 1h for
testing. Note that this amount of acoustic data is typically not
suf cient to train dialect identi cation systems; however, we
are interested in making use of the rest of the data for other
experiments.

As described in Section II, for the dialect identi cation
system we need a phone decoder; therefore we carry out
a number of experiments for nding the best strategy for

3The equal error rate reported by Biadsy et al. [11] of this dialect
recognition system on a 20% held-out speaker set from these corpora is 4%.

System WER on DEV-07
50k Gaussians, 1k states, ML 16.8%
200k Gaussians, 5k states, ML 15.4%
200k Gaussians, 5k states, fBMMI+BMMI 12.5%

TABLE I
MADA AM USED FOR DIALECT ID, WER TEST

System / Features Classi caion Accuracy
50k ML 1-gram phone LM 85.1%
50k ML 3-gram phone LM 84.5%
200k ML, 3-gram phone LM 84.9%
200k fBMMI+BMMI, 3-gram 83.0%

TABLE II
DIALECT CLASSIFICATION PERFORMANCE

building it. We train 3 MADA Vowelized (i.e., a true phonetic-
based system) triphone acoustic models in which we vary the
number of Gaussians and the number of states, using either
ML or discriminative training. First, we test these models
for word recognition with our unpruned 4-gram LM. Table I
shows the word error rates on the DEV-07 set.

In the next test, we use the triphone models to decode
phone sequences with different phone language models. For
each phone decoder we build a dialect classi cation system
using the SVM-Kernel approach described in Section II-C.
We train the models on 9h of Levantine data and 9h of MSA
data, and evaluate the results on a test set which contains
1h of Levantine and 1h of MSA data. Table II shows the
dialect classi cation rates for the different acoustic model
and phone language model combinations. Based on these
results we decided to use the smallest, simplest model (50K
Gaussians ML model with unigram phone language model)
for the subsequent experiments.

V. ACOUSTIC MODELING EXPERIMENTS

A. Comparing Vowelizations

We select a 300 hour subset from our entire GALE training
set and train speaker adaptive acoustic models for all 3
lexical setups. The decoding setup includes VTLN, FMLLR,
and MLLR and we use an unpruned 4-gram LM with a
795k vocabulary. First, we test the models on one of our
standard GALE development sets, DEV-07, shown in table
III. Buckwalter and MADA vowelizations perform similarly,
while the unvowelized models are 2.7% worse at the ML
level. However, we want to note that the difference is only 1%
after discriminative training. This indicates that discriminative
training of context-dependent (CD) GMM models is able to
compensate for the lack of (knowledge based) pronunciation
modeling to a large degree.

In the next comparison, we test the models on a newly
de ned MSA test set. The reason behind this set is that we
want to use the same methodology for de ning/selecting a test
set for both Levantine and MSA. We would like to analyze the
dif culty of Levantine when compared to MSA under exactly
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System Unvowelized BW Vowelized MADA Vowelized
ML 16.6% 14.2% 13.9%
fBMMI+BMMI 12.7% 11.8% 11.7%

TABLE III
300H AM TESTED ON DEV-07

System Unvowelized BW Vowelized MADA Vowelized
ML 28.6% 27.0% 25.7%
fBMMI+BMMI 21.8% 21.7% 21.2%

TABLE IV
300H AM TESTED ON MSA 4H

same conditions. We are basically reducing effects related
to how and from where the test sets are chosen. DEV-07,
for example, is a test set de ned by LDC which consists of
mostly very clean broadcast news data. This is very likely the
reason behind our very low error rates. The MSA 4h test set is
selected randomly from broadcast conversations of our training
set and labeled as MSA by our dialect classi er. The reason
to select the data from broadcast conversations is to match the
conditions of the Levantine test set. All of the Levantine data
comes from BC as well. The error rates on this MSA test set
(Table IV) is almost twice as high as the error rates on DEV-07
(Table III), although both are non-dialectal (MSA) test data.
We also see that all three models perform at a similar level
(21.2% - 21.8%) after discriminative training.

We now compare the models on Levantine data (LEV 4).
Recall that this Levantine test set is part of the GALE corpus
identi ed automatically by our dialect classi er and manually
veri ed by LDC (see Section II). The same methodology for
selecting the test data is used for MSA 4h and LEV 4h.
Both MSA 4h and LEV 4h test sets are excluded from the
training of the acoustic and language models. Looking at
Tables IV and V, we observe two main points:

1) The error rate for Levantine is almost twice as high as for
MSA (39.7% vs 21.8%). We compare here the Levantine
error rate to MSA 4h and not to DEV-07. This allows
us to attribute the increase in error rate to dialect and
not to other effects (how the test set was chosen and
how carefully the transcripts were done).

2) Another interesting observation is that the unvowelized
models perform best on Levantine (39.4% vs. 40.8%
and 42.1%). We speculate that this due to the fact that
both Buckwalter analyzer, MADA, and the pronuncia-
tion rules are designed for MSA – which do not work
properly for Levantine words. A dialect speci c morpho-
logical analyzer would very likely improve results, but
it is unclear that it would signi cantly reduce the error
rate on Levantine given that the unvowelized perform
comparably well on MSA data (Table IV).

B. Selecting dialect data from the 300 hour training subset

We now run the dialect recognition system on our 300 hours,
a subset of the GALE training corpus. Out of this training set,

System Unvowelized BW Vowelized MADA Vowelized
ML 48.2% 50.3% 48.1%
fBMMI+BMMI 39.7% 42.1% 40.8%

TABLE V
300H AM TESTED ON LEV 4H

Training data WER
unweighted (300h) 48.2%
hard-weighted (37h) 48.3%
soft-weighted (300h) 45.3%

TABLE VI
COMPARING WEIGHTING SCHEMES OF TRAINING STATISTICS ON

LEV 4H, 300H SETUP, UNVOWELIZED ML MODELS

we obtain about 37 hours labeled as Levantine. This is not
suf cient to train a set of acoustic models. One option is to
use a deep MLLR regression tree or MAP training. In our
experience MLLR works well for limited domain adaptation
data, but will not be able to fully utilize a large amount of
domain adaptation data. While MAP works better with more
adaptation data, it is dif cult to use it in combination with
feature space discriminative training.

Instead, we use a form of training with weighted statistics.
The advantage is that all components of the model (including
decision trees) are trained at all training stages (ML, DT)
with the new domain data. In our case we have additional
information in form of a dialect posterior probabilities for
each utterance from the dialect classi er. We use this posterior
to weight the statistics of each utterance during ML and
discriminative training.

Table VI shows a comparison of different weighting
schemes. In the rst row, we simply train on all 300 hours
regardless whether they are Levantine or MSA. This model
gives us an error rate of 48.2%. In the second row, we train
only on the selected Levantine subset of 37 hours. The error
rate is slightly higher, 48.3%, due to the lack of training data.
In the third row, we train on the same 300 hours, but weight the
statistics of each utterance individually by the posterior score
of the dialect classi er. This provides us with a smoothing
of the models, avoids overtraining and we get a 2.9% error
reduction.

We apply now the soft-weighting scheme to all voweliza-
tion setups and compare the models both after ML and
fBMMI+BMMI training in Table VII. The improvement from
focusing on Levantine training data can be seen by comparing
Table V with Table VII. For example, for the unvowelized
models, we obtain 2.9% absolute error reduction at the ML
level, and 1.3% after discriminative training. Note that we do
not add training data, rather we nd relevant subsets that match
our target dialect.

C. Tree array combination

When we focus the training on Levantine, we can expect
the model to perform worse on MSA data. In fact, the error
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System Unvowelized BW Vowelized MADA Vowelized
ML 45.3% 47.3% 45.5%
fBMMI+BMMI 38.4% 41.4% 39.2%

TABLE VII
300H AM TESTED ON LEV 4H

Weight for MSA model Weight for LEV models DEV-07 LEV 4h
1.0 0.0 12.7% 39.7%
0.0 1.0 15.1% 38.4%
0.5 0.5 13.3% 38.2%
dialect Classi er soft weight 12.9% 38.4%

TABLE VIII
TREEARRAY COMBINATION OF GENERAL MODELS WITH LEVANTINE

MODELS IN ON DECODING PASS, 300H UNVOWELIZED FBMMI+BMMI
SETUP

rate increases from 12.7% to 15.1% on DEV-07 when we
use the Levantine models (Table VIII). Our toolkit allows
us to combine models with different decision trees into one
single decoding graph [3]. This enables us to combine different
acoustic models in one decoding pass on the y, without mak-
ing a hard model selection. The combined acoustic score is the
weighted sum of the log likelihoods of the combined models.
In our case, we combine the MSA and LEV unvowelized
models. The results are in Table VIII. The rst two rows
represent the extreme cases where either the MSA or LEV
model is used exclusively. In the third row, we weight both
models equally and constant for all utterances. The error rate
on DEV-07 is 13.3%, 0.6% higher than when just using the
MSA model, but much better than when using the LEV models
only (15.1%). On the other hand, we get a small improvement
on the Levantine test set (38.4% goes to 38.2%). This is a
system combination effect. We used tree arrays in the past as
an alternative to rover or cross-adaptation, for example in our
latest GALE evaluation. In the last row in Table VIII we use
the posterior of the dialect classi er as a soft weight for model
combination on a per utterance basis. This automatic strategy
gives us an error rate that is close to the optimal performance
of a model selected manually.

D. Selecting dialect data from the 1800 hour training set

The full GALE training corpus consists of about 1800
hours. Similar to the previous experiments, but now focusing
exclusively on the unvowelized models, we generate dialect
labels for the entire training corpus. The dialect recognition
system identi ed about 237 hours as Levantine in the GALE
corpus (or 13%). In Table IX, we compare different weighting
schemes for the Levantine data. In contrast to the 300 hours
setup (Table VI), the best error rate is achieved now by training
exclusively on the 237 hours Levantine data and not by using
the dialect scores to weight the statistics. The reason is simply
that the amount of Levantine training data is now large enough
to train acoustic models and we do not need to add data as it
was the case for the previous experiments when we had only
37 hours of Levantine data.

Training data WER
unweighted (1800h) 47.0%
hard-weighted (237h) 42.3%
soft-weighted (1800h) 43.5%

TABLE IX
COMPARING WEIGHTING SCHEMES OF TRAINING STATISTICS ON

LEV 4H, 1800H SETUP, UNVOWELIZED ML MODELS

Test data dialect classi cation
MSA 4h 86.0%
Lev 4h 87.2%

TABLE X
TEXT ONLY DIALECT CLASSIFICATION USING LEVANTINE AND MSA

LANGUAGE MODELS

After discriminative training (fBMMI+bMMI) of the 237
hours unvowelized Levantine models, the error rate goes down
to 36.3%. In other words, we can lower the error rate by almost
10% relative by focusing on relevant subsets of the training
data and the dialect classi er together with the tree array
decoding technique which allows us to use both Levantine
and MSA models in one decoding pass, so the engine can
handle both dialectal and non-dialectal utterances at the same
time.

VI. LANGUAGE MODELING EXPERIMENTS

A. Dialect ID based on Text only

The previous experiments in Section V demonstrate that the
acoustic training data contains relevant dialect subsets when
detected can improve the acoustic models. In this section,
we report on a similar strategy for language modeling, but
now we built a dialect classi er based on text only – no
audio data is used. First, we build a Kneser-Ney smoothed
3-gram Levantine LM on the 2M words corresponding to
the transcripts of the 237 hours Levantine acoustic training
data (identi ed automatically). Similarly, we build an MSA
language model from all the utterances which are classi ed as
MSA with more than 95% probability by the dialect annotator.
We build a text dialect classi er which simply checks the log-
likelihood ratio of the two LMs on a given utterance. Table X
shows that we can predict the dialect reliably even when only
text data is available.

B. Levantine LM

Our GALE language models are trained on a collection of
1.6 billion words, which we divide into 20 parts based on the
source. We train a 4-gram model with modi ed Kneser-Ney
smoothing [15] for each source, and then linearly interpolate
the 20 component models with the interpolation weights
chosen to optimize perplexity on a held-out set. In order to
build a Levantine language model, we run the text dialect
annotator described above on each of the 20 text sources and
build 4-gram language models on the 20 dialectal subparts.
The new 20 dialect language models are interpolated with the
20 original ones. We optimize the interpolation weights of

270



Training data WER
913m 4-gram baseline LM 36.3%
+ 3-gram Levantine LM from 238h set 35.4%
+ 4-gram Levantine weighted LM (all text sources) 35.1%

TABLE XI
LM RESCORING WITH LEVANTINE LM

the 40 language models on a levantine held-out set. Table XI
shows the improvements obtained by adding dialect data to
the original language model. Note that the improvement from
adding dialect language models is less than the one obtained
from dialect acoustic models. One reason for this is the fact
that the initial dialect data is selected from the BC part of the
training data, and the BC language model has a high weight
in the baseline interpolated LM.

C. Finding Levantine words

We can identify dialectal words if we compute how many
times the word occurs in the Levantine corpus vs. the MSA
one. After sorting the count ratios, we nd the following
words ranked at the top of the list: Em, hyk, bdw, bdk,
ylly, blbnAn, which are in fact Levantine words. Note that
identifying dialectal words can be useful for building better
pronunciation dictionaries for dialects as well as for machine
translation.

VII. CONCLUSION

In summary, this paper has presented a series of experiments
to leverage our GALE acoustic and language models for
Levantine. The dialect recognition system allows us to focus
on relevant training subsets and improves the models by almost
10% relative. While specialized models for Levantine perform
poorly on MSA, the tree array decoding procedure allows
us to mix both models without sacri cing performance. We
compared different vowelization strategies and showed that the
unvowelized models are very competitive after discriminative
training. Also, we showed that we can build a text-only dialect
classi er that performs as well as a dialect classi er requiring
audio data. The text only dialect classi er enables us to nd
relevant LM text data. In the future we plan to apply this
classi er on parallel text corpora for machine translation to
leverage GALE MT for Levantine. Future work will also
include pronunciation modeling for Levantine where the text
based dialect classi er can provide us with candidate words
that occur only in Levantine. Our text-based dialect classi er
can also be improved by employing discriminative classi ers
(such as, logistic regression and SVM) instead of likelihood
ratios.
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