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Abstract—We investigate automatic pronunciation adaptation
for non-native accented speech by using statistical models trained
on multi-span lingustic parse tables to generate candidate mispro-
nunciations for a target language. Compared to traditional phone
re-writing rules, parse table modeling captures more context in the
form of phone-clusters or syllables, and encodes abstract features
such as word-internal position or syllable structure. The proposed
approach is attractive because it gives a unified method for
combining multiple levels of linguistic information. The reported
experiments demonstrate word error rate reductions of up to
7.9% and 3.3% absolute on Italian and German accented English
using lexicon adaptation alone, and 12.4% and 11.3% absolute
when combined with acoustic adaptation.

I. INTRODUCTION

Robustness to non-native accent variation still remains un-
solved for Automatic Speech Recognition (ASR). In large
vocabulary continuous speech recognition (LVCSR) acoustic
models (AM) and language models (LM) are usually adapted
to improve accuracy for a speaker. In this contribution we focus
on adapting the pronunciation lexicon for a set of non-native
speakers. Inconsistent pronunciations with respect to the native
canonical pronunciation of a word are especially frequent in
non-native speech, e.g., German-accented English. Non-native
inconsistencies are influenced by the linguistic aspects of both
the speaker’s native language (L1) as well as his non-native
language (L2). As LVCSR models, especially the lexicon, are
optimized for native speech, a mismatch between models and
accented speech leads to a substantial increase in recognition
error rates [1].

On the lexicon-side of the adaptation chain, most pronunci-
ation adaptation approaches address the problem by including
multiple weighted pronunciations for a word in the lexicon.
These pronunciation variants are generated by applying re-
writing rules, i.e. rules that change the identity of a phone
in a given context, to pronunciations in the lexicon. The task
of a pronunciation model is then to learn these rules and assign
a probability to them. Generating rules is usually divided into
knowledge-based and data-driven techniques (see [2] for an
extensive overview). Where the knowledge-based approach uti-
lizes additional sources such as expert linguistic knowledge to
propose rules, data-driven techniques use the actual ASR output
to learn pronunciation patterns. Speaker adaptation techniques
such as maximum likelihood linear regression (MLLR) have
also been investigated, where the goal is to directly capture
pronunciation variation in the emission states of the AMs.
Although fairly successful, AM adaptation has difficulties
addressing more complex mispronunciation phenomena such
as insertions and deletions. Pronunciation adaptation for non-
native accented speech generally follows similar ideas [3].

In this contribution we investigate LVCSR adaptation tech-
niques for recognizing accented English. A significant short-
coming of traditional lexicon adaptation approaches is the
limited modeling context: re-writing rules often operate on a
phone level while conditioning only on the immediate phone
neighbors. For this reason we investigate multiple streams of
multi-span subword segmentations to capture varying amounts
of context when estimating non-native pronunciation variants
from speech. Both, linguistic research as well as our own
analyses have shown that mispronunciation patterns are often
realized on a unit larger than the phone [4], which we try to
explain with a simple linguistic model in Sec. 2. The core of
the adaptation framework is a subword parser which breaks
down words of the target language into parse tables which
encode the different subword segmentations. The parser is
deterministic as the different segmentations only depend on the
syllabification of the word which allows for consistent subword
segmentations and thus reliable confusion estimates. Phone
transcripts of accented training speech are aligned with the
different segmentations to train a statistical model to generate
and score mispronunciations. With this model a native lexicon
can be adapted by interpolating scores from different layers for
each hypothesized lexicon pronunciation. In the overall LVCSR
adaptation chain we also include traditional AM adaptation
which gives additive gains w.r.t. lexicon adaptation.

The paper is organized as follows: Sec. 2 describes a simple
linguistic model of accented speech production. Sec. 3 and
4 introduce the training of the model and describe lexicon
adaptation. In Sec. 5 and 6 we explain the experimental setup
and present evaluation results. Sec. 7 concludes the paper.

II. MODEL OF ACCENTED SPEECH PROCESSING

In this section we present a simplistic model of human
speech perception and production. We utilize this model to
motivate and illustrate the use of certain linguistic constraints
employed in the adaptation framework described in Sec. 3.
Our model draws knowledge from related fields such as sec-
ond language acquisition and human language learning which
most LVCSR adaptation approaches ignore. For example, [5]
describes that the main reason for non-native accent is a lack in
accuracy when perceiving an L2 sound. Failing to discriminate
the L2 sound from native L1 sounds contributes to the inability
to learn how to produce the sound correctly, as it will be
assimilated with a native L1 sound.

In Fig. 1 we argue that when listening, the non-native speech
is first segmented into units. The lexical label of the word is
then mapped to its unit segmentation in a mental lexicon for
later look-up. At the foundation of the model lies the unit
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TABLE I
SEGMENTATIONS FOR ”THROUGH” WITH A GERMAN UNIT INVENTORY.

Syllable /th r uw/ /th r uw/ /?/
PSC /th r/ /uw/ /th r/ /uw/ /?/ /uw/
Phone /th/ /r/ /uw/ /th/ /r/ /uw/ /?/ /?/ /uw/

inventory which encodes all possible subword units of the
speaker’s language. The question now is how these subword
units are defined in terms of length (e.g., number of phones)
and linguistic attributes (e.g., grammatical tag). We make two
strong assumptions at this point: first we assume units to
be of segmental nature, i.e. we ignore alternative subword
representations such as asynchronous articulatory features as
used in [6]. Second we only consider linguistically motived
units. The reason for that is strong evidence in linguistic
research [4] that pronunciation variation is influenced by the
linguistic subword structure of the language.

Take as an example the word /th r uw/ (’through’) in
Table 1 with three segmentations for its pronunciation: phones,
position-specific cluster (PSC) [7] and syllables. The length of
the chosen subword unit dictates a tradeoff between modeling
context and data sparseness: whole word or syllable units
model context extremely well, yet are prone to data sparseness
as the underlying inventory is huge. Smaller units, such as
phones, are well represented in the data but lack in context.

When a learner of a foreign language perceives L2 speech
he segments the speech according to his unit inventory, which,
initially, only contains L1 units. Our model explains non-native
mispronunciations then as an incorrect segmentation due to so-
called out-of-unit (OOU) segments, i.e. segments that are not
in the unit inventory of the speaker, e.g., red italic units in
columns 3 and 4 in Table 1. As German does not have /th/ nor
the English /r/, all units containing these phones will OOU and
prone to accent. As the learner gains L2 proficiency, he creates
new entries in his unit inventory for OOUs and is thus able
to realize L2 units correctly. We call this intermediate level
L1.5. Even if a unit is in the inventories of L1 and L2, other
linguistic features associated with that unit can cause it to be
an OOU in L2. For example, German has /d/ in its inventory,
yet when augmented with a feature for word position it can
become an OOU as German does not allow voiced plosives
word final. Other examples are complex codas in Italian which
are often split by inserting an /ax/ such that the closed syllable
is forced into two open syllables, e.g., /p aa r t/ → /p aa r .
t ax/. This shows the importance of going beyond phones by
considering the L1 and L2 subword structures and features.

In summary, we explain non-native mispronunciations as a
mismatch between the L1 and L2 unit inventories, which in
turn causes incorrect segmentation and accented production
of non-native speech. The next section describes how this
fundamental assumption is realized when statistically modeling
mispronunciations for lexicon adaptation.

III. STATISTICAL ACCENT MODEL

In order to model the theory described in Sec. 2 we need
to know the non-native L1.5 unit inventory and the speaker’s
mapping function. As this information is not given, the task is
to learn both from data. If we have a canonical parse table for a
word, and a set of accented pronunciations of that same word,
we can align both to 1) identify which units in the inventory are
subject to variation and 2) the mapping function that determines
what they will be mispronounced as. First we describe the

Fig. 1. Simplistic model of speech perception.

model’s underlying structure, focusing on how to approximate a
speaker’s L1.5 unit inventory with varying multi-span subword
segmentations. Given some training data, we then show how to
train a statistical model that is able to generalize from observed
to unseen words. Finally we demonstrate how to predict and
score a set of mispronunciations based on the trained model.

A. Subword Parse Tables
In this contribution we consider three subword segmenta-

tions: phones, PSC and syllables. The first two segmentations
are deterministic in that only the syllabification needs to be
known to derive lower-level segmentations. The chosen unit for
pronunciation modeling has traditionally been the phone, where
the prediction of a confusion is conditioned on the canonical
phone and its surrounding context. Following our theory in
Sec. 2, however, the motivation of simulating a speaker’s L1.5
unit inventory is to allow for multiple segmentations, thereby
encoding varying amounts of context. In addition, we want to
model augmentative linguistic subword features of a word for
a richer decision context. We therefore propose to exploit a
hierarchy of linguistically motivated units and features in a so-
called Subword Parse Table (SPT).
Our proposed framework is inspired by Seneff et al. [8] who
arranged various subword units in a parse table for a number
of tasks. Our setup differs in that we assign both a linguistic
class and a phonetic realization to every cell of the table, and
also in that we generally consider different segmentations. Fig.
2a shows a SPT for the English word ’communication’. Each
horizontal layer represents a segmentation of phone clusters,
where the lower part of a cell is the phone realization and the
upper part is its class label. Classes effectively encode linguistic
features inherent to the subword segmentation, e.g., syllable
structure or position within the syllable or word.

B. Statistical Model
1) Training: Given a word with its canonical unit sequence

U = u1, . . . ,uN , the task of a pronunciation model is to predict
an alternative confusion unit sequence Û = û1, . . . , ûM based
on some training data. For now let us assume that no insertions
or deletions occurred, thus N = M . Due to sparseness
of word-level exemplars the model approximates the word
pronunciation likelihood with an independence assumption of
subword confusions:

p(Û|U) ≈
N∏

i=1

p(ûi|ui−1, ui, ui+1), (1)

where ui and ûi are the canonical and confused phones at i,
and ûi is predicted based on its canonical left and right context.
For û0 and ûN the left and right symbols, respectively, are
word boundary markers. Because the term P (ûi|ui−1, ui, ui+1)
is word independent we can score pronunciations of unseen
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Fig. 2. a) Subword Parse Table for ’communication’. Layers reflect different segmentations. b) extracted c-gram for a cell in the SPT.

words. The unit u is traditionally the phone. By using hier-
archical SPTs we can extend this approach by using larger-
span subword units and by conditioning on richer context. We
make two approximation assumptions: first, treat the different
segmentation layers in a SPT as separate statistical models.
This means that one model predicts phone confusions, one
PSC confusions and one syllable confusions. Second, as we
model confusion on a subword level, condition only on the
local context of the cell. Each cell has a parent cell on the
layer above (except those on the topmost layer), as well as
a right and a left neighbor cell. This means that we can
extract a context-gram (c-gram) C for each cell. The context
can be extracted arbitrarily, but due to data sparseness we
limit it to adjacent cells. In this contribution we define C
to be a tuple (ui,j , ui−1,j , ui+1,j , ui,j+1, class(ui,j+1)), where

class(ui,j) is the class of the cell corresponding to ui,j . Certain
context conditionings can be dropped to allow for flexible
configurations. An example of an extracted c-gram is illustrated
in Fig 2b where an English /r/ is substituted by a German /R/
in a given c-gram context. Note that in this case some elements
of the tuple are neglected. Eq. 1 implies independence between
subword confusions. We follow a similar strategy in that we
predict confusions on layer i for each cell independent of the
confusions of adjacent cells:

p(Ûj |Uj) ≈
M−1∏

i=0

p(ûi,j |Ci,j). (2)

A model can then be estimated for each layer using manual
phone-level transcripts of training data. First we align the
confusion phone sequence with the cells of the layer in question
(see Sec. 4) and then use these alignments to estimate

p(ûi,j |Ci,j) =
count(ûi,j , Ci,j)

count(Ci,j)
. (3)

Each layer encodes different linguistic features and varying
context: on the phone layer, confusions are learned only for
single phones and conditioned on short-span context, whereas
the syllable layer models confusions based on syllable context.

2) Pronunciation Generation: For a given word and its
SPT we want to generate a set of accented pronunciations,
thresholded by δ. Remember that each layer is represented as
a separate model for predicting confusions which means that
we need to combine the scores obtained across all models for a
given pronunciation. Consider the phone layer first. We start by
generating all confusions for every cell, where each confusion
is scored according to Eq. 3. The confusions and the canonical
units of the cells can be represented as a lattice. The confusions

of a cell are put on edges between two nodes, corresponding to
binning in confusion networks. The posterior probability of a
confusion corresponds then simply to the relevant edge score.

We generate lattices in the same way for the PSC and sylla-
ble layers. To interpolate the scores we need to align all three
networks. This is trivial, since PSC and syllable edges can be
broken into sequences of phone edges. Expanded phone edges
retain the scores of their PSC or syllable edges they originated
from, e.g., if p(/s r uw/|C) = 0.8 then p(/s/|C) = 0.8 etc.

From each of the three phone lattices, we can now calculate
the posterior probability of a phone in a given bin, p(p̂|binj).
For the phone lattice, this will be a given edge score, but for
syllables or PSCs, multiple syllables and PSCs can have the
the same phone at a bin position. We therefore sum over the
scores of all edges that contain said phone. To interpolate the
three scores for a confused phone p̂ we use

p(p̂|bini) =
K−1∑

j=0

αj · p(p̂|binj), (4)

where K is the number of lattices (or models), αj is the
interpolation weight for the j’th model and bini is the resulting
composite bin. When merging the bins of the phone networks
we assume that ∀j < K : p̂ ∈ binj . This, however, cannot
be guaranteed since the phone layer encodes the least amount
of constraint, and hence might generate phone confusions that
were not observed on the PSC or syllable layers. In practice, we
observed that, given our choice of interpolation weights, if the
phone layer predicted a sequence that resulted in an unseen
PSC or syllable, then resulting interpolated scores would be
very small as PSC and syllable layers would just output a zero
probability for that phone. We see this as future work, e.g.,
through a cascaded back-off structure.

3) Insertions & Deletions: Up to now we have assumed that
the number of phones is the same for both the canonical and
the predicted pronunciations. This is only true for substitutions,
but not in case of insertions or deletions. A deletion can be
treated straightforwardly as an empty substitution, i.e. p̂ = ε.
As soon as units are inserted, however, the structure of the
SPT and thus the number of bins in the network change. As
we want to avoid reparsing the deterministic SPT, we simplify
the problem by modeling insertions only on the phone layer.
We then assume that an insertion is only dependent on the c-
gram and the substitution of the phone cell to its left, and is
independent of any higher-span layer. Eq. 4 is then extended
to estimating the joint probability of a confusion along with a
possible insertion p� to its right:

p(p̂, p�|bini) = p(p̂|bini) · p(p�|p̂, Ci,0) (5)
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Fig. 3. Supervised and semi-supervised adaptation framework.

The idea is that we represent the edges of a bin as phone pairs,
i.e. the confusion and the insertion, where the probability of the
insertion is only dependent on the c-gram of the corresponding
phone-level cell and the confusion phone itself. As insertions
can be infrequent, we have to allow for ε insertions. To align
a mispronunciation of w with the canonical phone sequence
of the SPT’s phone layer we use minimum edit-distance. Each
cell at i of the phone layer is now associated with a phone
tuple, where insertions are grouped to their previous phones
(which can be canonical or a substitution). As a result we have
the canonical pronunciation aligned with phone tuples, which
can then be used to train the statistical model. For example,
canonical /p aa r t/ and mispronounced /p aa r . d ax/ would
align to /p→p,ε aa→aa,ε r→r,ε t→d,ax/. Consecutive insertions
are merged into a single p�.

4) Pronunciation Scoring: Confusions for higher-order lay-
ers are generated by taking the daughter cells of the cell
in question and merging their confusion phones, e.g., the
confusions of the Onset, Nucleus and Coda cells are merged
to generate the confusion for a syllable cell. Note that canon-
ical pronunciations are treated as confusions. By traversing
a sequence of edges Ê, where each edge is a tuple with
ê = (p̂, p�, p(p̂, p�|bini)) a set of pronunciations can be
generated (by concatenating the phone pairs of all edges) and
scored with a modified Eq. 2:

p(Ê|SPT) ≈
N∏

i=0

p(ê|bini) (6)

IV. ADAPTATION FRAMEWORK

In this section we present the framework for accented
pronunciation adaptation. As depicted in Fig. 3 a language-
specific L1.5 accent model can be trained either supervised
or semi-supervised, where the latter produces the phone-level
training data for the first. Parallel to lexicon adaptation we
use standard AM adaptation techniques for speaker adaptation.
To generate parse tables we require syllabified L1 and L2
pronunciation lexicons.

A. Supervised Lexicon Adaptation
Training the statistical model proposed in Sec. 3 requires

phone-level transcripts of the training data. In the supervised
training scenario, transcripts on both word and phone levels are
available. In addition, a lexicon containing the syllabification
for each training word is needed to build the SPT. For each
training word w we build a deterministic SPT representation
from the word’s syllabification, align the mispronunciation with
the SPT and update p(p̂, p�|bini). We repeat this for all training

W
E
R
 
(
%
)

Phone_hor

Phone+PSC_class

Phone+PSC_full

Fig. 4. Italian WER as a function of varying prediction threshold δ.

exemplars. The training data is in form of speech transcripts
which means that higher frequency words have more impact
on the resulting confusion distribution. Given the trained L1.5
model we expand the ASR lexicon as described in Sec. 3, while
we only include pronunciations with a sequence score (see Eq.
6) higher than threshold δ. We do not weight the variants in
the lexicon with posterior probabilities.

B. Semi-supervised Lexicon Adaptation
One way of obtaining phone-level transcripts is through

expensive expert annotation. Given some accented speech and
a word-level transcript it is therefore desirable to generate
the training data for supervised adaptation automatically. Most
pronunciation modeling approaches use a form of open phone
decoding [9] to generate an expanded confusion search space
for a word. This, however, usually results in extremely high
error rates for accented speech. Motivated by the accent model
of Sec. 2 we follow a more knowledge-driven approach: given
the SPT’s phone segmentation we expand each phone with a set
of confusable neighbors which a listener could produce instead
of the canonical phone. The IPA table organizes phones across
languages in a way that reflects proximity between articulators
on the horizontal axis. We translate perceptually confusing a
phone in L2 with a L1 phone into a movement between the
cells of the IPA table, that is, a phone is perceived as a phone
of an adjacent cell. As we do not have any prior knowledge
of what confusions can actually occur between L1 and L2 we
allow for moving to an adjacent cell in either direction (using
both voiced and unvoiced phones). Although moving vertically
is not motivated by closeness of articulation, we included that
constraint for flexibility. For example, canonical phone /th/
would be expanded to /th, dh, s, z, t , d, S, dz, f, v, r/.

Besides IPA confusions we also allow for insertions and
deletions. Again, deletions are straightforwardly modeled with
ε-confusions. Insertions are more complicated: allowing for
an insertion after every cell would result in too big decoding
networks (without insertions, allowing for 5 expansions plus
canonical for each cell, would result in 6N possible pronun-
ciations. With a potential insertion after every cell, we would
end up with 12N paths using only one phone type as insertion).
We thus estimate the location of an insertion by considering
the phonotactics learned from the speaker’s L1. If a L2 PSC
is not in L1, we observed from data that the speaker often
breaks the invalid cluster by inserting a vowel, thus forcing the
pronunciation to agree with his internal phonotactic model. For
example Spanish tends to not have plosives syllable final. The
uni-syllabic word /p aa r t/ (’part’) is likely to be split into /p
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TABLE II
RECOGNITION ACCURACIES (%). ’MODELS’ DESCRIBES WHICH LAYERS OF

THE SPT WERE USED AND ’C-GRAM’ DENOTES THE CONDITIONING

CONFIGURATION. δ DENOTES THE SCORING THRESHOLD.

Models Lang c-gram δ Corr Sub Del Ins WER

base Ital - - 43.2 52.7 4.1 19.6 76.4
base_2pron Ital - - 43.0 53.3 3.7 21.1 78.0

Phone Ital left/right 0.2 46.9 49.4 3.8 19.0 72.2
Phone+PSC Ital full 0.03 47.3 49.0 3.8 19.0 71.7
Phone+PSC_noIns Ital class 0.03 47.1 48.2 4.6 17.8 71.9
Phone+PSC Ital class 0.03 47.4 48.0 4.6 16.8 69.4

base Ger - - 53.3 40.1 6.6 7.8 54.5
base_2pron Ger - - 52.5 41.8 5.7 9.1 56.6

Phone Ger left/right 0.3 55.6 39.3 5.1 8.9 53.3
Phone+PSC Ger full 0.1 55.6 39.4 5.0 9.1 53.6
Phone+PSC_noIns Ger class 0.06 55.3 39.1 5.7 8.5 53.2
Phone+PSC Ger class 0.06 55.3 39.0 5.7 8.4 53.0

aa r . t ax/ such that the plosive /t/ becomes the Onset of a new
syllable. As /r t/ in Coda position is an OOU in the speaker’s
L1 unit inventory but /r/ is not we assign an insertion phone
to /t/’s phone cell. The idea is that we break-off the phone that
causes a PSC to be OOU by grouping the phone with a vowel.
We restricted the insertion phone to schwas (/ax/) only.

In the same way as we generate a lattice from a SPT we
assign a set of IPA confusions and possibly an insertion for
each phone cell of the SPT and produce a phone-level network
for the given word. Since the word sequence of an utterance
is known we combine word-level networks into a decoding
network for the whole utterance for forced-alignment. The
resulting 1-best phone hypotheses are then segmented into word
pronunciations and used as training data for supervised training.

V. EXPERIMENTAL SETUP

We train our SPT models and evaluate the adaptation frame-
work on the ISLE database [10]. The corpus consists of 18h
of Italian and German accented English speech read by 23
speakers of each language, where half of the data for each
language is annotated on a phone-level. We use the phone-
annotated data as training set and the rest as the evaluation set
which corresponds to the originally defined split. The phone-
level transcript of the training data is used to train pronunciation
models for German and Italian. We generate English SPTs for
the ISLE training words using a large syllabified lexicon based
on CELEX [11]. For LVCSR decoding we use a 40k word
recognition lexicon (there are 700 unique word types in the
ISLE corpus, thus no OOVs) with one or two pronunciations
per word, base and base_2pron respectively. Two 72-mixture
triphone AMs were used: both trained with HLDA and VTLN,
but one using ML and the other MMI. Both used 2000h of
Switchboard and Fisher data with a base 3-gram LM trained
on a mixture of telephone conversations, broadcast news and
lectures. Acoustic adaptation was done using a cascade of
global MLLR adaptation followed by 256-class regression tree
MLLR adaptation. The acoustic data for a specific speaker from
the ISLE training set was used to generate an adapted speaker-
dependent model for that speaker. We use Microsoft Research’s
LVCSR engine for word decoding and HVite for forced-
alignment. The ML AMs were used for forced-alignment.
Results are reported on Word Error Rate (WER).

TABLE III
WER (%) OF BASELINE AND ADAPTED LEXICONS USING VARIOUS AMS.

Dict AM adapt Lex adapt Italian German

base ML - 76.4 54.5
Phone+PSC_class ML sup 69.4 53.0
Phone+PSC_class_noIns ML semi-sup 70.8 52.8
Phone+PSC_class ML semi-sup 69.4 52.7

base DT+VTLN - 73.7 51.0
Phone+PSC_class DT+VTLN sup 65.8 47.7

base DT+VTLN+MLLR - 67.8 42.1
Phone+PSC_class DT+VTLN+MLLR sup 61.3 39.7
Phone+PSC_class_noIns DT+VTLN+MLLR semi-sup 64.0 40.2
Phone+PSC_class DT+VTLN+MLLR semi-sup 62.6 40.1

VI. RESULTS

A. Supervised Adaptation
Table 2 reports results for supervised lexicon adaptation with

baseline AMs on the test set.
Baseline: Italian accented English is a considerably harder
ASR task compared to German accented English. Across both
languages using pronunciation variants which tend to be helpful
for native speakers result in increased WER. The insertion
rate for Italian is higher because Italians insert vowels to
avoid closed syllables, which in turn leads to an increase in
hypothesized words in the search space.
Best systems: We adapt base with different configurations of
the framework: we first vary the number of subword models
in Eq. 4, where Phone denotes only using the phone layer
and Phone+PSC denotes interpolating the both phone and PSC
layers. Second, we use various amounts of conditioning context
included in the c-gram, namely full c-gram context full, only
the horizontal elements of the tuple left/right and only the
class of the above cell class without left/right context.

The setup using Phone with left/right is the same as
the traditional phone re-writing approach [2], only augmented
with an insertion model, and yields 4.3% and 1.2% abs.
improvement for Italian and German respectively. Using full

c-grams (i.e. horizontal as well as class conditioning) on the
phone layer did not give any improvements (and thus no
numbers are reported). This means that the PSC class does
not give any additional constraint over the canonical left/right
phone information. Using Phone+PSC while conditioning on
the full context, no significant improvement can be achieved
over the Phone model either. However, restricting the c-gram
to class (i.e. class conditioning only) gives overall gains of
7.0% and 1.5% abs. over the baselines on Italian and German,
respectively. The additional knowledge appears to improve
the robustness of the overall scores, yet when adding more
horizontal context on the PSC layer the estimates are likely to
be too sparse which leads to poorer scoring.

We do not report results for using the syllable layer since
a missing back-off strategy prevents us from using the sparse
evidence from syllable confusions. Fig. 4 shows the effect of
varying threshold δ on Italian WER. For all three dictionaries
WER drops initially after adding the most likely mispronuncia-
tions. Too many additional variants increase confusability with
other irrelevant pronunciations, resulting in increased WER.
Insertions: For Italian the insertion rates decrease with im-
proved scoring. When not modeling insertions the best Italian
configuration’s WER increases by 2.5% abs., while on German
a slight decrease of 0.2% abs. is observed. A reason for this
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could be that German’s syllable structure is closer to English
which makes the insertion model less important.
Speaker dependency: As the same speakers are both in the
test and training parts of the data, we were concerned that
our pronunciation models were overtrained on idiosyncrasies.
Therefore we removed a speaker’s speech from the training
set, trained a model and ran an evaluation. Averaged across all
speakers, the WER increased only slightly by 0.2% on Italian,
meaning that the models are able to generalize.
AM adaptation: Results obtained with different AMs are
reported in Table 3. Using unadapted AMs of improved
quality with the baseline lexicon decreases WER by 2.7%
and 3.5% abs. for Italian and German, respectively. Using
Phone+PSC_class gives more improvement than using the base
AMs, namely 7.9% and 3.3% abs.. Especially for German this
could mean that improved AMs are able to better discriminate
between confusable pronunciations added during lexicon adap-
tation. Using speaker adapted AMs yields 5.9% and 8.9% abs.
improvements with the baseline lexicon, and overall 12.4% and
11.3% abs. with adapted lexicons. Thus, acoustic and lexical
adaptation model complementary sources of variation.
Overall, the proposed lexicon adaptation is able to learn pro-
nunciation patterns from training data and generalize to unseen
words. Gains are consistent across both languages and the best
configuration proved to be using both phone and PSC layers
with no horizontal context in combination with adapted AMs.

B. Semi-supervised Adaptation
Generating the training data through knowledge-based

forced-alignment and training the pronunciation model on this
data produces similar or even better error rates compared to
manually transcribed training data, seen in Table 3. Predicting
insertions based on the L1 phonotactics appears to result in
similar gains as learning insertions from supervised transcripts.
The improvements in combination with AM adaptation are
smaller compared to using baseline AMs on Italian (5.2% vs.
7.0% abs.) but similar on German.
AM confusion: When inspecting the pronunciations produced
by forced-alignment some phone confusions (restricted by IPA
movements) were not due to mispronunciations, but rather due
to AM confusability, especially for dental fricatives /th/ and
/dh/ which were chosen over /t/ or /d/ (the other way around
would have been more sensible). This means that some of
the gains were due to explicit AM confusion modeling in the
lexicon. We compared the best supervised and semi-supervised
dictionaries on German by creating sub-dictionaries contain-
ing 1) variants only in supervised 2) variants only in semi-
supervised and 3) the union of both dictionaries. Supervised-
and semi-supervised-only yield 54.2% and 53.5% WER. The
union results in 52.4% which means that both approaches
model different pronunciations that decrease WER. Another
reason for performance difference is inconsistently annotated
supervised data: the English and German /r/s are inherently
different, yet are labeled with the same symbol in ISLE.

To further validate that semi-supervised adaptation is not
only reducing AM confusion we trained SPTs based on a native
English version of the ISLE prompts (6 speakers, 2h of speech).
Using the baseline lexicon results in a WER of 24.0%, which is
substantially better compared to recognizing non-native speech.
Using two native pronunciation variants per word (base_2pron)
decreases WER by 1.5% abs. (22.5%) which, compared to the

non-native case, is in line with prior findings. We achieved
similar gains with semi-supervised modeling (22.4%), meaning
that a native pronunciation lexicon can be optimized given
some native training speech.

VII. CONCLUSION

We proposed to use multiple subword segmentations to learn
mispronunciations in both supervised and semi-supervised ap-
proaches. To improve robustness against non-native accent, we
presented and evaluated an LVCSR framework which combines
lexicon and AM adaptation. Motivated by a model of human
speech processing, we found that combining constraints from
phone and PSC layers gave best results. Only adapting the
lexicon resulted in up to 7.9% and 3.3% absolute improvements
for Italian and German, respectively. Combined with AM
adaptation, the error rate could be reduced by absolute 12.4%
on Italian and 11.3% on German. In comparison, [9] reports
gains of 4.6% abs. on WER on the Italian part of ISLE when
adapting a lexicon with only the 700 in-corpus words. Using
semi-supervised lexicon adaptation, we achieve 7.0% abs. with
a similar configuration adapting a 40k lexicon. Although these
results are promising the reasons for the performance gap be-
tween native and non-native ASR remain not fully understood.

The appealing aspect of the framework is that additional
linguistic subword features, such as morphology, graphemic
knowledge or stress, can easily be integrated in a parse table.
Using L1 and L2 unit differences could also be exploited to
isolate potential error-prone areas in automated pronunciation
assessment. Due to sparseness of certain features, however, a
back-off mechanism is needed to improve score combination.
When generating the training data in semi-supervised adapta-
tion, more L1 knowledge could be incorporated, in form of L1
AMs and L1 LTS constraints. Future work will also focus on
iterative lexicon and AM adaptation.
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