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Abstract—In this paper, we study the issue of generating
pronunciations for training and decoding with an ASR system
for Pashto in the context of a Speech to Speech Translation
system developed for TRANSTAC. As with other low resourced
languages, a limited amount of acoustic training data was avail-
able with a corresponding set of manually produced vowelized
pronunciations. We augment this data with other sources, but
lack pronunciations for unseen words in the new audio and
associated text. Four methods are investigated for generating
these pronunciations, or baseforms: an heuristic grapheme to
phoneme map, manual annotation, and two methods based on
statistical models. The first of these uses a joint Maximum
Entropy N -gram model while the other is based on a log-
linear Statistical Machine Translation model. We report results
on a state of the art, discriminatively trained, ASR system
and show that the manual and statistical methods provide an
improvement over the grapheme to phoneme map. Moreover, we
demonstrate that the automatic statistical methods can perform
as well or better than manual generation by native speakers, even
in the case where we have a significant number of high quality,
manually generated pronunciations beyond those provided by the
TRANSTAC program.

I. INTRODUCTION

We study the issue of pronunciation derivation for Auto-

matic Speech Recognition (ASR) of Pashto, a heavily in-

flected, morphologically complex language with limited re-

sources available for data collection and annotation. It is

primarily spoken in Afghanistan, Pakistan and Iran, and is

a member of the Indo-Iranian languages. An important aspect

in building an ASR system for a given language is to properly

describe the pronunciations that may be observed when the

system is used. Heavily studied languages would have enough

resources devoted to the task of defining these pronunciations

via human annotators. These would have a significant amount

of audio training data with transcripts, and all of the words

in the transcripts would be covered by a human generated

pronunciation dictionary. Note that words can have multiple

pronunciations and a carefully annotated database would iden-

tify these differences.

Currently, state of the art MSA (Modern Standard Arabic)

ASR systems are trained on over 1800 hours of data [1]. Such

systems rely on a lot of annotated training data, which pre-

sumably contains multiple pronunciations that can be learned

in the training procedure. Yet the resources necessary for such

annotation are seldom available, and moreover the requirement

for rapid deployment in new languages exacerbates the prob-

lem [2]. Low resourced languages such as Pashto [3] have

limited amounts, on the order of 90 hours for the system

used here, of properly annotated data. In such scenarios, it

is common to try and obtain additional data. But even if

new audio and associated transcripts are obtained, typically

resources are not available to generate the pronunciations, also

referred to as baseforms, for unseen words which are required

in ASR training and decoding.

Previous work has addressed the general problem of au-

tomatic baseform generation (prediction, derivation, also re-

ferred to as grapheme to phoneme conversion) in various

contexts [4] [5] [6] [7] [8] [9] [10]. In [10], automatic

generation of pronunciations for Pashto based on text-to-

phoneme (T2P) tools from CMU was analysed in the context

of a 34 hour, ML trained ASR system. Subsets of varying size

were selected from a set of manually generated (from Appen)

pronunciations and used to train the T2P tools, and it was

shown that for the low resource case, with only 1K words

for training, the T2P tool has better performance than using a

grapheme based approach [11]. Further, in [12], it was shown

that ASR performance in the Iraqi-Arabic dialect is improved

when multiple pronunciations of words, obtained either from

pronunciation dictionaries or automatically generated, are used

as opposed to a single pronunciation.

One might assume that the best performance would be

obtained if human annotators could generate these baseforms,

however inter annotator differences might affect the results,

especially for a language such as Pashto. And, in the likely

case where human annotators are not available, automatic

techniques, e.g. those that use heuristics or statistical models

for generating the pronunciations, must be used. We focus on

two methods for this task that have proven to be successful in

dealing with the types of complexity inherent in the baseform

generation task for Pashto. These are the joint Maximum
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Entropy (ME) n-gram model described in [7] and a method

that uses sequence translation with a phrase based log-liner

translation model [9]. We compare the performance of these

methods and relate them to human performance as well as

to an heuristic approach that maps graphemes to phonemes

with a context independent map. Our experiments are based

on a total of 105 hours of training data and we report results

on a state of the art, discriminatively trained, evaluation ASR

system. We show that the statistical methods can perform as

well or better than human annotators and represent a viable

approach to baseform generation in an evaluation context for

languages with limited annotation resources.

The paper is organized as follows. Section II describes the

components of the ASR system and section III describes the

experimental setup. The methods for baseform generation are

presented in section IV. Results are given in section V and

conclusions in section VI.

II. ASR OVERVIEW

The experiments presented are performed on an ASR

module that is one in a chain which comprises the IBM

English-Pashto translation system developed for applications

such as TRANSTAC: Spoken Language Communication and

Translation System for Tactical Use [13], [14]. Accuracy in

this module is critical so as not to propagate errors. We focus

specifically on Pashto ASR.

A. Acoustic Modeling

For the Speaker Independent Maximum likelihood (ML)

model, the base feature space is constructed from 24-

dimensional PLPs including energy. Cepstral mean normal-

ization (CMN) is followed by linear discriminative analysis

(LDA) which projects 9 concatenated PLP frames down to

40 dimensions. Maximum likelihood linear transformation

(MLLT) is also applied at this stage. A diagonal, quinphone

acoustic model (AM) with states tied by a decision tree is used.

Based on the ML model, feature space discriminative training

using the boosted MMI criterion (FMMI)[15] is applied. This

is followed by discriminative training in the model space with

BMMI[15].

B. Language Modeling

Language modeling utilizes both bilingual and monolingual

training data. Subsets are created from the bilingual data

corresponding for example to whether the text came from

transcription or translation. A separate language model is built

(with Modified Kneser-Ney smoothing [16]) for each subset

as well as for the monolingual data. These are interpolated to

from the final language model.

C. Decoding Structure

The ASR module has a Viterbi decoder running on a static

graph, which leads to a very fast decoding process at run-time

compared to traditional Viterbi dynamic decoders but comes

at the expense of large memory consumption.

III. EXPERIMENTAL SETUP

Our experiments are conducted on a 105.5 hour Pashto

ASR system (3K states and 80K Gaussians) developed for

the TRANSTAC evaluation (see section II). The data breaks

down as follows: Appen data taken from the Pashto side

of conversational data accounts for 90.6 hours (E2F, F2E,

Monolingual) TTS data accounts for 5 hours. Scripts were

generated and native speakers spoke the utterances. Data

from SRI constitutes 8.9 hours and there is 1 hour of data

from the Web. We report results at the ML level and with

discriminatively trained models with BMMI [15].

A lexicon of about 17K words with human generated vow-

elized pronunciations from Appen was used in the experiments

(and referred to as the provided lexicon). Note that this is

the size of the lexicon at the time the experiments were

conducted. The Pashto phoneset used for ASR contained 44

phones. Approximately 50% of training vocabulary from TTS,

Web, and SRI data was not covered by the provided lexicon.

Overall, the dictionary used for ASR had 27K words. Of those,

10396 words were not covered by the provided lexicon and had

pronunciations that were generated by the methods described

in the paper or by new native transcribers.

The test data consisted of 4986 utterances with 79236 words

from 68 speakers. Heldout Appen data was used as the test

set, for which 90% of the words were covered by the provided

lexicon described above. The overall OOV rate was 1.7%.

In the experiments, the training and decoding vocabularies

are identical across all experiments. Thus we focus on how

pronunciation derivation affects the quality of the acoustic

model training and ASR performance.

IV. GRAPHEMEM TO PHONEME CONVERSION FOR PASHTO

In order to build robust ASR systems, a vocabulary with

common pronunciations, or baseforms, is required. Low re-

source languages will not typically have a large annotated vo-

cabulary. Moreover, highly inflected languages and languages

for which mixing regional dialtects is common, such as Pashto,

will magnify the issue because of the variety of word forms

and pronunciations that occur. As compared to languages

lacking such variation, relatively more annotation per concept

may be required. This also implies that manual annotation is

not straightforward for Pashto. Given this, the question is how

successful can automatic methods be at generating baseforms

for ASR and what is the impact on word error rate as compared

to manual baseform generation.

The basic task of grapheme to phoneme (G2P) conversion is

to map the spelling of a word, in terms of graphemes (letters),

into a baseform, or pronunciation, which is a sequence of

phones (we use the terms phones and phonemes interchange-

ably in the text). The general problem is as follows. We have a

vocabulary V = ∪g where g is the grapheme (letter) sequence

corresponding to a word. We also have a dictionary

D = ∪g∈V ∪i (g, pg
i ) : pg

i is a baseform for g.

This definition of the dictionary allows for multiple pronun-

ciations of a vocabulary item. Here, g is a sequence of letters
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li from the Pashto alphabet and p is a sequence of phones pi
from the Pashto phoneset.

We can refine the definition as follows. The vocabulary

is further split into one subset that has elements which are

covered by the provided vowelized lexicon and one containing

those that are not, e.g. V = Vc∪Vu. As mentioned before, Vu
contains 10396 words. The paradigm for our experiments is

that the covered subset Vc is always the same with baseforms

given by the provided lexicon, whereas the baseforms for the

uncovered subset Vu come from the various methods we study.

Final acoustic models are trained all the way through starting

from ML to FMMI/BMMI (see section II) for each method

that is studied using the resulting dictionary D.

We investigate four approaches for G2P conversion. An

heuristic grapheme to phoneme map, manual generation of

pronunciations, and two statistical approaches based on the

joint Maximum Entropy (ME) n-gram model[7] (Joint-ME)

and sequence translation with a phrase based log-liner trans-

lation model[9] (SMT).

A. Heuristic Grapheme to Phoneme Map

Grapheme based pronunciations (Grapheme-Map) map the

spelling of a word into a sequence of symbols essentially

in one to one correspondence to the sequence of letters in

the spelling, perhaps modified by some general heuristics.

These are simple to generate and have yielded acceptable

results, especially when the spelling of a word matches very

closely to the pronunciation. Here, this approach is defined

as a mapping of graphemes to phones that uses no contextual

information and which was generated by hand via heuristic

rules. In particular, since there were more letters than phones, a

many to one mapping of some letters to phones was necessary

in a few cases. Note that this approach is not the same as using

the graphemes as the phone set. This procedure results in a

set of unvowelized pronunciations for the elements of Vu.

B. Manual Generation

On the other hand, the most accurate baseforms can be

expected to be those that are manually derived (Manual). Here,

these were generated for data that was not covered by the

provided lexicon (primarily from TTS, but also from the Web,

and SRI datasets) by native speakers with significant expe-

rience with annotation. Further, we stress that the manually

generated pronunciations were of a very high quality and the

TTS system generated using them was the state of the art. We

have 8K such pronunciations and define this set as Vmanual.

Given that this annotation focused on TTS, the overlap with

Vu is not complete, but approximately 4K words. We denote

this subset as Vu,manual. Grapheme-Map or another method

must be used to generate pronunciations for the remaining

words in Vu.

C. Pronunciations via Statistical Models

There are many issues that complicate the grapheme to

phoneme (G2P) mapping. Contextual local and non local

effects, deletion and insertion, many to many mappings and

reordering are among the phenomena that can be observed.

In light of these issues, we choose and compare two differ-

ent statistical methods for grapheme to phoneme conversion

(baseform prediction) that have proven successful in dealing

with them. One of them uses the joint Maximum Entropy

(ME) n-gram model [7] and the other uses a phrase based log-

linear translation model with alignments based on sequences

of context dependent units [9]. The provided lexicon with

17K human generated vowelized pronunciations is taken as

data to train models of the pronunciation process. These are

subsequently used to predict pronunciations for new unseen

words.

1) Joint ME N-Gram Model: Here, a Maximum Entropy

(ME) N -gram model [7] (Joint-ME) is used to estimate the

component conditional distributions in

Pr(g, p) =
∑

C→{g,p}

m∏
i=1

Pr(ci|c1, . . . , ci−1), (1)

where

C = {. . . , ci, . . .}
is a sequence of m ”graphonemes”

ci =

⎧⎨
⎩

(l, p)
(ε, p)
(l, ε)

with l an element of the Pashto alphabet, p an element of

the Pashto phone set, and ε representing the empty symbol.

This sequence C describes the alignment, h, of letters to

phones, which is hidden and often not unique. The notation

C → {g, p} indicates all valid alignments h for the grapheme

sequence g and phone sequence p. Decoding to produce the

baseform p∗ involves the following optimization over phone

sequences.

p∗ = arg maxp

∑
C→{g,p}

m∏
i=1

Pr(ci|c1, . . . , ci−1), (2)

and for N-grams

p∗ = arg maxp

∑
C→{g,p}

m∏
i=1

Pr(ci|ci−N+1, . . . , ci−1). (3)

2) Statistical Machine Translation: Here, a log-linear

model [9] (SMT)

Pr(p, h|g) = exp[ΣM
m=1λmfm(p, g, h)]

Σp′,h′exp[ΣM
m=1λmfm(p′, g, h′)]

(4)

is used as the means of combining scores from a phrase

translation model, a lexicon translation model, and a phone

n-gram language model, each of which is a feature function

fm(p, g, h) whose arguments are a phone sequence p, a

grapheme sequence g, and an alignment between them h.

Thus M = 3. Each function has an associated weight λm

determined in training. Decoding involves optimization over

both the phone sequences and the alignments.
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TABLE I
PERFORMANCE OF GRAPHEME-MAP WITH ML MODELS.

Model Type WER%

ML 40.20
DT 34.47

p∗ ← argmaxp,h

{
exp[ΣM

m=1λmfm(p, g, h)]
}

(5)

In [9], it was observed that the use of context dependent

units when generating alignments h, as followed here, led to

an approximately 20% relative reduction in phoneme error rate

over context independent units.

V. EXPERIMENTAL RESULTS

Results for the simplest approach, Grapheme-Map, can be

seen in table I for both Maximum Likelihood (ML) and

discriminatively trained (DT) models. In this case, all of the

pronunciations for words in Vu are derived via the map. Recall

that those for Vc are given by the provided lexicon for all

experiments. We expect that this performance is sub-optimal

since the new pronunciations are unvowelized and produced

without taking context into account.

Recall that Vu,manual is the set of uncovered words

(with respect to the provided lexicon) that have new manual

pronunciations (see section IV-B). Table II compares the

performance with ML models when using pronunciations

derived manually, by using Joint-ME, or by using SMT for

the words in Vu,manual, with the remaining words handled

using Grapheme-Map. In every case, there is an improvement

over the ML performance when using Grapheme-Map for the

words in Vu,manual (table I).

Since we can use Joint-ME and SMT to predict all of

the baseforms in Vu, results for this case are shown in

table III. Also included in this table are the results when

Manual is used for the words in Vu,manual and SMT for the

remaining words in Vu (since there are no manual pronunci-

ations for these words and SMT had the better performance

of the two statistical methods in table II). This is denoted

by Manual+SMT. Note that SMT has the best performance,

0.8% absolute better than the results with Grapheme-Map.

Particularly interesting is that using SMT for all of the words is

better than Manual+SMT. Thus we train discriminative models

for Manual+SMT, Joint-ME, and SMT.

See table IV for the results after discriminative training (all

of the words in Vu have derived baseforms as for table III).

Here, the Joint-ME approach gives the best performance,

1% absolute better than with Grapheme-Map and better than

using Manual+SMT pronunciations. While the use of manually

derived baseforms is clearly better than using Grapheme-Map,

the statistical methods ultimately give better performance.

These results are important, because discriminatively trained

models are generally very good at accounting for sub-optimal

ML models [15]. Thus, a difference at this level can be

assumed to be a real difference.

TABLE II
PERFORMANCE WITH ML MODELS AND DIFFERENT METHODS FOR

VU,MANUAL.

Baseform Generation WER%

Manual 39.63
Joint-ME 39.65

SMT 39.54

TABLE III
PERFORMANCE WITH ML MODELS AND DIFFERENT METHODS FOR VU.

Baseform Generation WER%

Manual+SMT 39.58
Joint-ME 39.53

SMT 39.38

A. Analysis

Given our experimental setup, with 90% of the test data

covered by the provided lexicon, we hypothesize that the

differences in observed performance are essentially due to the

quality of the acoustic models that are trained. With regard to

the Joint-ME and SMT models, since the same training data

is used, it is reasonable to expect some overlap in the outputs.

In fact, examining the subset of the 10396 uncovered words

which were subsequently covered by the manual baseforms

(Vu,manual), the outputs of the two models on these words

overlap by about 50%. By overlap, we mean that identical

baseforms were generated. On the other hand, the overlap of

each automatic method to manual generation is approximately

30%.

The fundamental question is how do differences in baseform

generation affect the quality of the acoustic models. Since we

are using context dependent models, differences in baseforms

(pronunciations) can have an effect through the phone N -

grams that are observed in training. Here, we are using

quinphone acoustic models, so we look at the variety of 5-

gram contexts that are generated for the training data when

the various dictionaries (as used for table IV) are used to

expand the training text into phone sequences. Interestingly,

we find that when we compare the sets of quinphones where at

least one element represents a short vowel, the Joint-ME and

SMT approaches respectively produce about 2.8% and 2.3%

more unique contexts beyond those produced with the Man-

ual+SMT approach, which in turn produces 4.5% more unique

contexts than Grapheme-Map. This trend correlates with the

performance differences in table IV, and we hypothesize that

the additional contexts lead to richer decision trees and better

TABLE IV
PERFORMANCE WITH DT MODELS AND DIFFERENT METHODS FOR VU.

Baseform Generation WER%

Grapheme-Map 34.47
Manual+SMT 33.71

Joint-ME 33.54
SMT 33.62
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TABLE V
PERFORMANCE WITH DT MODELS AND JOINT-ME N-BEST LIST USED

FOR ALTERNATE PRONUNCIATIONS.

Baseform Generation WER%

Joint-ME 33.54
Joint-ME (N=2) 33.55
Joint-ME (N=3) 34.56

TABLE VI
JOINT-ME WITH SMT AS ALTERNATE PRONUNCIATIONS.

Model Type WER%

ML 40.00
DT 34.75

acoustic models.

B. Experiments with Multiple Predicted Pronunciations

It has been observed that using multiple pronunciations

leads to improved performance [12] (for Iraqi-Arabic). We also

experiment with using multiple pronunciations, taken from the

best performing systems in IV. For the first experiment, we

use the N -best list obtained from decoding with the Joint-

ME models to get alternate pronunciations. Table V gives the

results for 1 and 2 alternate pronunciations (N = 2 or 3 total

pronunciations). The results are nearly identical to the single

pronunciation case.

Interestingly, when using the SMT pronunciations as alter-

nates for the Joint-ME system, the performance degrades, as

seen in table VI, and indicates that in this case the added

pronunciations are confusable.

VI. CONCLUSIONS

We have conducted an investigation into methods of de-

riving pronunciations for Pashto, an example of a language

with limited resources available in terms of human annotation.

Four methods were studied: an heuristic grapheme to phoneme

map, manual generation of pronunciations, and two automatic

methods based on statistical models, Joint-ME and SMT. We

have shown that it is possible to achieve state of the art

performance, comparable to or better than with high quality

human annotation, using the automatic methods in the context

of a discriminatively trained, evaluation Pashto ASR system.

Analysis revealed that for our particular data, the statistical

methods generated a richer set of quinphone contexts. In

future experiments, we will explore whether using all the

manual pronunciations we have, from Appen and internal

sources, to train the statistical models can further improve

performance. Also, we plan to investigate whether N -gram

statistics can play a role in model training for grapheme to

phoneme conversion.
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