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Abstract—We present a framework for learning a pronunciation
lexicon for an Automatic Speech Recognition (ASR) system from
multiple utterances of the same training words, where the lexical
identities of the words are unknown. Instead of only trying to learn
pronunciations for known words we go one step further and try
to learn both spelling and pronunciation in a joint optimization.
Decoding based on linguistically motivated hybrid subword units
generates the joint lexical search space, which is reduced to
the most appropriate lexical entries based on a set of simple
pruning techniques. A cascade of letter and acoustic pruning,
followed by re-scoring N -best hypotheses with discriminative
decoder statistics resulted in optimal lexical entries in terms of
both spelling and pronunciation. Evaluating the framework on
English isolated word recognition, we achieve reductions of 7.7%
absolute on word error rate and 20.9% absolute on character
error rate over baselines that use no pruning.

I. INTRODUCTION

The word-level lexicon of an LVCSR system models the
set of words to be recognized along with their pronuncia-
tions. If a word is not in the lexicon, the recognizer will
make a substitution, insertion or deletion error. This is known
as the out-of-vocabulary (OOV) problem. Numerous works
have addressed this aspect of LVCSR in various application
scenarios. One scenario is OOV detection, i.e., finding the
parts of the utterance that correspond to words unknown to
the recognizer [1], [2], [3] where popular approaches include
using generalized word or subword filler models, aligning word
and subword representations and using confidence measures
obtained from various sources. The other scenario is OOV
modeling, i.e., the derivation of a lexical representation for
the speech component of an unknown word. This, in turn,
consists of two parts: first, a pronunciation is hypothesized
using phonemic subword units, and second, said pronunciation
is converted to a spelling. Only generating a pronunciation for
an unknown word is sufficient in applications such as Spoken
Term Detection (STD) [6], where phonemic representations of
speech are adequate for indexing and search. For transcrip-
tion, however, an orthography needs to be estimated from a
given phonemic subword sequence, as in [7], where phone
transcriptions are converted to spellings using memory-based
learning for Dutch OOV words. Another approach is to take

the subword decoder output and perform a dynamic alignment
between a lattice and the words of a large fallback lexicon [8].
Lately, so-called flat hybrid models, originally used for letter-
to-sound (L2S) conversion, have gained popularity for detecting
and transcribing OOVs [9]. Such models essentially represent
subword units that encode both pronunciation and spelling.
The idea is to include such units in the word-level recognition
lexicon and language model (LM) and let the decoder decide
when to output a word or a subword sequence. The subword-
spellings of such subword sequences can then be merged into
lexical representations for the OOV.

The goal in this contribution is to learn a pronunciation
lexicon from some speech examples. Instead of only focusing
on either the spelling or the pronunciation aspects of lexical
entries, we propose techniques that optimize both jointly. The
motivation behind this is that we want to move away from
a static recognition lexicon and explore automatic approaches
to discovering an optimal lexical representation for a data set.
In scenarios like spoken term discovery [10], where multiple
acoustic examples of the same word or phrase are detected, au-
tomatically proposing both spellings and pronunciations could
be used as a first step to learning lexical entries. Furthermore,
in applications like STD where a database of audio documents
needs to be indexed, the OOV problem could be overcome
by learning the words contained in the database automatically
during indexing.

In the Spoken Language Systems group at MIT, numerous
lines of research have investigated learning certain aspects of
the lexicon. [11] learns pronunciation baseforms and variants
using statistically learned subword units, [12] uses linguis-
tically motivated hybrid subword units to propose spellings
for perfect phone transcripts and [13] learns both spellings
and pronunciations for new words using the same linguistic
subword units as well as a statistical letter model.

Building on this existing body of research, we propose to
learn a lexical inventory from scratch. We present a framework
that decodes training speech utterances with linguistically mo-
tivated hybrid subword units, and utilizes pruning approaches
to reduce this lexical search space. We investigate the use-
fulness of learning pronunciations and spellings both isolated
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Fig. 1. Subword Parse Table for ’accelerometer’.

and jointly from training data that only contains clusters of
utterances, but no lexical information. Although we address
only isolated word learning, our vision is a system that is
capable of learning lexical entries from continuous speech,
making the OOV problem obsolete for applications such as
STD.

In the remainder of this paper we first present the subword
units used to drive the ASR system. Sec. 3 describes the frame-
work used to learn a lexicon from a speech database, followed
by the experimental setup. Sec. 5 explains the experiments and
presents evaluation results. The paper is concluded in Sec. 6.

II. SUBWORD-BASED ASR FOR LEXICON LEARNING

The goal of this contribution is to investigate techniques for
automatic lexicon learning: given some speech data, generate
word-level lexical entries that best represent the data. To create
the lexical search space, we use subword-based ASR to first
decode speech into sequences of subword units and then use
statistics from the decoding output to select the most adequate
lexical representations for each word. This section describes
the subword units used in this work.
As noted in Sec. 1, a number of subword units have been pro-
posed for various ASR-related tasks. Of special interest for rec-
ognizing OOVs are hybrid units that encode both spelling and
pronunciation. Although the focus has been largely on learn-
ing such a unit inventory automatically from some exemplar
spellings/pronunciations, other, more linguistically motivated
subword segmentations have been investigated as well [12],
[14]. In this contribution we use so-called spellnemes, proposed
in [12]. The underlying idea behind spellnemes is to segment
a word into hybrid units conditioned on a set of linguistic
constraints, where each unit is associated with both spelling
and pronunciation. These constraints are enforced through a
linguistic model that essentially represents a parse table for
a given word. A parse table consists of various layers which
model different subword aspects such as syllabification, sub-
syllabic position, stress and morphology. An example parse for
the English word accelerometer can be found in Fig. 1 a).

As can be seen in Fig. 1 b), the lower two layers of the parse
table can be used jointly to segment a given word into both
spelling and pronunciation chunks, where each cell contains a
so-called spellneme. The inventory of spellnemes is obtained
from a large language-specific pronunciation lexicon. Each
word is parsed using a context-free grammar which was devel-
oped manually. The grammar basically describes permissible
letter/phone alignments. If a word fails to parse according to
the grammar, the corresponding rules are updated manually.

This procedure is applied iteratively across the whole lexicon.
Each word can be represented as a sequence of spellnemes
as long as the spelling or pronunciation can be parsed with
the grammar. This serves de-facto as a reversible L2S or S2L
module.

In comparison to graphones [15], another hybrid unit, spell-
neme segmentations are constrained by linguistic features of
the language in question. That is, where graphones are learned
statistically according to some optimization criterion, the set
of possible spellnemes is based predominantly on the syllable
structure of the language. An important question in subword-
based ASR is how much context a subword unit should
model. At one end of the spectrum, phone units model the
least amount of acoustic context but allow for the highest
degree of generalization. On the other side, larger units like
morphemes [14] or spellnemes increase lexical constraints for
the decoder, but struggle with unseen events. Graphones usually
fall in between, since letter/phone alignment lengths, and thus
the modeling context, are usually chosen depending on the task.

Once an inventory of spellnemes has been derived from some
training data, a spellneme language model needs to be trained.
The same data that was used for generating the unit inventory
can be utilized to train an n-gram model. In this contribution
we only consider isolated word recognition, which means that
we do not need to model cross-word effects and can therefore
straightforwardly train the model on the lexicon. As explained
before, we want to learn a task-specific recognition lexicon
from scratch based on subword ASR. By using an n-gram
model over spellnemes, one could argue that word-like units are
encoded in the LM with a strong bias towards observed words.
Although this is correct, the acoustic models (AM) of the
recognizer strongly influence the final decoder output, which
means that unseen spellneme sequences are likely to be output
for words that were not observed during spellneme training.
Our idea of lexicon learning, ultimately, is that we train a
subword model on a big static training lexicon, potentially
containing millions of words, and use that general model to
obtain the most precise and concise lexical representation for
a given data set. The model will perform better on frequent
words, but, at the same time, should also be able to generate
sensible representations for infrequent words.

III. LEXICON LEARNING

Fig. 2 illustrates the proposed lexicon learning framework.
Given a database of multiple examples of isolated words
without lexical information, we use the spellneme decoder
described in Sec. 2 to generate an N -best list for each utterance.
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Fig. 2. Overview of the lexicon learning framework. A spellneme decoder produces subword hypotheses for both spelling and pronunciation. Two pruning
methods are investigated: pronunciation validation and joint validation.

The core of the framework is the so-called hypothesis pruning
stage where the goal is to filter the hypotheses proposed by the
ASR decoder according to some statistics obtained across the
decoder output of either the utterances within the same cluster
or across the utterances of all clusters. The output of this filter
is a word-level lexicon which, ideally, encodes an exhaustive
set of lexical entries tailored to the data in question. The rest
of this section describes two approaches to hypothesis pruning:
first, we focus on learning the pronunciation for a set of words.
Then, we increase the complexity of the problem by trying to
optimize with respect to both spelling and pronunciation.

A. Pronunciation Validation

As the lexicon maps orthographies to pronunciations, it is
important to model an optimal pronunciation space for each
word. This problem is known as pronunciation modeling: if too
many pronunciation variants per word are included, acoustic
confusability at runtime leads to decreased accuracy. Including
only canonical pronunciations, on the other hand, might not
capture all variations robustly. The assumption when trying to
predict the optimal set of pronunciations for a word is that the
identity, i.e., the spelling, of the word is known (which is used
to drive a letter-to-sound system followed by acoustic pruning).
In our scenario, however, the utterances are clustered into sets
where it is known that all utterances in a given set represent
the same word, but the identity of this word is unknown.
For this reason, we cannot constrain the search space of the
subword decoder with the spelling, and instead have to use the
n-gram spellneme LM as shown in Fig. 2. The idea is then to
constrain the pronunciation search space to those hypotheses
that represent the most reliable pronunciations for the cluster.

The core of the pronunciation validation approach is a
scoring method based on discriminating between the average
ranks of correct and incorrect pronunciation hypotheses in N -
best lists. Note that a pronunciation can be obtained for a
sequence of spellnemes by simply concatenating the pronunci-
ations of each individual subword. Rank scoring is formulated
as follows. Let Sc be the set of spellneme N -best hypotheses
for word cluster c, where sc ∈ Sc and h ∈ sc denote a
specific N -best list and a specific pronunciation hypothesis in

sc, respectively. The quality of a hypothesis h is then defined
as

in score(h) =
count(h ∈ Sc)

1
|Sc|

∑
sc∈Sc

rank(h ∈ Sc)
, (1)

where the numerator reflects how often a hypothesis occurred
in all relevant N -best lists, which is then normalized by the
average rank (i.e., position n in the N -best list) that hypothesis
achieved in said lists. If a hypothesis is not in the N -best list
we assign a rank of n + 1. The intuition behind the in score
is that a hypothesis that is decoded often for the target cluster
at a high position is probably more relevant than a hypothesis
that occurs only rarely and at lower N . In the same spirit we
also want to penalize hypotheses that occur often in irrelevant
N -best lists, that is, hn ∈ Sc̄:

out score(h) =
count(h ∈ Sc̄)

1
|Sc̄|

∑
sc̄∈Sc̄

rank(h ∈ Sc̄)
. (2)

The overall score is then

score(h) = in score(h) − out score(h). (3)

If a pronunciation achieves a high score, it should be an ade-
quate representation for the lexical entry. This score, however,
is not a normalized probability, which makes it difficult to
threshold. An intuitive way of choosing the set of pronunci-
ations for a lexical entry is to sort all proposed pronunciations
according to the above score and pick the top ranking ones. To
avoid hardcoding the number of pronunciations, we decided
to consider the distribution of scores across all proposed
pronunciations for c. We first determine the standard deviation
σ across the scores, and pick only those pronunciations whose
scores are more than k multiples of σ away from the mean μ:

decision =
{

accept if score(h) - μ ≥ k · σ
reject otherwise

This technique only retains a pronunciation that has a large
enough margin between its score and the mean score. Using
other decode information such as AM scores is left for future
work.
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Pronunciation validation optimizes a lexicon with respect
to the suitability of a set of pronunciations for a given word
across all clusters. Lexical entries, however, also require an
orthographic representation. Hence, the next section describes
how we extend the above methods to optimize both spelling
and pronunciation jointly when learning lexical entries.

B. Joint Validation
As spellnemes represent hybrid units, the output of the

spellneme decoder in Fig. 2 can be interpreted in terms of
both spelling and pronunciation. Instead of only focusing on
the pronunciation, as in the previous section, we also want to
obtain a set of spellings that describe a cluster.
Letter pruning: To obtain a spelling for a decoder hypothesis
h, the spelling components of each spellneme in h can be
merged (since we only discuss isolated word recognition we
can ignore cross-word effects). As with pronunciation valida-
tion, we start with the set of N -best outputs for a given cluster
Sc. The proposed spellings at each N of all sc ∈ Sc are used
to train an n-gram letter model. By considering co-occurrence
statistics in form of a letter 3-gram over the proposed letter
sequences for c, we can prune those letter hypotheses that fall
below a threshold, essentially removing spurious spellings. We
use either the L2S module described in Sec. 2, or directly
the pronunciations proposed by the decoder to synthesize
pronunciations for the spellings. The reason for exploring two
methods of selecting pronunciations is to understand whether
the pronunciation search space should be restricted by means of
using just the spellneme output, or whether it should be opened
up again by synthesizing alternative pronunciations with the
L2S module.
Acoustic pruning: The hypotheses are then used as candidates
for an acoustic pruning stage, which is simply decoding the
utterances belonging to c based on the proposed lexical entries
that survived letter pruning. Letting the AMs decide which
pronunciations fit c best moves from orthographic constraints
enforced through letter-pruning to optimizing the pronunciation
aspect of the lexical hypotheses. As opposed to rank scoring,
both letter and acoustic pruning optimize the lexical represen-
tation for every c in isolation.
Rank scoring: Rank scoring as proposed in Eq. 3 can again
be used to discriminatively filter the surviving hypotheses from
the acoustic pruning stage. Now, the optimization is carried out
across the whole lexicon, that is, over all c. This entails that
we compile the survivors of acoustic pruning into a general
word-level lexicon. Although we do not know the spelling
representation of c, we can still use discriminative rank scoring
by replacing the spelling of a lexical hypothesis with an ID
referencing the cluster it originated from. Instead of spellings,
the lexicon therefore maps cluster-IDs to pronunciations, where
the IDs for multiple pronunciations for a cluster are enumerated
uniquely. We then decode the training data again with this lex-
icon and score resulting N -best lists with rank scoring, which
is possible since we have a notion of whether a hypothesis was
decoded for the correct cluster or not.

To summarize, the proposed joint optimization first focuses
on learning a spelling model for every cluster, which is used to
prune unlikely entries. Acoustic pruning ranks the remaining
hypotheses for a single cluster, and rank scoring prunes this

Fig. 3. WER (%) as a function of varying N -best list depth. noPrune uses
only the output of the spellneme decoder by picking the N -best hypotheses
as pronunciations. rankScore prunes the spellneme hypotheses and retains
a hypothesis if score(h) ≥ k · σ

set discriminatively according to decoder statistics across all
clusters.

IV. EXPERIMENTAL SETUP

We evaluate the proposed methods on the Phonebook cor-
pus [16] which contains telephone-quality words spoken in
isolation. We divided the corpus into a training portion, con-
sisting of 2k unique words with 10 occurrences of each word,
and a test portion with the same inventory of words with two
occurrences each.

The spellneme subword inventory is derived from the 300k
most frequent words of the Google n-gram corpus, resulting in
2745 unique spellnemes. We trained a 3-gram spellneme LM
based on the same data. An expert-based word-level pronun-
ciation lexicon containing the in-corpus words only was used
to measure baseline recognition performance. The SUMMIT
segment-based decoder [17] was used in this work. We use
context-dependent diphone AMs based on 14 Mel-Frequency
Cepstral Coefficients averaged over 8 regions at hypothesized
phonetic boundaries. Diagonal Gaussian mixture models with
up to 75 mixtures per model were trained on telephone speech.

We use error rates to evaluate certain aspects of lexicon
learning. Word error rate (WER) is used to measure the dis-
criminability between learned pronunciations in a basic isolated
word recognition scenario. Character error rate (CER) is used
when assessing the quality of the proposed spellings, which
is a more discerning measure for spelling learning, as a slight
deviation from the true spelling gets a much higher score than a
gross misspelling. When evaluating N -best lists, the minimum
CER across all N is reported.

V. EXPERIMENTS & RESULTS

A. Pronunciation Validation
First, we want to evaluate the ability of a spellneme-based

ASR system to learn the pronunciation-side of the lexical
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entries across all clusters without having any knowledge of
the word’s actual spelling. Each cluster c is decoded with
the spellneme system and N -best lists are produced, where
N = 10 for all experiments. To prepare the baseform lexicon,
the spelling of a proposed lexical entry at each n in each c was
replaced by c’s true word label and enumerated according to n.
The resulting word-level lexicon was then used to decode the
training data again. We applied rank scoring to the resulting
N -best lists and only kept lexical entries whose scores were
k standard deviations above the mean. We found k = 0.5 to
be optimal. This lexicon is then used to decode the test data.
In this experiment, WER measures the ability of the learned
lexical inventory to discriminate between correct and incorrect
pronunciations.

Fig. 3 displays WER as a function of the depth N in
the N -best list. First, the expert baseline lexicon achieves
the best results across all N . When simply taking the 1-best
hypotheses of the spellneme output as lexical entries, a WER of
24.5% at N = 1 is achieved. This means that open spellneme
decoding is able to produce useful pronunciations for the word
clusters in question, however not of the same quality as expert
pronunciations. Including all hypotheses from the spellneme
output, denoted as noPrune_10-best, in the learned lexicon
results in more confusable pronunciations and a subsequent
increase by 2.8% absolute in WER compare to including only
the best hypotheses. Rank scoring, on the other hand, is able
to remove pronunciations that caused the decoder to confuse
lexical entries, resulting in an absolute improvement of 7.7%
for n = 1. Regardless of rank scoring, the spellneme-based
method does not achieve the same performance as manually
created pronunciations. Other automatic pronunciation learning
approaches, e.g., [11], achieved better performance than the
baseline lexicon. These approaches, however, condition the
pronunciation search space on the word’s assumed known
spelling, which is not the case in our experiment.

B. Joint Validation
As shown in Fig. 2, joint validation optimizes the lexical

entries for both spelling and pronunciation. To address spelling
optimization we first merge the spellings of all spellneme
N -best lists for a given c and learn a letter n-gram model,
where we chose n = 3. This model is used to retain only the
10 most likely spellings, which are then used to decode all
cluster-specific utterances in c for acoustic pruning. Doing this
over all c we obtain a general lexicon which can be used as
input to pronunciation validation as described in the section
before. We start by evaluating the quality of the learned
spellings, followed by an assessment of the pronunciations
associated with the final lexicon.
Spelling learning: We are now interested in how well the

framework learns spellings for c from the training data. We
measure CER based on the output of the acoustic pruning
stage, i.e., the decode of c in the training data. Results are
illustrated in Fig. 4. Again, we report CER as a function of N .
Applying no pruning yields a CER of 39.8% at N = 1, down
to 26.9% at N = 5. Using acoustic pruning does not affect the
top-ranked results in the N -best lists significantly (39.1%), but
has more effect at higher N : a decrease of CER of up to 8.1%
absolute over no pruning is achieved at the highest N . This

Fig. 4. Character Error Rate (CER; %) as a function of varying N -best
list depth. noPrune evaluates the output of the spellneme decoder only.
acousticPrune prunes the spellneme hypotheses by re-recognizing the
training data. letterPrune scores the spellneme output with a 3-gram letter
model and retains the top 10 hypotheses. L2S denotes using the L2S system
to generate pronunciations for spellings.

means that spurious spellings which were not high-scoring but
still competitive could be removed with the help of the AM.
Letter pruning, on the other hand, improves the 1-best output
by up to 14.4% abs. to 24.7%, and improvements remain
consistent for higher N . Constraining the input to the acoustic
pruning stage by means of imposing tight letter pruning
appears to work well, especially for finding the optimal 1-best
hypothesis. Using the L2S system compared to simply picking
the spellneme output to obtain the pronunciation appears to
not affect CER significantly. In our framework, predicting
the best letter representation can be ambiguous since a single
hypothesized pronunciation can have multiple spellings. We
chose to pick the spelling with the lowest letter LM score.

Pronunciation validation: The output of the spelling opti-
mization is a lexicon based on a set of learned spellings and
their corresponding pronunciations. We are now interested in
how well the learned lexicon performs on word recognition,
that is, the discrimination capabilities between the learned
pronunciations. We focus on the three setups that are of most
interest: just using acoustic pruning, and additionally using
letter pruning, with the L2S or the spellneme pronunciations.
As for pronunciation validation, we replace the spellings in
the lexicon with placeholder cluster identities, re-recognize
the training data, optionally apply rank scoring and decode
the test data with the resulting lexicon. Results are shown
in Table 1. First, the difference between L2S and spellneme
pronunciations, which was negligible according to CER is more
obvious when considering WER: the system with L2S achieves
a WER of 23.0% compared to 21.8% for the spellneme-based
system. An explanation for this is that the spellneme pronun-
ciations are already optimized toward what the AMs favor,
whereas the set of pronunciations synthesized through L2S
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TABLE I
WER (%) ON THREE SPELLING LEARNING SETUPS. ALL APPROACHES USE

LETTER AND ACOUSTIC PRUNING. CER IS COMPUTED ON

RE-RECOGNIZING THE TRAINING SPEECH WITH CLUSTER-RELEVANT

LEXICAL ENTRIES ONLY.

Setup WER 1-best CER

Expert baseline 13.0 0.0
Spellneme baseline 24.5 39.8
L2S 23.0 24.7
noL2S 20.8 25.7
noL2S + rank scoring 15.9 18.9

allows for noisy hypotheses which increase confusion during
subsequent acoustic pruning. As the letter representations are
essentially the same, that difference only becomes apparent
when examining the quality of the pronunciations w.r.t. the
data and the AMs. Applying rank scoring on that lexicon
results in another 4.9% abs. decrease in WER. The resulting
lexicon performs slightly better than the one optimized for
pronunciation only, which means that the additional constraint
enforced by letter pruning does not remove pronunciations that
are preferred by the AMs. To assess the quality of the resulting
spellings we perform another run of acoustic pruning of the
training data. This results in a CER of 18.9%, a reduction
in CER of 20.9% abs. over the spellneme baseline. Jointly
optimizing the spelling and pronunciation by means of spelling
pruning and rank scoring yields thus a lexicon that has both
the lowest CER on the training data and WER on the test set.
Table 2 illustrates some examples of some (incorrectly) learned
lexical entries.

VI. CONCLUSION

We presented a framework for learning a pronunciation
lexicon from a set of isolated word utterances without knowing
either pronunciation or spelling of the words in question. The
joint spelling/pronunciation search space was generated by
decoding the speech with linguistically motivated subword
units and a weakly constrained language model. We presented
various methods that optimize both pronunciation and spelling
either in isolation or jointly. On an isolated word recognition
task, we achieved 7.7% abs. WER reduction over the
spellneme baseline when optimizing the pronunciations across
the whole lexicon. Optimizing the spelling and pronunciation
jointly resulted in up to 20.9% abs. reduction in CER over the
unpruned spellneme output. The best lexicon according to both
acoustic discriminability and spelling accuracy was obtained
through a chain of spelling and acoustic pruning as well as
using decoder statistics to re-score potential lexical hypotheses.

Learning a lexicon from some unannotated but clustered data
is especially useful in scenarios where a dynamic lexicon is
required, such as STD. The appealing aspect of our framework
is that only relevant terms are learned directly from the data
while relying on a subword inventory and language model
that can be trained on potentially millions of words. To make
our methods transferrable to more scenarios, future work will
target learning a lexicon from continuous speech. Directly
incorporating other ASR statistics, such as confidence scores,
could be used to improve pruning performance. Furthermore,

TABLE II
EXAMPLES FROM THE BEST LEARNED LEXICON OF LEXICAL ENTRIES

THAT WERE NOT COMPLETELY CORRECT

Reference Spelling Pronunciation

abnormality abnormalitie /ae bd n ao r m ae l ax tf iy/
airdrop airdropp /eh r dr r aa pd/
annexation annexation /ae n eh kd s ey sh ax n/
woodstown woodstound /w uh dd s t- aw n dd/
meow miao /m iy aw/
macarony microny /m ay k r ow n iy/
jamboree jambery /jh ae m b r iy/
invigorating indegrating /ih n d ax g r ey tf ih ng/

other hybrid subword representation have yet to be investigated
as an alternative to linguistically motivated units.
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