
Efficient Representation and Fast Look-up of
Maximum Entropy Language Models

Jia Cui, Stanley Chen and Bowen Zhou

IBM T.J. Watson Research Center
Yorktown Heights, New York 10598, USA

jiacui,stanchen,zhou@us.ibm.com

Abstract—Word class information has long been proven useful
in language modeling (LM). However, the improved performance
of class-based LMs over word n-gram models generally comes
at the cost of increased decoding complexity and model size.
In this paper, we propose a modified version of the Maximum
Entropy token-based language model of [1] that matches the
performance of the best existing class-based models, but which
is as fast for decoding as a word n-gram model. In addition,
while it is easy to statically combine word n-gram models built
on different corpora into a single word n-gram model for fast
decoding, it is unknown how to statically combine class-based
LMs effectively. Another contribution of this paper is to propose
a novel combination method that retains the gain of class-based
LMs over word n-gram models. Experimental results on several
spoken language translation tasks show that our model performs
significantly better than word n-gram models with comparable
decoding speed and only a modest increase in model size.

I. INTRODUCTION

Language modeling is a crucial component in automatic

speech recognition and statistical machine translation. While

word n-gram models are the dominant technology in practice,

class-based models offer the potential for improved perfor-

mance [2]. For example, Model M, a class-based Maximum

Entropy (ME) model, has achieved some of the largest reported

gains in speech recognition performance as compared to a

word n-gram model [3]. However, this performance comes at

some expense: models are typically twice as large or more

as compared to a word n-gram model trained on the same

data, and decoding speed is many times slower. In many

real-life systems, these additional resource requirements are

unacceptable.1

In this paper, we propose a modified version of the Max-

imum Entropy token-based language model (MET-LM) [1]

that is about as fast as a word n-gram model for decoding,

and which can be almost as compact. Unlike Model M and

many other class-based models which separate the prediction

of classes and words, an MET-LM predicts the future word

and class as a single unit, or token. While Maximum Entropy

models are often slow due to the computation of normalization

constants, we modify MET-LMs by truncating histories when

1We discuss only ME class-based models here, as they have been shown
to significantly outperform non-ME class-based models, e.g., [3].

back-off occurs in such a way that all normalization constants

can be pre-computed and cached. We provide a new way of

explaining MET-LMs, and show how they can be efficiently

implemented using a similar data structure as has been used

for word n-gram models.

For some tasks, training data may be available from mul-

tiple sources, and better performance can be achieved by

linearly interpolating separate LMs built on each sub-corpus

as compared to building a single LM on the combined data.

A general way to implement such a combined model is to

compute the score of each component LM on the fly and

then to linearly interpolate scores. Typically, this will be many

times slower than just evaluating a single LM. Thus, there is

a large speed benefit if one can statically combine multiple

LMs into a single LM without loss in performance. While

such an algorithm is known for word n-gram models [4],

no comparable algorithm exists for class n-gram models. In

this work, we show that by interpolating the data rather than

the models, we can achieve comparable performance with

no extra effort at training or decoding time. This is similar

in spirit to count merging [5] where the component corpora

are weighted unevenly, and the challenge lies in smoothing

effectively as most smoothing methods are poorly suited to

“weighted” counts. Here, we show how to choose weights so

that existing Maximum Entropy regularization methods give

good performance.

The rest of the paper is organized as follows: Sec. II

introduces MET-LM and compares it with Model M. Sec. III

describes the new fast decoding strategy and efficient imple-

mentation for MET-LM. Sec. IV discusses our method for data

interpolation, as well as a method for pruning the resulting

model. Experimental results on machine translation tasks are

presented in Sec. V including comparisons with word n-gram

models and Model M, followed by conclusions and future

work in the last section.

II. MAXIMUM ENTROPY TOKEN-BASED LANGUAGE

MODELS

A. Model Introduction

Maximum Entropy Token-based Language Model (MET-

LM) [1] is designed to serve as a framework to explore local

231978-1-4673-0367-5/11/$26.00 ©2011 IEEE ASRU 2011

dependencies between words and word classes or labels. It

is an n-gram ME LM, predicting the future word and class

based on the preceding words and word classes using a unified

exponential model:

pME(wi, ci|wi−1
i−n+1, c

i−1
i−n+1) =

e
∑

k λkfk(w
i
i−n+1,c

i
i−n+1)

Z(wi−1
i−n+1, c

i−1
i−n+1)

(1)

where Z(wi−1
i−n+1, c

i−1
i−n+1) =

∑
wi,ci e

∑
k λkfk(w

i
i−n+1,c

i
i−n+1)

ensures pME is a probability distribution; ci is the class of

word wi; (wi, ci) altogether is called a token; fk(·) is the k-

th binary feature function with a word/class n-gram as the

argument; and λk is a real-valued weight for feature fk which

is optimized during the ME training process.

Unlike conventional class-based LMs where the future word

is usually predicted after its class is determined from the

history, MET-LM predicts the future word and word class

simultaneously. In other words, MET-LM models the distri-

bution of tokens yet the features are still based on words

and classes. We will show later that this unified modeling

philosophy supports new types of class-based features which

have not been explored in conventional class-based LMs.

Although using two separate distributions can speed up model

training [6], a unified distribution is beneficial for many real-

time applications where faster decoding is preferred over faster

training.

MET-LM is a general framework which theoretically allows

all types of word classes including context-dependent ones

such as part-of-speech tags. With context-dependent classes,

it is not straightforward to express a conditional probability

p(wi|wi−1
i−n+1) without using history class information. How-

ever, there is a natural representation for the probability of a

complete sentence: p(wm
1) =

∑
cm1

p(wm
1 , cm1), which can be

easily computed using the forward algorithm to sum over the

probabilities of all possible token sequences.

To avoid introducing more sparsity, MET-LM only incor-

porates m-gram (m = 1..n) features which are more general

than the corresponding word m-gram. That is, an m-gram

MET-LM feature has m positions where at each position,

either a word or a class has to be chosen. For example,

f(ci−1 = VERB, ci = NOUN) is a valid MET-LM feature,

but f(ci−1 = VERB, wi−1 = eat, wi = cheese) is not.

Let’s use W to denote a word and C to denote a class.

CCW denotes trigram features of the form f(ci−2, ci−1, wi)
while WC denotes bigram features of the form f(wi−1, ci),
etc. Features such as CW and CCW are unusual in non-

token-based language models because they associate history

classes and future words directly. Here are all possible feature

types for a trigram MET-LM: W, WW, WWW, C, WC, CW,

CC, WCW, WWC, CWW, CCW, CWC, WCC and CCC. In

practice, a MET-LM includes only a subset of these feature

types because including all of them makes training extremely

slow.

A feature is activated for an event if and only if the

event matches the argument pattern. For example, given

WW, WC and CC features, the event “eat cheese” acti-

vates the feature f(eat, cheese) as well as f(eat, NOUN)
and f(VERB, NOUN) where VERB is the class of “eat”

and NOUN is the class of “cheese”.2 When a feature fk
is activated, its weight λk contributes to the calculation of

pME. Later, we will show that feature activation can be further

constrained as long as pME remains a valid distribution.

B. Model Training and Feature Selection

MET-LM training incorporates the unigram caching method

proposed in [7]. This method speeds up the Z calculation in

that for each history, only future words which can activate

conditional features are examined instead of all words in

the vocabulary. However, this algorithm is less effective with

class-based features. For example, given the presence of the

feature f(VERB, NOUN), all nouns must be enumerated with

the history “eat” instead of just those following “eat” in the

training data. Training speed is therefore an important concern

when selecting feature types for a MET-LM.

MET-LMs are smoothed using Gaussian priors [8] where

different variances are used for each feature type. Prior vari-

ances are chosen according to model performance on held-

out data.3 Given the long training time of class-based models,

we optimize variances only for word-based MET-LMs and

use these values to set the priors for class-based features. We

observe empirically that lower-level n-gram features tend to

have larger prior variances than higher-level n-gram features.

In addition, for the same value of n, class-based features

tend to have smaller prior variances than purely word-based

features. This is consistent with the intuition that class-based

features, though more frequently observed, are less predictive

than word-based features due to class qualities.

C. Comparing with Model M

Model M [8] is a recently developed ME language model

which has shown significant improvement in real ASR ap-

plications. As in conventional class-based LMs, Model M is

composed of two separate distributions for predicting future

word classes and words, respectively:

pmodel-M(wi|wi−1
i−n+1) = p(ci|wi−1

i−n+1, c
i−1
i−n+1)p(wi|wi−1

i−n+1, ci)

This factorization can speed up training since one need only

normalize over words from the predetermined future class.

Both MET-LM and Model M use the ME framework to

combine word n-gram features (containing the same infor-

mation as a regular word n-gram model) with class-based

features. However, while their class-based features overlap,

they are not identical. MET-LM can exploit features such as

f(ci−2, ci−1, wi) that are absent from Model M, to directly

model the relationship between history classes and future

words. On the other hand, Model M can limit the future word

choice of a given word history with a feature of the form

f(wi−1, ci, wi), while MET-LM can only do this indirectly.

2For simplicity, we abbreviate a feature such as f(wi−1 = eat, wi =
cheese) as f(eat,cheese).

3Using the conventions from [8], we found σ2 to be fairly stable (within
the range 0.1–4) across training set sizes.

232

III. BACK-OFF LOOKUP FOR MET-LM

One of the big obstacles in applying ME LMs to real appli-

cations is decoding speed. ME LMs are generally much slower

than conventional n-gram LMs due to the time-consuming

process of computing Z values. One way to alleviate this issue

is to pre-calculate and save all Z values for histories seen

in the training data. However, the Z calculation for unseen

histories is still very expensive given that all words in the

vocabulary must be enumerated. On the other hand, it is also

impractical to save Z for all possible histories. In this section,

we propose a back-off lookup strategy for ME LMs. Instead

of computing the Z value on the fly for an unseen history, we

back-off recursively to the longest seen n-gram history. This

back-off method avoids any online Z computation and thus

greatly speeds up lookups.

Note that for MET-LMs, probabilities are conditioned on

token histories rather than word histories (Eq. 1). A word

history may be mapped to multiple token histories if word

classes are context-dependent. In this section, we focus on

the simplified situation where each word belongs to only

a single word class.4 In this scenario, the Z value for a

word history equals that of the corresponding token history:

Z(wi−1
i−n+1) = Z(wi−1

i−n+1, c
i−1
i−n+1). Moreover, the conditional

probability of the future word equals the conditional probabil-

ity of the future token and the probability of a word sequence

equals the probability of a token sequence.

In this simplified situation, MET-LM back-off lookup speed

is comparable to that of conventional n-gram LMs while

retaining the performance advantage of a class-based LM.

The following is the back-off recipe for a trigram MET-LM,

where H denotes all observed histories in the training data

and Z0 =
∑

w exp(
∑

k λkfk(w)):

pb(w3|w1, w2) =

{
exp(

∑
k λkfk(w

3
1,c

3
1))

Z(w1,w2)
if (w1, w2) ∈ H

pb(w3|w2) otherwise

pb(w3|w2) =

{
exp(

∑
k λkfk(w

3
2,c

3
2))

Z(w2)
if w2 ∈ H

pb(w3) =
exp(

∑
k λkfk(w3,c3))

Z0
otherwise

In the above formulation, the regular ME probability is

computed only when the full history is seen in the training

data. When the history is unseen, some long-range class-based

features which are activated in a full ME lookup are ignored in

both the numerator and denominator, so that pb is still a valid

distribution. For example, the feature f(VERB, NOUN, and)
is not activated when computing pb(and|eat cheese) if the

history “eat cheese” does not occur in the training data.

Because not all class-based features are always activated,

this back-off strategy may lead to some performance loss as

compared to the normal computation. The amount of loss

depends mainly on the types of features in the model. For

example, models with CWW features are affected more than

models with WWC features. Finally, we note that this lookup

4MET-LM experiments with context-dependent word classes can be found
in [1].

strategy does not affect training, as training does not involve

any unseen histories.

Next, we show that a back-off MET-LM, due to the types of

features it allows, can be stored in a format similar to ARPA

n-gram model format and can be queried by a quick table

lookup. ARPA format is widely used to represent back-off

n-gram language models. In this format, each word n-gram

is associated with a conditional probability and a back-off

parameter, if available. MET-LM also has either one or two

values attached to each n-gram feature: the feature value and

the Z value. In our implementation, Z values are attached

to only word-based features, though their computation also

involves class-based features.

All n-gram features are organized into a trie structure in

reversed order. Each node in the trie corresponds to an m-

gram from ti to ti−m+1 where t is either a word or a word

class. Given a query p(wi|wi−1
i−n+1), the lookup has two steps.

In step one, we search the trie for the longest matching word

history, starting from wi−1 and moving backward. Suppose

we stop at wi−m, in which case Z(wi−1
i−m) will provide the

normalization constant to use. In step two, we search the trie

for all activated features from position i to position i − m.

It is possible that the future word wi can activate class-based

features with words/classes at position before i−m. We ignore

these features because they are not involved in computing

Z(wi−1
i−m).

IV. DATA INTERPOLATION AND MODEL PRUNING

A. Data Interpolation

The usual method for LM training with multiple data

sources is to build separate LMs on each corpus and then

to linearly interpolate all of the models using weights that

optimize the likelihood of held-out data. The interpolation of

conventional n-gram back-off LMs can be done off-line in the

following manner: the combined LM contains the union of the

n-grams found in the component LM’s, and the conditional

probability of each n-gram is set to the appropriate linearly

interpolated value. Finally, back-off factors are set to make

the model normalize correctly. However, this method is not

applicable for general ME LM’s, because parameters do not

correspond directly to probabilities and neither feature weights

nor normalization values can be computed directly through

interpolation.

In the case where only an in-domain corpus and out-

of-domain corpus are to be combined, various interpolation

methods for ME LMs have been proposed [9], [10], [11], [12],

[13]. In [12], an ME model built on the out-of-domain data is

used as a prior model for an ME LM built on the in-domain

data. In [11], a separate prior is built for each data set and a

unified ME LM is trained on both data sets.

In this section, we address the issue by doing data inter-

polation rather than model interpolation. We interpolate n-

gram counts from sub-corpora and build a single model on

the combined counts. One challenge of this method is deciding

how to select data interpolation weights without having to do

an excessively expensive optimization. In our experiments, we

233

have found that using weights from the usual interpolation

method (optimizing the perplexity of held-out data when doing

conventional model interpolation) works well. In addition,

scaling the highest LM interpolation weight to be 1 and the

others proportionally makes regularization easier: We can then

use similar σ values for our Gaussian prior as when building

an LM on a single corpus (See Section II-B).

An ME LM built on interpolated data satisfies constraints

of the following form (ignoring regularization):∑
x,y

ĉ(x)p(y|x)fk(x, y) =
∑
j

αj

∑
xj ,yj

ĉj(xj , yj)fk(xj , yj)

where xj , yj are histories and future words in the j-th sub-

corpus; αj is the real-valued interpolation weight for the

j-th sub-corpus; ĉj is the empirical count in the j-th sub-

corpus; ĉ(x) =
∑

j αj ĉj(x), which can be fractional, is the

empirical history count from the weighted mixed data; and

p(y|x) is the ME LM to be trained. The right-hand side

corresponds to feature targets, and our method can be regarded

as interpolating feature targets.

Note that it is not clear how to apply conventional n-gram

model smoothing techniques such as Katz [14], Witten-Bell

[15] or Kneser-Ney smoothing [16] to data with fractional

counts, as we have here. All of these smoothing techniques

assume integer n-gram counts, utilizing count of count values

(e.g., the number of unigrams) in determining discounts or

back-off factors. Even “unnatural” integer counts can make

these algorithms perform poorly. For example, consider a data

set consisting of two copies of the same corpus, so that all

counts are even. Good-Turing back-off will not work properly

since many counts of counts are zero. In contrast, if we just

cut prior variances in half, ME models with a Gaussian prior

will produce the same exact model as with a single copy of

the corpus. This suggests that ME smoothing is more robust

with respect to “unnatural” texts as compared to conventional

smoothing methods.

B. ME LM Pruning

In many real applications, LM pruning is a required step and

thus has been studied extensively, e.g., [17], [18]. In this paper,

pruning is based mainly on the values of features and partially

on the nested structure of features. In ME modeling, the feature

weight λk can be positive or negative. A feature with a small

absolute weight value |λk| has relatively little influence on

a model, and thus we prune features with weight below a

threshold. However, ME LM features are not independent of

each other and pruning a feature with a small weight can

have a significant impact on the weights of other features

after retraining. In MET-LM, a feature f(tba) is called a nested
feature of f(tbc) if tba is a word/class suffix sub-string of tbc.

A feature value is strongly related to the feature values of its

nested features because whenever this feature is activated, all

of its nested features are activated too. Thus, for any feature

passing the weight threshold, we keep all of its nested features

as well.

After a MET-LM is built, features are pruned from higher

level to lower level. A feature remains if either its value is

above the threshold or it is a nested feature of a remaining

higher-level feature. Empirically, we have found that it may

be preferable to not prune any unigram or bigram features.

After pruning, the remaining features are retrained.

V. EXPERIMENTAL RESULTS

We investigate three translation tasks to demonstrate the

effectiveness of our back-off strategy and our data interpo-

lation and pruning techniques for MET-LMs. The first task

is standard IWSLT 2006 Chinese to English translation. The

second is English to Dari translation and the third is Chinese

to English translation. The latter two tasks are part of real-

time speech to speech translation systems, and thus have strict

requirements for language model size and speed.

The baseline models are 4-gram modified KN (mKN) LMs

which are stored in regular ARPA format. The MET-LMs we

evaluate include all word-based feature types and some types

of class-based features. For each task, 150 word classes are

generated from the task training data using the algorithm in

[2]; the value 150 was determined empirically in previous

work [12].

For each task, we build a hierarchical phrase-based machine

translation model [19]. The relative weights of the language

model and translation model are retuned for each LM. The

weights tuned on held-out data are used to report translation

performance on the test data.

A. IWSLT 2006 and Single-Source MET-LM

The IWSLT 2006 Chinese to English task [20] contains

39,953 parallel sentences including 1.6M English words with

11,146 unique words. The held-out data has 489 sentences

with 7 references and the test data contains 500 sentences

with 7 references.

We build several MET-LMs by varying the types of features

used. Specifically, MetA contains WC, CW, CC, WCC, WCCC

features. MetB is a much smaller model including only CC

and WCC features. MetB-tag employs the same types of

features as MetB but the class of each word is taken to be

its dominant Part-of-Speech tag (out of 36) obtained from the

UPenn TreeBank data [21]. All language models are unpruned.

We first compare the perplexities (PPL) on the test data

with regular ME lookup and with back-off ME lookup. The

test data is the union of all test references and contains

2.5% out-of-vocabulary words. This corresponds to a total of

47579 word predictions, of which 46.2% have trigram histories

observed in the training data, 29.4% have only observed

bigram histories, 21.9% have only observed unigram histories,

and the remaining 2.5% are predicted with unknown histories.

Table I shows the perplexity results as well as the running

time in seconds. All of the MET-LMs improve in perplexity

over the baseline by over 15%. The back-off strategy incurs

little performance loss as compared to the regular ME lookup,

yet it is much faster. For example, regular ME lookup takes

234

TABLE I
COMPARING BACK-OFF STRATEGIES IN PPL AND SPEED FOR VARIOUS

LMS

Regular Back-off
LM PPL Time (s) PPL Time (s)
mKN 143
MetA 119 260 121 1
MetB 120 147 122 1
MetB-tag 117 235 118 1

147 seconds with MetB while the back-off lookup takes no

more than one second.

Table II presents the Chinese to English translation results.

The size of each model is measured by the number of features

in millions (M). The decoding time is measured on a single

machine in seconds (s). From the table, we can see that all

MET-LMs have achieved significant improvement in BLEU

score as compared to the baseline with only a moderate model

size increase. Particularly, MetA improves by 1.4 BLEU points

with a model twice the size. MetB and MetB-tag achieve 0.6

and 1.0 BLEU improvements, respectively, with similar model

sizes yet even faster decoding speeds. As a comparison, we

have also implemented Model M without our back-off strategy.

It provides a significant BLEU improvement of 1.3 yet has a

much slower speed.

TABLE II
COMPARING LMS BY BLEU SCORE, MODEL SIZE AND RUNNING TIME ON

IWSLT06 CHINESE TO ENGLISH TRANSLATION TASK

LM Size (M) Held BLEU Test BLEU Time (s)
mKN 0.44 21.61 21.74 174
MetA 0.87 22.86 23.21 172
MetB 0.53 22.83 22.42 148
MetB-tag 0.48 22.49 22.80 143
model-M 1.38 22.46 23.04 965

B. English to Dari Translation

We carried out training data interpolation experiments on an

English(SVO)-to-Dari(SOV) task. The Dari LM training data

is categorized into 11 groups [22], including a total of about

30M tokens with a vocabulary of 45K words. Both held-out

data and test data have 1569 sentences with one reference.

Given the mixed nature of the Dari LM training data, Table

III shows that better performance can be achieved with an

interpolated LM than with a single LM constructed on the

union of the training data. Even though a “unified” Model M

and MET-LM can both reduce the perplexity from 155 to 137

and 138, respectively, the interpolated mKN LM can achieve

a significantly better PPL (122) than all unified LMs. A MET-

LM built with interpolated data can further bring down the

perplexity to 112.5 The above models are not pruned.

Four interpolated MET-LMs are built with interpolated Dari

data using baseline interpolation weights. MetB1 and MetB2

5The interpolation weights used here are a little different from the baseline
interpolation weights suggested in Sec. IV-A. In particular, we discount the
weights of large sub-corpora.

TABLE III
COMPARING LM INTERPOLATION WITH BUILDING A SINGLE LM ON THE

UNION OF THE DATA FOR DARI

LM PPL
mKN 155
Model M 137
MET-LM 138
interp mKN 122
interp MET-LM 112

both include CC and WCC features. They are pruned with

threshold 0.1 and 0.2, respectively, and all unigram features

remain. MetC1 and MetC2 both include CC, CCW, and

CCCW features. MetC2 has the same pruning method and

threshold as MetB2. MetC1 keeps all unigram and bigram

features but uses a higher threshold of 0.5.

Table IV shows the perplexities of MET-LMs before pruning

(PPL), after pruning (Pr PPL), and using our back-off strategy

on the pruned model (Pr-Bo PPL). First, we see that the

pruned models yield almost the same perplexities as the

unpruned models. Second, the back-off strategy yields almost

the same results as regular ME lookups for MetB1 and MetB2.

However, a larger perplexity increase is observed for MetC1

and MetC2. That is because MetC1 and MetC2 include lots of

history-class-based features, such as CCW and CCCW. These

features are more likely to be ignored during back-off.

TABLE IV
COMPARING UNPRUNED AND PRUNED MODELS WITH BACK-OFF ME

LOOKUP FOR DARI

LM PPL Pr PPL Pr-Bo PPL
MetB1 115 114 116
MetC1 115 115 119
MetB2 115 114 115
MetC2 115 114 119

Table V presents English-Dari translation performance with

different LMs. All MET-LMs have better BLEU scores than

the baseline model. Notably, MetC1 improves by 0.7 BLEU

points over the baseline without increasing model size and

decoding is only marginally slower. MetC2 is faster than

MetC1 with a bigger model size because it has less bigram

features remaining after pruning.

TABLE V
INTERPOLATED LMS ON ENGLISH/DARI TRANSLATION

LM Size (M) Held BLEU Test BLEU Time (s)
Interp-mKN 1.4 15.64 14.71 1351
MetB1 2.6 16.63 15.59 1509
MetC1 1.4 16.47 15.43 1475
MetB2 1.7 16.46 15.29 1480
MetC2 1.8 16.45 15.53 1374

C. Chinese to English Translation

Finally, we build and test MET-LMs on a Chinese-to-

English translation task focusing on the travel domain. The

English LMs are built on 900K sentences from 11 sources

235

containing 32M words using a 47kw vocabulary. There are 851

held-out sentences and 1000 test sentences, all with a single

reference translation. All MET-LMs are interpolated models

with CW, WC, CCW, and CCCW features. They are pruned

with threshold 1, 1.5, and 2, respectively, without removing

any unigram features. Table VI shows that all MET-LMs are

able to improve the translation accuracy with virtually no

overhead in decoding time. For example, MetD2 improves by

0.7 BLEU points (25.60 vs. 24.94) with only a 24% increase

in model size and a 5% increase in decoding time.

TABLE VI
INTERPOLATED LMS ON CHINESE/ENGLISH TRANSLATION

LM Held BLEU Test BLEU Size (M) Time (s)
interp-mKN 27.01 24.94 2.9 352
MetD1 27.55 25.25 4.4 377
MetD2 27.28 25.60 3.6 370
MetD3 27.17 25.26 2.9 365

VI. CONCLUSIONS AND FUTURE WORK

Maximum Entropy language models have had limited use in

real-time applications due to their computationally expensive

training and lookup. In this paper, we have proposed a novel

back-off lookup strategy for ME LMs, which avoids online

Z computation by backing off to pre-computed Zs of seen

histories. It loses little performance as compared to the regular

ME lookup strategy yet is significantly faster.

When this strategy is applied to MET-LM with deterministic

word classes, the model can be stored in an ARPA-like format

and lookup speed is comparable to that of conventional n-gram

LMs. Yet, it still offers performance comparable to the state-

of-art class-based Model M. In the case where word classes are

context-dependent, the Z value of a word history will depend

on its class labels. The back-off idea is still applicable, but the

algorithm will be more complex.

We have also proposed a new viewpoint for building ME

LMs with multiple data components. Compared to online

model interpolation, our method of data interpolation is faster

and saves space. Though there is no fast way to compute

optimal data interpolation weights, we have shown empirically

that using the baseline LM interpolation weights to interpolate

the data can lead to class-based MET-LMs with good perfor-

mance.

We have noticed that the perplexity improvements of MET-

LM in the interpolated case are not as big as those with a

single data source. Sub-optimal interpolation weights may be

a reason, and further investigation of this issue should be

conducted.

VII. ACKNOWLEDGMENT

This work is partially supported by the DARPA Trans-

formative Apps program under the contract number of

N10PC20037A through the DARPA Information Processing

Techniques Office (IPTO).Any opinions, findings, and con-

clusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views

of DARPA.

Many thanks to Martin CMEJREK, Ahmad EMAMI and

Songfang HUANG for their valuable comments and sugges-

tions on earlier drafts of this paper.

REFERENCES

[1] J. Cui, Y. Su, K. Hall, and F. Jelinek, “Investigating linguistic knowledge
in a maximum entropy token-based language model,” in IEEE Workshop
on Automatic Speech Recognition and Understanding (ASRU), 2007.

[2] P. Brown, S. D. Pietra, V. D. Pietra, and R. Mercer, “The mathematics of
machine translation: parameter estimation,” Computational Linguistics,
vol. 19, pp. 263–312, 1993.

[3] S. F. Chen, “Performance prediction for exponential language models,”
in Proc. of HLT-NAACL, 2009.

[4] A. Stolcke, “SRILM — an extensible language modeling toolkit,” In
Proceedings of ICSLP, vol. 2, pp. 901–904, 2002.

[5] M. Federico, “Bayesian estimation methods for n-gram language model
adaptation,” in Proceedings of ICSLP, 1996, pp. 240–243.

[6] J. Goodman, “Classes for fast maximum entropy training,” in Proceed-
ings of ICASSP, 2001.

[7] J. Wu and S. Khudanpur, “Efficient training methods for maximum
entropy language modeling,” in Proceedings of ICSLP, 2000, pp. 114–
117.

[8] S. F. Chen, “Performance prediction for exponential language models,”
Technical Report RC 24671, IBM Research Division, Tech. Rep., 2008.

[9] C. Chelba and A. Acero, “Adaptation of maximum entropy capitalizer:
Little data can help a lot,” in Proceedings of EMNLP, 2004, pp. 285–
292.

[10] H. Daume III and D. Marcu, “Domain adaptation for statistical classi-
fiers,” Journal of Artificial Intelligence Research, vol. 26, pp. 101–126,
2006.

[11] T. Alumäe and M. Kurimo, “Domain adaptation of maximum entropy
language models,” in Proceedings of ACL, Stroudsburg, PA, USA, 2010,
pp. 301–306.

[12] S. F. Chen, “Shrinking exponential language models,” in Proceedings of
HLT-NAACL, 2009, pp. 468–476.

[13] J. Finkel and C. Manning, “Hierarchical Bayesian domain adaptation,”
in Proceedings of HLT-NAACL, 2009, pp. 602–610.

[14] S. M. Katz, “Estimation of probabilities from sparse data for the lan-
guage model component of a speech recognizer,” in IEEE Transactions
on Acoustics, Speech and Signal Processing, ASSP-35(3), 1987, pp. 400–
401.

[15] I. H. Witten and T. C. Bell, “The zero-frequency problem: estimating
the probabilities of novel events in adaptive text compression,” IEEE
Transactions on Information Theory, vol. 37(4), pp. 1085–1094, 1991.

[16] R. Kneser and H. Ney, “Improved backing-off for m-gram language
modeling,” in Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, vol. 1, 1995, pp. 181–184.

[17] J. Goodman and J. Gao, “Language model size reduction by pruning
and clustering,” in Proceedings of ICSLP, 2000, pp. 110–113.

[18] A. Stolcke, “Entropy-based pruning of backoff language models,” in
Proceedings of the DARPA Broadcast News Transcription and Under-
standing Workshop, 1998, pp. 270–274.

[19] B. Zhou, X. Zhu, B. Xiang, and Y. Gao, “Prior derivation models for
formally syntax-based translation using linguistically syntactic parsing
and tree kernels,” in Proceedings of the Second Workshop on Syntax and
Structure in Statistical Translation, 2008, pp. 19–27.

[20] M. Paul, “Overview of the IWSLT 2006 evaluation campaign,” in Proc.
of the International Workshop of Spoken Language Translation, 2006,
pp. 1–15.

[21] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a
large annotated corpus of English: The Penn treebank,” Computational
Linguistics, vol. 19, no. 2, pp. 313–330, 1993.

[22] B. Xiang, B. Zhou, and M. Cmejrek, “Advances in syntax-based Malay-
English speech translation,” in Proceedings of ICASSP. Los Alamitos,
CA, USA: IEEE Computer Society, 2009, pp. 4801–4804.

236

